% | ua 5.3 Reference
Manual

-

The reference manual is the official definition of the Lua language.
For a complete introduction to Lua programming, see the book Programming in Lua.

start - contents - index - other versions

Copyright © 2015-2017 Lua.org, PUC-Rio. Freely available under the terms of the Lua license.

< Contents

1 — Introduction

2 — Basic Concepts

2.1 — Values and Types

2.2 — Environments and the Global Environment

2.3 — Error Handling

2.4 — Metatables and Metamethods

2.5 — Garbage Collection
2.5.1 — Garbage-Collection Metamethods
2.5.2 — Weak Tables

2.6 — Coroutines

3 — The Language
3.1 — Lexical Conventions

3.2 — Variables

3.3 — Statements
3.3.1 — Blocks
3.3.2 — Chunks

3.3.3 — Assignment
3.3.4 — Control Structures
3.3.5 — For Statement
3.3.6 — Function Calls as Statements
3.3.7 — Local Declarations
3.4 — Expressions
3.4.1 — Arithmetic Operators
3.4.2 — Bitwise Operators
3.4.3 — Coercions and Conversions

3.4.4 — Relational Operators

3.4.5 — Logical Operators

3.4.6 — Concatenation

3.4.7 — The Length Operator

3.4.8 — Precedence

3.4.9 — Table Constructors

3.4.10 — Function Calls

3.4.11 — Function Definitions
3.5 — Visibility Rules

4 — The Application Program Interface
4.1 — The Stack
4.2 — Stack Size
4.3 — Valid and Acceptable Indices
4.4 — C Closures
4.5 — Reqistry
4.6 — Error Handling in C
4.7 — Handling Yields in C
4.8 — Functions and Types
4.9 — The Debug Interface

5 — The Auxiliary Library
5.1 — Functions and Types

6 — Standard Libraries
6.1 — Basic Functions
6.2 — Coroutine Manipulation
6.3 — Modules
6.4 — String Manipulation
6.4.1 — Patterns
6.4.2 — Format Strings for Pack and Unpack
6.5 — UTF-8 Support
6.6 — Table Manipulation
6.7 — Mathematical Functions
6.8 — Input and Output Facilities
6.9 — Operating System Facilities
6.10 — The Debug Library

7 — Lua Standalone

8 — Incompatibilities with the Previous Version
8.1 — Changes in the Language
8.2 — Changes in the Libraries
8.3 — Changes in the API

9 — The Complete Syntax of Lua

< Index

’’ Lua 5.3 Reference Manual

by Roberto lerusalimschy, Luiz Henrique de Figueiredo, Waldemar Celes
Copyright © 2015-2017 Lua.org, PUC-Rio. Freely available under the terms of the Lua license.

contents - index - other versions

1 - Introduction

Lua is a powerful, efficient, lightweight, embeddable scripting language. It supports procedural programming,
object-oriented programming, functional programming, data-driven programming, and data description.

Lua combines simple procedural syntax with powerful data description constructs based on associative arrays
and extensible semantics. Lua is dynamically typed, runs by interpreting bytecode with a register-based virtual
machine, and has automatic memory management with incremental garbage collection, making it ideal for
configuration, scripting, and rapid prototyping.

Lua is implemented as a library, written in clean C, the common subset of Standard C and C++. The Lua
distribution includes a host program called lua, which uses the Lua library to offer a complete, standalone
Lua interpreter, for interactive or batch use. Lua is intended to be used both as a powerful, lightweight,
embeddable scripting language for any program that needs one, and as a powerful but lightweight and
efficient stand-alone language.

As an extension language, Lua has no notion of a "main" program: it works embedded in a host client, called
the embedding program or simply the host. (Frequently, this host is the stand-alone lua program.) The host
program can invoke functions to execute a piece of Lua code, can write and read Lua variables, and can
register C functions to be called by Lua code. Through the use of C functions, Lua can be augmented to cope
with a wide range of different domains, thus creating customized programming languages sharing a
syntactical framework.

Lua is free software, and is provided as usual with no guarantees, as stated in its license. The implementation
described in this manual is available at Lua's official web site, www . lua.org.

Like any other reference manual, this document is dry in places. For a discussion of the decisions behind the
design of Lua, see the technical papers available at Lua's web site. For a detailed introduction to programming
in Lua, see Roberto's book, Programming in Lua.

2 — Basic Concepts

This section describes the basic concepts of the language.

2.1 - Values and Types

Lua is a dynamically typed language. This means that variables do not have types; only values do. There are
no type definitions in the language. All values carry their own type.

All values in Lua are first-class values. This means that all values can be stored in variables, passed as
arguments to other functions, and returned as results.

There are eight basic types in Lua: nil, boolean, number, string, function, userdata, thread, and table. The type
nil has one single value, nil, whose main property is to be different from any other value; it usually represents

the absence of a useful value. The type boolean has two values, false and true. Both nil and false make a
condition false; any other value makes it true. The type number represents both integer numbers and real
(floating-point) numbers. The type string represents immutable sequences of bytes. Lua is 8-bit clean: strings
can contain any 8-bit value, including embedded zeros ('\0Q'). Lua is also encoding-agnostic; it makes no
assumptions about the contents of a string.

The type number uses two internal representations, or two subtypes, one called integer and the other called
float. Lua has explicit rules about when each representation is used, but it also converts between them
automatically as needed (see §3.4.3). Therefore, the programmer may choose to mostly ignore the difference
between integers and floats or to assume complete control over the representation of each number. Standard
Lua uses 64-bit integers and double-precision (64-bit) floats, but you can also compile Lua so that it uses 32-
bit integers and/or single-precision (32-bit) floats. The option with 32 bits for both integers and floats is
particularly attractive for small machines and embedded systems. (See macro LUA 32BITS in file
luaconf.h.)

Lua can call (and manipulate) functions written in Lua and functions written in C (see §3.4.10). Both are
represented by the type function.

The type userdata is provided to allow arbitrary C data to be stored in Lua variables. A userdata value
represents a block of raw memory. There are two kinds of userdata: full userdata, which is an object with a
block of memory managed by Lua, and light userdata, which is simply a C pointer value. Userdata has no
predefined operations in Lua, except assignment and identity test. By using metatables, the programmer can
define operations for full userdata values (see §2.4). Userdata values cannot be created or modified in Lua,
only through the C API. This guarantees the integrity of data owned by the host program.

The type thread represents independent threads of execution and it is used to implement coroutines (see
§2.6). Lua threads are not related to operating-system threads. Lua supports coroutines on all systems, even
those that do not support threads natively.

The type table implements associative arrays, that is, arrays that can be indexed not only with numbers, but
with any Lua value except nil and NaN. (Not a Number is a special value used to represent undefined or
unrepresentable numerical results, such as 0/0.) Tables can be heterogeneous; that is, they can contain
values of all types (except nil). Any key with value nil is not considered part of the table. Conversely, any key
that is not part of a table has an associated value nil.

Tables are the sole data-structuring mechanism in Lua; they can be used to represent ordinary arrays, lists,
symbol tables, sets, records, graphs, trees, etc. To represent records, Lua uses the field name as an index.
The language supports this representation by providing a. name as syntactic sugar for a["name"]. There are
several convenient ways to create tables in Lua (see §3.4.9).

Like indices, the values of table fields can be of any type. In particular, because functions are first-class
values, table fields can contain functions. Thus tables can also carry methods (see §3.4.11).

The indexing of tables follows the definition of raw equality in the language. The expressions a[i] and a[j]
denote the same table element if and only if 1 and j are raw equal (that is, equal without metamethods). In
particular, floats with integral values are equal to their respective integers (e.g., 1.0 == 1). To avoid
ambiguities, any float with integral value used as a key is converted to its respective integer. For instance, if
you write a[2.0] = true, the actual key inserted into the table will be the integer 2. (On the other hand, 2
and "2" are different Lua values and therefore denote different table entries.)

Tables, functions, threads, and (full) userdata values are objects: variables do not actually contain these
values, only references to them. Assignment, parameter passing, and function returns always manipulate
references to such values; these operations do not imply any kind of copy.

The library function type returns a string describing the type of a given value (see §6.1).

2.2 — Environments and the Global Environment

As will be discussed in §3.2 and §3.3.3, any reference to a free name (that is, a name not bound to any
declaration) var is syntactically translated to ENV.var. Moreover, every chunk is compiled in the scope of
an external local variable named ENV (see §3.3.2), so _ENV itself is never a free name in a chunk.

Despite the existence of this external ENV variable and the translation of free names, ENV is a completely
regular name. In particular, you can define new variables and parameters with that name. Each reference to a
free name uses the ENV that is visible at that point in the program, following the usual visibility rules of Lua

(see §3.5).
Any table used as the value of ENV is called an environment.

Lua keeps a distinguished environment called the global environment. This value is kept at a special index in
the C registry (see §4.5). In Lua, the global variable G is initialized with this same value. (_G is never used
internally.)

When Lua loads a chunk, the default value for its ENV upvalue is the global environment (see load).
Therefore, by default, free names in Lua code refer to entries in the global environment (and, therefore, they
are also called global variables). Moreover, all standard libraries are loaded in the global environment and
some functions there operate on that environment. You can use load (or Loadfile) to load a chunk with a
different environment. (In C, you have to load the chunk and then change the value of its first upvalue.)

2.3 - Error Handling

Because Lua is an embedded extension language, all Lua actions start from C code in the host program
calling a function from the Lua library. (When you use Lua standalone, the lua application is the host
program.) Whenever an error occurs during the compilation or execution of a Lua chunk, control returns to the
host, which can take appropriate measures (such as printing an error message).

Lua code can explicitly generate an error by calling the error function. If you need to catch errors in Lua, you
can use pcall or xpcall to call a given function in protected mode.

Whenever there is an error, an error object (also called an error message) is propagated with information
about the error. Lua itself only generates errors whose error object is a string, but programs may generate
errors with any value as the error object. It is up to the Lua program or its host to handle such error objects.

When you use xpcall or lua_pcall, you may give a message handler to be called in case of errors. This
function is called with the original error object and returns a new error object. It is called before the error
unwinds the stack, so that it can gather more information about the error, for instance by inspecting the stack
and creating a stack traceback. This message handler is still protected by the protected call; so, an error
inside the message handler will call the message handler again. If this loop goes on for too long, Lua breaks it
and returns an appropriate message. (The message handler is called only for regular runtime errors. It is not
called for memory-allocation errors nor for errors while running finalizers.)

2.4 — Metatables and Metamethods

Every value in Lua can have a metatable. This metatable is an ordinary Lua table that defines the behavior of
the original value under certain special operations. You can change several aspects of the behavior of
operations over a value by setting specific fields in its metatable. For instance, when a non-numeric value is
the operand of an addition, Lua checks for a function in the field " add" of the value's metatable. If it finds
one, Lua calls this function to perform the addition.

The key for each event in a metatable is a string with the event name prefixed by two underscores; the
corresponding values are called metamethods. In the previous example, the key is " add" and the
metamethod is the function that performs the addition.

You can query the metatable of any value using the getmetatable function. Lua queries metamethods in
metatables using a raw access (see rawget). So, to retrieve the metamethod for event ev in object o, Lua
does the equivalent to the following code:

rawget (getmetatable(o) or {}, " ev")

You can replace the metatable of tables using the setmetatable function. You cannot change the metatable
of other types from Lua code (except by using the debug library (§6.10)); you should use the C API for that.

Tables and full userdata have individual metatables (although multiple tables and userdata can share their
metatables). Values of all other types share one single metatable per type; that is, there is one single
metatable for all numbers, one for all strings, etc. By default, a value has no metatable, but the string library
sets a metatable for the string type (see §6.4).

A metatable controls how an object behaves in arithmetic operations, bitwise operations, order comparisons,
concatenation, length operation, calls, and indexing. A metatable also can define a function to be called when

a userdata or a table is garbage collected (§2.5).

For the unary operators (negation, length, and bitwise NOT), the metamethod is computed and called with a
dummy second operand, equal to the first one. This extra operand is only to simplify Lua's internals (by
making these operators behave like a binary operation) and may be removed in future versions. (For most
uses this extra operand is irrelevant.)

A detailed list of events controlled by metatables is given next. Each operation is identified by its
corresponding key.

__add: the addition (+) operation. If any operand for an addition is not a number (nor a string coercible
to a number), Lua will try to call a metamethod. First, Lua will check the first operand (even if it is valid).
If that operand does not define a metamethod for __add, then Lua will check the second operand. If Lua
can find a metamethod, it calls the metamethod with the two operands as arguments, and the result of
the call (adjusted to one value) is the result of the operation. Otherwise, it raises an error.

__sub: the subtraction (-) operation. Behavior similar to the addition operation.

__mul: the multiplication (*) operation. Behavior similar to the addition operation.

__div: the division (/) operation. Behavior similar to the addition operation.

__mod: the modulo (%) operation. Behavior similar to the addition operation.

__pow: the exponentiation (") operation. Behavior similar to the addition operation.

__unm: the negation (unary -) operation. Behavior similar to the addition operation.

__idiv: the floor division (//) operation. Behavior similar to the addition operation.

__band: the bitwise AND (&) operation. Behavior similar to the addition operation, except that Lua will
try a metamethod if any operand is neither an integer nor a value coercible to an integer (see §3.4.3).
__bor: the bitwise OR (|) operation. Behavior similar to the bitwise AND operation.

__bxor: the bitwise exclusive OR (binary ~) operation. Behavior similar to the bitwise AND operation.
__bnot: the bitwise NOT (unary ~) operation. Behavior similar to the bitwise AND operation.

__shl: the bitwise left shift (<<) operation. Behavior similar to the bitwise AND operation.

__shr: the bitwise right shift (>>) operation. Behavior similar to the bitwise AND operation.

__concat: the concatenation (. .) operation. Behavior similar to the addition operation, except that Lua
will try a metamethod if any operand is neither a string nor a number (which is always coercible to a
string).

__Llen: the length (#) operation. If the object is not a string, Lua will try its metamethod. If there is a
metamethod, Lua calls it with the object as argument, and the result of the call (always adjusted to one
value) is the result of the operation. If there is no metamethod but the object is a table, then Lua uses
the table length operation (see §3.4.7). Otherwise, Lua raises an error.

__eq: the equal (==) operation. Behavior similar to the addition operation, except that Lua will try a
metamethod only when the values being compared are either both tables or both full userdata and they
are not primitively equal. The result of the call is always converted to a boolean.

__1t: the less than (<) operation. Behavior similar to the addition operation, except that Lua will try a
metamethod only when the values being compared are neither both numbers nor both strings. The result
of the call is always converted to a boolean.

__le: the less equal (<=) operation. Unlike other operations, the less-equal operation can use two
different events. First, Lua looks for the _ le metamethod in both operands, like in the less than
operation. If it cannot find such a metamethod, then it will try the 1t metamethod, assuming that a <=
b is equivalent to not (b < a). As with the other comparison operators, the result is always a
boolean. (This use of the 1t event can be removed in future versions; it is also slower than a real
_le metamethod.)

__index: The indexing access table[key]. This event happens when table is not a table or when
key is not present in table. The metamethod is looked up in table.

Despite the name, the metamethod for this event can be either a function or a table. If it is a function, it
is called with table and key as arguments, and the result of the call (adjusted to one value) is the
result of the operation. If it is a table, the final result is the result of indexing this table with key. (This
indexing is regular, not raw, and therefore can trigger another metamethod.)

__newindex: The indexing assignment table[key] = value. Like the index event, this event
happens when table is not a table or when key is not present in table. The metamethod is looked up
in table.

Like with indexing, the metamethod for this event can be either a function or a table. If it is a function, it
is called with table, key, and value as arguments. If it is a table, Lua does an indexing assignment to
this table with the same key and value. (This assignment is regular, not raw, and therefore can trigger
another metamethod.)

Whenever there is a __newindex metamethod, Lua does not perform the primitive assignment. (If
necessary, the metamethod itself can call rawset to do the assignment.)

e call: The call operation func(args). This event happens when Lua tries to call a non-function
value (that is, func is not a function). The metamethod is looked up in func. If present, the metamethod
is called with func as its first argument, followed by the arguments of the original call (args). All results
of the call are the result of the operation. (This is the only metamethod that allows multiple results.)

It is a good practice to add all needed metamethods to a table before setting it as a metatable of some object.
In particular, the __gc metamethod works only when this order is followed (see §2.5.1).

Because metatables are regular tables, they can contain arbitrary fields, not only the event names defined
above. Some functions in the standard library (e.g., tostring) use other fields in metatables for their own
purposes.

2.5 - Garbage Collection

Lua performs automatic memory management. This means that you do not have to worry about allocating
memory for new objects or freeing it when the objects are no longer needed. Lua manages memory
automatically by running a garbage collector to collect all dead objects (that is, objects that are no longer
accessible from Lua). All memory used by Lua is subject to automatic management: strings, tables, userdata,
functions, threads, internal structures, etc.

Lua implements an incremental mark-and-sweep collector. It uses two numbers to control its garbage-
collection cycles: the garbage-collector pause and the garbage-collector step multiplier. Both use percentage
points as units (e.g., a value of 100 means an internal value of 1).

The garbage-collector pause controls how long the collector waits before starting a new cycle. Larger values
make the collector less aggressive. Values smaller than 100 mean the collector will not wait to start a new
cycle. A value of 200 means that the collector waits for the total memory in use to double before starting a
new cycle.

The garbage-collector step multiplier controls the relative speed of the collector relative to memory allocation.
Larger values make the collector more aggressive but also increase the size of each incremental step. You
should not use values smaller than 100, because they make the collector too slow and can result in the
collector never finishing a cycle. The default is 200, which means that the collector runs at "twice" the speed of
memory allocation.

If you set the step multiplier to a very large number (larger than 10% of the maximum number of bytes that the
program may use), the collector behaves like a stop-the-world collector. If you then set the pause to 200, the
collector behaves as in old Lua versions, doing a complete collection every time Lua doubles its memory
usage.

You can change these numbers by calling Lua_gc in C or collectgarbage in Lua. You can also use these
functions to control the collector directly (e.g., stop and restart it).

2.5.1 - Garbage-Collection Metamethods

You can set garbage-collector metamethods for tables and, using the C API, for full userdata (see §2.4).
These metamethods are also called finalizers. Finalizers allow you to coordinate Lua's garbage collection with
external resource management (such as closing files, network or database connections, or freeing your own
memory).

For an object (table or userdata) to be finalized when collected, you must mark it for finalization. You mark an
object for finalization when you set its metatable and the metatable has a field indexed by the string " gc".
Note that if you set a metatable without a __ gc field and later create that field in the metatable, the object will

not be marked for finalization.

When a marked object becomes garbage, it is not collected immediately by the garbage collector. Instead,
Lua puts it in a list. After the collection, Lua goes through that list. For each object in the list, it checks the
object's __gc metamethod: If it is a function, Lua calls it with the object as its single argument; if the
metamethod is not a function, Lua simply ignores it.

At the end of each garbage-collection cycle, the finalizers for objects are called in the reverse order that the

objects were marked for finalization, among those collected in that cycle; that is, the first finalizer to be called
is the one associated with the object marked last in the program. The execution of each finalizer may occur at
any point during the execution of the regular code.

Because the object being collected must still be used by the finalizer, that object (and other objects accessible
only through it) must be resurrected by Lua. Usually, this resurrection is transient, and the object memory is
freed in the next garbage-collection cycle. However, if the finalizer stores the object in some global place (e.qg.,
a global variable), then the resurrection is permanent. Moreover, if the finalizer marks a finalizing object for
finalization again, its finalizer will be called again in the next cycle where the object is unreachable. In any
case, the object memory is freed only in a GC cycle where the object is unreachable and not marked for
finalization.

When you close a state (see lua close), Lua calls the finalizers of all objects marked for finalization,
following the reverse order that they were marked. If any finalizer marks objects for collection during that
phase, these marks have no effect.

2.5.2 - Weak Tables

A weak table is a table whose elements are weak references. A weak reference is ignored by the garbage
collector. In other words, if the only references to an object are weak references, then the garbage collector
will collect that object.

A weak table can have weak keys, weak values, or both. A table with weak values allows the collection of its
values, but prevents the collection of its keys. A table with both weak keys and weak values allows the
collection of both keys and values. In any case, if either the key or the value is collected, the whole pair is
removed from the table. The weakness of a table is controlled by the — mode field of its metatable. If the
__mode field is a string containing the character 'k’, the keys in the table are weak. If __mode contains 'v', the
values in the table are weak.

A table with weak keys and strong values is also called an ephemeron table. In an ephemeron table, a value
is considered reachable only if its key is reachable. In particular, if the only reference to a key comes through
its value, the pair is removed.

Any change in the weakness of a table may take effect only at the next collect cycle. In particular, if you
change the weakness to a stronger mode, Lua may still collect some items from that table before the change
takes effect.

Only objects that have an explicit construction are removed from weak tables. Values, such as numbers and
light C functions, are not subject to garbage collection, and therefore are not removed from weak tables
(unless their associated values are collected). Although strings are subject to garbage collection, they do not
have an explicit construction, and therefore are not removed from weak tables.

Resurrected objects (that is, objects being finalized and objects accessible only through objects being
finalized) have a special behavior in weak tables. They are removed from weak values before running their
finalizers, but are removed from weak keys only in the next collection after running their finalizers, when such
objects are actually freed. This behavior allows the finalizer to access properties associated with the object
through weak tables.

If a weak table is among the resurrected objects in a collection cycle, it may not be properly cleared until the
next cycle.

2.6 — Coroutines

Lua supports coroutines, also called collaborative multithreading. A coroutine in Lua represents an
independent thread of execution. Unlike threads in multithread systems, however, a coroutine only suspends
its execution by explicitly calling a yield function.

You create a coroutine by calling coroutine.create. Its sole argument is a function that is the main
function of the coroutine. The create function only creates a new coroutine and returns a handle to it (an
object of type thread); it does not start the coroutine.

You execute a coroutine by calling coroutine. resume. When you first call coroutine. resume, passing
as its first argument a thread returned by coroutine. create, the coroutine starts its execution by calling its
main function. Extra arguments passed to coroutine.resume are passed as arguments to that function.

After the coroutine starts running, it runs until it terminates or yields.

A coroutine can terminate its execution in two ways: normally, when its main function returns (explicitly or
implicitly, after the last instruction); and abnormally, if there is an unprotected error. In case of normal
termination, coroutine. resume returns true, plus any values returned by the coroutine main function. In
case of errors, coroutine. resume returns false plus an error object.

A coroutine vyields by calling coroutine.yield. When a coroutine vyields, the corresponding
coroutine. resume returns immediately, even if the yield happens inside nested function calls (that is, not in
the main function, but in a function directly or indirectly called by the main function). In the case of a yield,
coroutine.resume also returns true, plus any values passed to coroutine.yield. The next time you
resume the same coroutine, it continues its execution from the point where it yielded, with the call to
coroutine.yield returning any extra arguments passed to coroutine. resume.

Like coroutine.create, the coroutine.wrap function also creates a coroutine, but instead of returning
the coroutine itself, it returns a function that, when called, resumes the coroutine. Any arguments passed to
this function go as extra arguments to coroutine.resume. coroutine.wrap returns all the values
returned by coroutine. resume, except the first one (the boolean error code). Unlike coroutine. resume,
coroutine.wrap does not catch errors; any error is propagated to the caller.

As an example of how coroutines work, consider the following code:

function foo (a)

print("foo", a)

return coroutine.yield(2*a)
end

co = coroutine.create(function (a,b)
print("co-body", a, b)
local r = foo(a+l)
print("co-body", r)
local r, s = coroutine.yield(a+b, a-b)
print("co-body", r, s)
return b, "end"

end)

print("main", coroutine.resume(co , 10))

print("main", coroutine.resume(co, "r"))

print("main", coroutine.resume(co, "x", "y"))

print("main", coroutine.resume(co, "x", "y"))
When you run it, it produces the following output:

co-body 1 10

foo 2

main true 4

co-body r

main true 11 -9

co-body x y

main true 10 end

main false cannot resume dead coroutine

You can also create and manipulate coroutines through the C API: see functions lua newthread,
lua_resume, and lua_yield.

3 - The Language

This section describes the lexis, the syntax, and the semantics of Lua. In other words, this section describes
which tokens are valid, how they can be combined, and what their combinations mean.

Language constructs will be explained using the usual extended BNF notation, in which {a} means 0 or more
a's, and [a] means an optional a. Non-terminals are shown like non-terminal, keywords are shown like kword,
and other terminal symbols are shown like ‘=’. The complete syntax of Lua can be found in §9 at the end of

this manual.

3.1 - Lexical Conventions

Lua is a free-form language. It ignores spaces (including new lines) and comments between lexical elements
(tokens), except as delimiters between names and keywords.

Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not beginning with a
digit and not being a reserved word. Identifiers are used to name variables, table fields, and labels.

The following keywords are reserved and cannot be used as hames:

and break do else elseif end
false for function goto if in
local nil not or repeat return
then true until while

Lua is a case-sensitive language: and is a reserved word, but And and AND are two different, valid names. As
a convention, programs should avoid creating names that start with an underscore followed by one or more
uppercase letters (such as _VERSION).

The following strings denote other tokens:

+ - * / % ~ #
& ~ | << >> //
== ~= <= >= < > =

() { } []

A short literal string can be delimited by matching single or double quotes, and can contain the following C-like
escape sequences: '\a' (bell), '\b' (backspace), "\f' (form feed), "\n' (newline), "\r' (carriage return), '\t'
(horizontal tab), "\Vv' (vertical tab), "\\' (backslash), "\""" (quotation mark [double quote]), and "\ '' (apostrophe
[single quote]). A backslash followed by a line break results in a newline in the string. The escape sequence
"\ z' skips the following span of white-space characters, including line breaks; it is particularly useful to break
and indent a long literal string into multiple lines without adding the newlines and spaces into the string
contents. A short literal string cannot contain unescaped line breaks nor escapes not forming a valid escape
sequence.

We can specify any byte in a short literal string by its numeric value (including embedded zeros). This can be
done with the escape sequence \xXX, where XX is a sequence of exactly two hexadecimal digits, or with the
escape sequence \ddd, where ddd is a sequence of up to three decimal digits. (Note that if a decimal escape
sequence is to be followed by a digit, it must be expressed using exactly three digits.)

The UTF-8 encoding of a Unicode character can be inserted in a literal string with the escape sequence
\u{XXX} (note the mandatory enclosing brackets), where XXX is a sequence of one or more hexadecimal
digits representing the character code point.

Literal strings can also be defined using a long format enclosed by long brackets. We define an opening long
bracket of level n as an opening square bracket followed by n equal signs followed by another opening square
bracket. So, an opening long bracket of level 0 is written as [[, an opening long bracket of level 1 is written as
[=[, and so on. A closing long bracket is defined similarly; for instance, a closing long bracket of level 4 is
written as]1====]. A long literal starts with an opening long bracket of any level and ends at the first closing
long bracket of the same level. It can contain any text except a closing bracket of the same level. Literals in
this bracketed form can run for several lines, do not interpret any escape sequences, and ignore long brackets
of any other level. Any kind of end-of-line sequence (carriage return, newline, carriage return followed by
newline, or newline followed by carriage return) is converted to a simple newline.

For convenience, when the opening long bracket is immediately followed by a newline, the newline is not
included in the string. As an example, in a system using ASCII (in which 'a' is coded as 97, newline is coded
as 10, and '1' is coded as 49), the five literal strings below denote the same string:

'alo\nl23"'
"alo\n123\""
'\9710\10\04923""
[[alo

QU o
mnnnu

123"11]

a = [==
alo
123"]==]

Any byte in a literal string not explicitly affected by the previous rules represents itself. However, Lua opens
files for parsing in text mode, and the system file functions may have problems with some control characters.
So, it is safer to represent non-text data as a quoted literal with explicit escape sequences for the non-text
characters.

A numeric constant (or numeral) can be written with an optional fractional part and an optional decimal
exponent, marked by a letter 'e' or 'E'. Lua also accepts hexadecimal constants, which start with Ox or 0X.
Hexadecimal constants also accept an optional fractional part plus an optional binary exponent, marked by a
letter 'p' or 'P'. A numeric constant with a radix point or an exponent denotes a float; otherwise, if its value fits
in an integer, it denotes an integer. Examples of valid integer constants are

3 345 Oxff OxBEBADA
Examples of valid float constants are

3.0 3.1416 314.16e-2 0.31416E1 34el
0x0.1E 0xA23p-4 0X1.921FB54442D18P+1

A comment starts with a double hyphen (- -) anywhere outside a string. If the text immediately after - - is not
an opening long bracket, the comment is a short comment, which runs until the end of the line. Otherwise, it is
a long comment, which runs until the corresponding closing long bracket. Long comments are frequently used
to disable code temporarily.

3.2 - Variables

Variables are places that store values. There are three kinds of variables in Lua: global variables, local
variables, and table fields.

A single name can denote a global variable or a local variable (or a function's formal parameter, which is a
particular kind of local variable):

var ::= Name
Name denotes identifiers, as defined in §3.1.

Any variable name is assumed to be global unless explicitly declared as a local (see §3.3.7). Local variables
are lexically scoped: local variables can be freely accessed by functions defined inside their scope (see §3.5).

Before the first assignment to a variable, its value is nil.
Square brackets are used to index a table:
var ::= prefixexp ‘[’ exp ‘1’

The meaning of accesses to table fields can be changed via metatables. An access to an indexed variable
t[i] is equivalent to a call gettable event(t,i). (See §2.4 for a complete description of the
gettable event function. This function is not defined or callable in Lua. We use it here only for explanatory
purposes.)

The syntax var.Name is just syntactic sugar for var["Name"]:

‘

var ::= prefixexp ‘.’ Name

An access to a global variable X is equivalent to ENV.X. Due to the way that chunks are compiled, ENV is
never a global name (see §2.2).

3.3 - Statements

Lua supports an almost conventional set of statements, similar to those in Pascal or C. This set includes
assignments, control structures, function calls, and variable declarations.

10

3.3.1 - Blocks

A block is a list of statements, which are executed sequentially:
block ::= {stat}

Lua has empty statements that allow you to separate statements with semicolons, start a block with a
semicolon or write two semicolons in sequence:

stat ::= ‘;’

Function calls and assignments can start with an open parenthesis. This possibility leads to an ambiguity in
Lua's grammar. Consider the following fragment:

a=b+c
(print or io.write)('done')

The grammar could see it in two ways:

a b + c(print or io.write)('done')

a=Db+ c; (print or io.write)('done')

The current parser always sees such constructions in the first way, interpreting the open parenthesis as the
start of the arguments to a call. To avoid this ambiguity, it is a good practice to always precede with a
semicolon statements that start with a parenthesis:

; (print or io.write) ('done')
A block can be explicitly delimited to produce a single statement:
stat ::= do block end

Explicit blocks are useful to control the scope of variable declarations. Explicit blocks are also sometimes used
to add a return statement in the middle of another block (see §3.3.4).

3.3.2 - Chunks

The unit of compilation of Lua is called a chunk. Syntactically, a chunk is simply a block:
chunk ::= block

Lua handles a chunk as the body of an anonymous function with a variable number of arguments (see
§3.4.11). As such, chunks can define local variables, receive arguments, and return values. Moreover, such
anonymous function is compiled as in the scope of an external local variable called ENV (see §2.2). The
resulting function always has ENV as its only upvalue, even if it does not use that variable.

A chunk can be stored in a file or in a string inside the host program. To execute a chunk, Lua first loads it,
precompiling the chunk's code into instructions for a virtual machine, and then Lua executes the compiled
code with an interpreter for the virtual machine.

Chunks can also be precompiled into binary form; see program luac and function string.dump for details.
Programs in source and compiled forms are interchangeable; Lua automatically detects the file type and acts
accordingly (see load).

3.3.3 - Assignment

Lua allows multiple assignments. Therefore, the syntax for assignment defines a list of variables on the left
side and a list of expressions on the right side. The elements in both lists are separated by commas:

stat ::= varlist ‘=’ explist
varlist ::= var {‘,’ var}
explist = exp {‘,’ exp}

Expressions are discussed in §3.4.

11

Before the assignment, the list of values is adjusted to the length of the list of variables. If there are more
values than needed, the excess values are thrown away. If there are fewer values than needed, the list is
extended with as many nil's as needed. If the list of expressions ends with a function call, then all values
returned by that call enter the list of values, before the adjustment (except when the call is enclosed in
parentheses; see §3.4).

The assignment statement first evaluates all its expressions and only then the assignments are performed.
Thus the code

i=3
i, a[i] = i+1, 20

sets a[3] to 20, without affecting a[4] because the i in a[i] is evaluated (to 3) before it is assigned 4.
Similarly, the line

X, ¥y =Y, X
exchanges the values of x and y, and

X, ¥, 2=Y, z, X
cyclically permutes the values of X, y, and z.

The meaning of assignments to global variables and table fields can be changed via metatables. An
assignment to an indexed variable t[i] = val is equivalent to settable event(t,i,val). (See §2.4
for a complete description of the settable event function. This function is not defined or callable in Lua.
We use it here only for explanatory purposes.)

An assignment to a global name x = val is equivalent to the assignment ENV.x = val (see §2.2).

3.3.4 - Control Structures

The control structures if, while, and repeat have the usual meaning and familiar syntax:

stat ::= while exp do block end
stat = repeat block until exp
stat ::= if exp then block {elseif exp then block} [else block] end

Lua also has a for statement, in two flavors (see §3.3.5).

The condition expression of a control structure can return any value. Both false and nil are considered false.
All values different from nil and false are considered true (in particular, the number 0 and the empty string are
also true).

In the repeat—until loop, the inner block does not end at the until keyword, but only after the condition. So,
the condition can refer to local variables declared inside the loop block.

The goto statement transfers the program control to a label. For syntactical reasons, labels in Lua are
considered statements too:

stat ::= goto Name
stat ::= label
label ::= ‘::' Name ‘::’

A label is visible in the entire block where it is defined, except inside nested blocks where a label with the
same name is defined and inside nested functions. A goto may jump to any visible label as long as it does not
enter into the scope of a local variable.

Labels and empty statements are called void statements, as they perform no actions.

The break statement terminates the execution of a while, repeat, or for loop, skipping to the next statement
after the loop:

stat ::= break

A break ends the innermost enclosing loop.

12

The return statement is used to return values from a function or a chunk (which is an anonymous function).
Functions can return more than one value, so the syntax for the return statement is

stat ::= return [explist] [‘;']

The return statement can only be written as the last statement of a block. If it is really necessary to return in
the middle of a block, then an explicit inner block can be used, as in the idiom do return end, because
now return is the last statement in its (inner) block.

3.3.5 - For Statement
The for statement has two forms: one numerical and one generic.

The numerical for loop repeats a block of code while a control variable runs through an arithmetic
progression. It has the following syntax:

“_ “«

stat ::= for Name ‘=" exp ‘," exp [‘,

’

exp] do block end

The block is repeated for name starting at the value of the first exp, until it passes the second exp by steps of
the third exp. More precisely, a for statement like

for v = el, e2, e3 do block end
is equivalent to the code:

do
local var, limit, step = tonumber(el), tonumber(e2), tonumber(e3)
if not (var and limit and step) then error() end
var = var - step
while true do
var = var + step
if (step >= 0 and var > limit) or (step < 0 and var < limit) then
break
end
local v = var
block
end
end

Note the following:

e All three control expressions are evaluated only once, before the loop starts. They must all result in
numbers.

e var, limit, and step are invisible variables. The names shown here are for explanatory purposes
only.

e |f the third expression (the step) is absent, then a step of 1 is used.

e You can use break and goto to exit a for loop.

e The loop variable v is local to the loop body. If you need its value after the loop, assign it to another
variable before exiting the loop.

The generic for statement works over functions, called iterators. On each iteration, the iterator function is
called to produce a new value, stopping when this new value is nil. The generic for loop has the following
syntax:

stat ::= for namelist in explist do block end
namelist ::= Name {‘,’ Name}

A for statement like
for var 1, .-+, var_n in explist do block end
is equivalent to the code:

do
local f, s, var = explist
while true do

13

local var 1, ---, var_n = f(s, var)

if var 1 == nil then break end
var = var_1
block

end

end
Note the following:

e explist is evaluated only once. Its results are an iterator function, a state, and an initial value for the
first iterator variable.

e f, s, and var are invisible variables. The names are here for explanatory purposes only.

e You can use break to exit a for loop.

e The loop variables var i are local to the loop; you cannot use their values after the for ends. If you
need these values, then assign them to other variables before breaking or exiting the loop.

3.3.6 - Function Calls as Statements
To allow possible side-effects, function calls can be executed as statements:
stat ::= functioncall

In this case, all returned values are thrown away. Function calls are explained in §3.4.10.

3.3.7 - Local Declarations
Local variables can be declared anywhere inside a block. The declaration can include an initial assignment:
stat ::= local namelist [‘=' explist]

If present, an initial assignment has the same semantics of a multiple assignment (see §3.3.3). Otherwise, all
variables are initialized with nil.

A chunk is also a block (see §3.3.2), and so local variables can be declared in a chunk outside any explicit
block.

The visibility rules for local variables are explained in §3.5.

3.4 - Expressions

The basic expressions in Lua are the following:

exp ::= prefixexp

exp ::= nil | false | true

exp ::= Numeral

exp ::= LiteralString

exp = functiondef

exp ::= tableconstructor

exp ::= ‘...

exp ::= exp binop exp

exp ::= unop exp

prefixexp ::= var | functioncall | ‘(' exp ‘)’

Numerals and literal strings are explained in §3.1; variables are explained in §3.2; function definitions are
explained in §3.4.11; function calls are explained in §3.4.10; table constructors are explained in §3.4.9. Vararg
expressions, denoted by three dots ('. . ."), can only be used when directly inside a vararg function; they are
explained in §3.4.11.

Binary operators comprise arithmetic operators (see §3.4.1), bitwise operators (see §3.4.2), relational
operators (see §3.4.4), logical operators (see §3.4.5), and the concatenation operator (see §3.4.6). Unary
operators comprise the unary minus (see §3.4.1), the unary bitwise NOT (see §3.4.2), the unary logical not
(see §3.4.5), and the unary length operator (see §3.4.7).

Both function calls and vararg expressions can result in multiple values. If a function call is used as a
statement (see §3.3.6), then its return list is adjusted to zero elements, thus discarding all returned values. If

14

an expression is used as the last (or the only) element of a list of expressions, then no adjustment is made
(unless the expression is enclosed in parentheses). In all other contexts, Lua adjusts the result list to one
element, either discarding all values except the first one or adding a single nil if there are no values.

Here are some examples:

() -- adjusted to 0 results

g(f(), x) -- f() is adjusted to 1 result

g(x, f()) -- g gets x plus all results from f()

a,b,c = f(), x -- f() is adjusted to 1 result (c gets nil)
a,b=... -- a gets the first vararg parameter, b gets

-- the second (both a and b can get nil if there
-- 1s no corresponding vararg parameter)

a,b,c =x, f() -- f() is adjusted to 2 results

a,b,c = f() -- f() is adjusted to 3 results

return f() -- returns all results from f()

return ... -- returns all received vararg parameters
return x,y,f() -- returns x, y, and all results from f()
{f()} -- creates a list with all results from f()
{...} -- creates a list with all vararg parameters
{f(), nil} -- f() is adjusted to 1 result

Any expression enclosed in parentheses always results in only one value. Thus, (f(x,y,z)) is always a
single value, even if f returns several values. (The value of (f(x,y,z)) is the first value returned by f or nil
if f does not return any values.)

3.4.1 - Arithmetic Operators
Lua supports the following arithmetic operators:

: addition

: subtraction

: multiplication

: float division
/: floor division
: modulo

“~: exponentiation
=:unary minus

+

® NN ¥ 1

With the exception of exponentiation and float division, the arithmetic operators work as follows: If both
operands are integers, the operation is performed over integers and the result is an integer. Otherwise, if both
operands are numbers or strings that can be converted to numbers (see §3.4.3), then they are converted to
floats, the operation is performed following the usual rules for floating-point arithmetic (usually the IEEE 754
standard), and the result is a float.

Exponentiation and float division (/) always convert their operands to floats and the result is always a float.
Exponentiation uses the ISO C function pow, so that it works for non-integer exponents too.

Floor division (//) is a division that rounds the quotient towards minus infinity, that is, the floor of the division
of its operands.

Modulo is defined as the remainder of a division that rounds the quotient towards minus infinity (floor division).

In case of overflows in integer arithmetic, all operations wrap around, according to the usual rules of two-

complement arithmetic. (In other words, they return the unique representable integer that is equal modulo 264
to the mathematical result.)

3.4.2 - Bitwise Operators

Lua supports the following bitwise operators:

o &: bitwise AND
e |: bitwise OR
e ~: bitwise exclusive OR

15

e >>: right shift
o <<: left shift
e ~: unary bitwise NOT

All bitwise operations convert its operands to integers (see §3.4.3), operate on all bits of those integers, and
result in an integer.

Both right and left shifts fill the vacant bits with zeros. Negative displacements shift to the other direction;
displacements with absolute values equal to or higher than the number of bits in an integer result in zero (as
all bits are shifted out).

3.4.3 - Coercions and Conversions

Lua provides some automatic conversions between some types and representations at run time. Bitwise
operators always convert float operands to integers. Exponentiation and float division always convert integer
operands to floats. All other arithmetic operations applied to mixed numbers (integers and floats) convert the
integer operand to a float; this is called the usual rule. The C API also converts both integers to floats and
floats to integers, as needed. Moreover, string concatenation accepts numbers as arguments, besides strings.

Lua also converts strings to numbers, whenever a number is expected.

In a conversion from integer to float, if the integer value has an exact representation as a float, that is the
result. Otherwise, the conversion gets the nearest higher or the nearest lower representable value. This kind
of conversion never fails.

The conversion from float to integer checks whether the float has an exact representation as an integer (that
is, the float has an integral value and it is in the range of integer representation). If it does, that representation
is the result. Otherwise, the conversion fails.

The conversion from strings to numbers goes as follows: First, the string is converted to an integer or a float,
following its syntax and the rules of the Lua lexer. (The string may have also leading and trailing spaces and a
sign.) Then, the resulting number (float or integer) is converted to the type (float or integer) required by the
context (e.g., the operation that forced the conversion).

All conversions from strings to numbers accept both a dot and the current locale mark as the radix character.
(The Lua lexer, however, accepts only a dot.)

The conversion from numbers to strings uses a non-specified human-readable format. For complete control
over how numbers are converted to strings, use the format function from the string library (see
string.format).

3.4.4 - Relational Operators

Lua supports the following relational operators:

==: equality

: inequality
<:less than

>: greater than
<=:less or equal
>=: greater or equal

These operators always result in false or true.

Equality (==) first compares the type of its operands. If the types are different, then the result is false.
Otherwise, the values of the operands are compared. Strings are compared in the obvious way. Numbers are
equal if they denote the same mathematical value.

Tables, userdata, and threads are compared by reference: two objects are considered equal only if they are
the same object. Every time you create a new object (a table, userdata, or thread), this new object is different
from any previously existing object. Closures with the same reference are always equal. Closures with any
detectable difference (different behavior, different definition) are always different.

You can change the way that Lua compares tables and userdata by using the "eq" metamethod (see §2.4).

Equality comparisons do not convert strings to numbers or vice versa. Thus, "0"==0 evaluates to false, and

16

t[0] and t["0"] denote different entries in a table.
The operator ~= is exactly the negation of equality (==).

The order operators work as follows. If both arguments are numbers, then they are compared according to
their mathematical values (regardless of their subtypes). Otherwise, if both arguments are strings, then their
values are compared according to the current locale. Otherwise, Lua tries to call the "lIt" or the "le"
metamethod (see §2.4). A comparison a > bistranslatedtob < aanda >= bistranslatedtob <= a.

Following the IEEE 754 standard, NaN is considered neither smaller than, nor equal to, nor greater than any
value (including itself).

3.4.5 - Logical Operators

The logical operators in Lua are and, or, and not. Like the control structures (see §3.3.4), all logical operators
consider both false and nil as false and anything else as true.

The negation operator not always returns false or true. The conjunction operator and returns its first
argument if this value is false or nil; otherwise, and returns its second argument. The disjunction operator or
returns its first argument if this value is different from nil and false; otherwise, or returns its second argument.
Both and and or use short-circuit evaluation; that is, the second operand is evaluated only if necessary. Here
are some examples:

10 or 20 --> 10
10 or error() --> 10
nil or "a" --> "g"
nil and 10 -->nil
false and error() --> false
false and nil --> false
false or nil --> nil
10 and 20 --> 20

(In this manual, - -> indicates the result of the preceding expression.)

3.4.6 - Concatenation

The string concatenation operator in Lua is denoted by two dots ('..'). If both operands are strings or
numbers, then they are converted to strings according to the rules described in §3.4.3. Otherwise, the
___concat metamethod is called (see §2.4).

3.4.7 - The Length Operator
The length operator is denoted by the unary prefix operator #.

The length of a string is its number of bytes (that is, the usual meaning of string length when each character is
one byte).

The length operator applied on a table returns a border in that table. A border in a table t is any natural
number that satisfies the following condition:

(border == 0 or t[border] ~= nil) and t[border + 1] == nil

In words, a border is any (natural) index in a table where a non-nil value is followed by a nil value (or zero,
when index 1 is nil).

A table with exactly one border is called a sequence. For instance, the table {10, 20, 30, 40, 50} isa
sequence, as it has only one border (5). The table {10, 20, 30, nil, 50} has two borders (3 and 5),
and therefore it is not a sequence. The table {nil, 20, 30, nil, nil, 60, nil} has three borders (0,
3, and 6), so it is not a sequence, too. The table {} is a sequence with border 0. Note that non-natural keys
do not interfere with whether a table is a sequence.

When t is a sequence, #t returns its only border, which corresponds to the intuitive notion of the length of the
sequence. When t is not a sequence, #t can return any of its borders. (The exact one depends on details of
the internal representation of the table, which in turn can depend on how the table was populated and the
memory addresses of its non-numeric keys.)

17

The computation of the length of a table has a guaranteed worst time of O(log n), where n is the largest
natural key in the table.

A program can modify the behavior of the length operator for any value but strings through the len
metamethod (see §2.4).

3.4.8 - Precedence

Operator precedence in Lua follows the table below, from lower to higher priority:

or

and

< > <= >= ~= ==

I

&

<< >>

+ -

* / // %

unary operators (not # - ~)

As usual, you can use parentheses to change the precedences of an expression. The concatenation ('. .") and
exponentiation ('*') operators are right associative. All other binary operators are left associative.

3.4.9 - Table Constructors

Table constructors are expressions that create tables. Every time a constructor is evaluated, a new table is
created. A constructor can be used to create an empty table or to create a table and initialize some of its
fields. The general syntax for constructors is

tableconstructor ::= ‘{’ [fieldlist] ‘}’
fieldlist ::= field {fieldsep field} [fieldsep]
field ::= ‘[' exp ‘1’ ‘=’ exp | Name ‘=' exp | exp
fieldsep ::= *," | *;’

Each field of the form [expl] = exp2 adds to the new table an entry with key expl and value exp2. A field
of the form name = exp is equivalent to ["name"] = exp. Finally, fields of the form exp are equivalent to
[i] = exp, where i are consecutive integers starting with 1. Fields in the other formats do not affect this
counting. For example,

a={I[f(1)] =g; "x", "y"; x =1, f(x), [30] = 23; 45}

is equivalent to

do
local t = {}
t[f(1)] = g
t[1] = "x" -- 1st exp
t[2] = "y" -- 2nd exp
t.x =1 -- t["x"] =1
t[3] = f(x) -- 3rd exp
t[30] = 23
t[4] = 45 -- 4th exp
a=t

end

The order of the assignments in a constructor is undefined. (This order would be relevant only when there are
repeated keys.)

If the last field in the list has the form exp and the expression is a function call or a vararg expression, then all
values returned by this expression enter the list consecutively (see §3.4.10).

The field list can have an optional trailing separator, as a convenience for machine-generated code.

18

3.4.10 - Function Calls

A function call in Lua has the following syntax:
functioncall ::= prefixexp args

In a function call, first prefixexp and args are evaluated. If the value of prefixexp has type function, then this
function is called with the given arguments. Otherwise, the prefixexp "call" metamethod is called, having as
first parameter the value of prefixexp, followed by the original call arguments (see §2.4).

The form

‘

functioncall ::= prefixexp ‘:’' Name args

can be used to call "methods". A call v:name(args) is syntactic sugar for v.name(v,args), except that v
is evaluated only once.

Arguments have the following syntax:

args ::= ‘(' [explist] ‘)’
args ::= tableconstructor
args ::= LiteralString

All argument expressions are evaluated before the call. A call of the form f{fields} is syntactic sugar for
f({fields}); thatis, the argument list is a single new table. A call of the form f'string' (or f"string"
or f[[string]])is syntactic sugar for f('string');thatis, the argument list is a single literal string.

A call of the form return functioncall is called a tail call. Lua implements proper tail calls (or proper tail
recursion): in a tail call, the called function reuses the stack entry of the calling function. Therefore, there is no
limit on the number of nested tail calls that a program can execute. However, a tail call erases any debug
information about the calling function. Note that a tail call only happens with a particular syntax, where the
return has one single function call as argument; this syntax makes the calling function return exactly the
returns of the called function. So, none of the following examples are tail calls:

return (f(x)) -- results adjusted to 1
return 2 * f(x)

return x, f(x) -- additional results
f(x); return -- results discarded
return x or f(x) -- results adjusted to 1

3.4.11 - Function Definitions
The syntax for function definition is

functiondef ::= function funcbody
funcbody ::= ‘(' [parlist] ‘)’ block end

The following syntactic sugar simplifies function definitions:

stat ::= function funcname funcbody
stat ::= local function Name funcbody
funcname ::= Name {‘.’ Name} [‘:’' Name]

The statement

function f () body end
translates to

f = function () body end
The statement

function t.a.b.c.f () body end

translates to

19

t.a.b.c.f = function () body end
The statement
local function f () body end
translates to
local f; f = function () body end
not to
local f = function () body end
(This only makes a difference when the body of the function contains references to f.)

A function definition is an executable expression, whose value has type function. When Lua precompiles a
chunk, all its function bodies are precompiled too. Then, whenever Lua executes the function definition, the
function is instantiated (or closed). This function instance (or closure) is the final value of the expression.

Parameters act as local variables that are initialized with the argument values:
parlist ::= namelist [‘,” ‘..."1 | ‘...’

When a function is called, the list of arguments is adjusted to the length of the list of parameters, unless the
function is a vararg function, which is indicated by three dots ('. . .") at the end of its parameter list. A vararg
function does not adjust its argument list; instead, it collects all extra arguments and supplies them to the
function through a vararg expression, which is also written as three dots. The value of this expression is a list
of all actual extra arguments, similar to a function with multiple results. If a vararg expression is used inside
another expression or in the middle of a list of expressions, then its return list is adjusted to one element. If the
expression is used as the last element of a list of expressions, then no adjustment is made (unless that last
expression is enclosed in parentheses).

As an example, consider the following definitions:

function f(a, b) end
function g(a, b, ...) end
function r() return 1,2,3 end

Then, we have the following mapping from arguments to parameters and to the vararg expression:

CALL PARAMETERS

f(3) a=3, b=nil

(3, 4) a=3, b=4

f(3, 4, 5) a=3, b=4

f(r(), 10) a=1, b=10

f(r()) a=1, b=2

g(3) a=3, b=nil, ... --> (nothing)
g(3, 4) a=3, b=4, ... --> (nothing)
g(3, 4, 5, 8) a=3, b=4, ... --> 5 8

g(5, r()) a=5, b=1, --> 2 3

Results are returned using the return statement (see §3.3.4). If control reaches the end of a function without
encountering a return statement, then the function returns with no results.

There is a system-dependent limit on the number of values that a function may return. This limit is guaranteed
to be larger than 1000.

The colon syntax is used for defining methods, that is, functions that have an implicit extra parameter self.
Thus, the statement

function t.a.b.c:f (params) body end

is syntactic sugar for

20

t.a.b.c.f = function (self, params) body end

3.5 - Visibility Rules

Lua is a lexically scoped language. The scope of a local variable begins at the first statement after its
declaration and lasts until the last non-void statement of the innermost block that includes the declaration.
Consider the following example:

x = 10 -- global variable
do -- new block
local x = x -- new 'x', with value 10
print(x) --> 10
X = X+1
do -- another block
local x = x+1 -- another 'x'
print(x) --> 12
end
print(x) --> 11
end
print(x) --> 10 (the global one)

Notice that, in a declaration like Tlocal x = X, the new x being declared is not in scope yet, and so the
second X refers to the outside variable.

Because of the lexical scoping rules, local variables can be freely accessed by functions defined inside their
scope. A local variable used by an inner function is called an upvalue, or external local variable, inside the
inner function.

Notice that each execution of a local statement defines new local variables. Consider the following example:

a={}
local x = 20
for i=1,10 do
local y = 0
al[i] = function () y=y+1l; return x+y end
end

The loop creates ten closures (that is, ten instances of the anonymous function). Each of these closures uses
a different y variable, while all of them share the same x.

4 - The Application Program Interface

This section describes the C API for Lua, that is, the set of C functions available to the host program to
communicate with Lua. All API functions and related types and constants are declared in the header file
lua.h.

Even when we use the term "function”, any facility in the APl may be provided as a macro instead. Except
where stated otherwise, all such macros use each of their arguments exactly once (except for the first
argument, which is always a Lua state), and so do not generate any hidden side-effects.

As in most C libraries, the Lua API functions do not check their arguments for validity or consistency.
However, you can change this behavior by compiling Lua with the macro LUA USE_APICHECK defined.

The Lua library is fully reentrant: it has no global variables. It keeps all information it needs in a dynamic
structure, called the Lua state.

Each Lua state has one or more threads, which correspond to independent, cooperative lines of execution.
The type Lua_State (despite its name) refers to a thread. (Indirectly, through the thread, it also refers to the
Lua state associated to the thread.)

A pointer to a thread must be passed as the first argument to every function in the library, except to
lua newstate, which creates a Lua state from scratch and returns a pointer to the main thread in the new
state.

21

4.1 - The Stack

Lua uses a virtual stack to pass values to and from C. Each element in this stack represents a Lua value (nil,
number, string, etc.). Functions in the API can access this stack through the Lua state parameter that they
receive.

Whenever Lua calls C, the called function gets a new stack, which is independent of previous stacks and of
stacks of C functions that are still active. This stack initially contains any arguments to the C function and it is
where the C function can store temporary Lua values and must push its results to be returned to the caller
(see lua_CFunction).

For convenience, most query operations in the API do not follow a strict stack discipline. Instead, they can
refer to any element in the stack by using an index: A positive index represents an absolute stack position
(starting at 1); a negative index represents an offset relative to the top of the stack. More specifically, if the
stack has n elements, then index 1 represents the first element (that is, the element that was pushed onto the
stack first) and index n represents the last element; index -1 also represents the last element (that is, the
element at the top) and index -n represents the first element.

4.2 - Stack Size

When you interact with the Lua API, you are responsible for ensuring consistency. In particular, you are
responsible for controlling stack overflow. You can use the function lua checkstack to ensure that the
stack has enough space for pushing new elements.

Whenever Lua calls C, it ensures that the stack has space for at least LUA MINSTACK extra slots.
LUA MINSTACK is defined as 20, so that usually you do not have to worry about stack space unless your
code has loops pushing elements onto the stack.

When you call a Lua function without a fixed number of results (see lua_call), Lua ensures that the stack
has enough space for all results, but it does not ensure any extra space. So, before pushing anything in the
stack after such a call you should use lua_checkstack.

4.3 - Valid and Acceptable Indices

Any function in the API that receives stack indices works only with valid indices or acceptable indices.

A valid index is an index that refers to a position that stores a modifiable Lua value. It comprises stack indices
between 1 and the stack top (1 = abs(index) = top) plus pseudo-indices, which represent some
positions that are accessible to C code but that are not in the stack. Pseudo-indices are used to access the
registry (see §4.5) and the upvalues of a C function (see §4.4).

Functions that do not need a specific mutable position, but only a value (e.g., query functions), can be called
with acceptable indices. An acceptable index can be any valid index, but it also can be any positive index after
the stack top within the space allocated for the stack, that is, indices up to the stack size. (Note that 0 is never
an acceptable index.) Except when noted otherwise, functions in the APl work with acceptable indices.

Acceptable indices serve to avoid extra tests against the stack top when querying the stack. For instance, a
C function can query its third argument without the need to first check whether there is a third argument, that
is, without the need to check whether 3 is a valid index.

For functions that can be called with acceptable indices, any non-valid index is treated as if it contains a value
of a virtual type LUA_TNONE, which behaves like a nil value.

4.4 — C Closures

When a C function is created, it is possible to associate some values with it, thus creating a C closure (see
lua_pushcclosure); these values are called upvalues and are accessible to the function whenever it is
called.

Whenever a C function is called, its upvalues are located at specific pseudo-indices. These pseudo-indices
are produced by the macro lua upvalueindex. The first upvalue associated with a function is at index
lua_upvalueindex(1), and so on. Any access to lua_upvalueindex(n), where n is greater than the
number of upvalues of the current function (but not greater than 256, which is one plus the maximum number

22

of upvalues in a closure), produces an acceptable but invalid index.

4.5 - Registry

Lua provides a registry, a predefined table that can be used by any C code to store whatever Lua values it
needs to store. The registry table is always located at pseudo-index LUA_ REGISTRYINDEX. Any C library can
store data into this table, but it must take care to choose keys that are different from those used by other
libraries, to avoid collisions. Typically, you should use as key a string containing your library name, or a light
userdata with the address of a C object in your code, or any Lua object created by your code. As with variable
names, string keys starting with an underscore followed by uppercase letters are reserved for Lua.

The integer keys in the registry are used by the reference mechanism (see luaL ref) and by some
predefined values. Therefore, integer keys must not be used for other purposes.

When you create a new Lua state, its registry comes with some predefined values. These predefined values
are indexed with integer keys defined as constants in Lua. h. The following constants are defined:

e LUA_RIDX_MAINTHREAD: At this index the registry has the main thread of the state. (The main thread is
the one created together with the state.)
e LUA_RIDX_GLOBALS: At this index the registry has the global environment.

4.6 — Error Handling in C

Internally, Lua uses the C Longjmp facility to handle errors. (Lua will use exceptions if you compile it as C++;
search for LUATI THROW in the source code for details.) When Lua faces any error (such as a memory
allocation error or a type error) it raises an error; that is, it does a long jump. A protected environment uses
setjmp to set a recovery point; any error jumps to the most recent active recovery point.

Inside a C function you can raise an error by calling lua_error.

Most functions in the API can raise an error, for instance due to a memory allocation error. The documentation
for each function indicates whether it can raise errors.

If an error happens outside any protected environment, Lua calls a panic function (see lua_atpanic) and
then calls abort, thus exiting the host application. Your panic function can avoid this exit by never returning
(e.g., doing a long jump to your own recovery point outside Lua).

The panic function, as its name implies, is a mechanism of last resort. Programs should avoid it. As a general
rule, when a C function is called by Lua with a Lua state, it can do whatever it wants on that Lua state, as it
should be already protected. However, when C code operates on other Lua states (e.g., a Lua parameter to
the function, a Lua state stored in the registry, or the result of lua_newthread), it should use them only in
API calls that cannot raise errors.

The panic function runs as if it were a message handler (see §2.3); in particular, the error object is at the top
of the stack. However, there is no guarantee about stack space. To push anything on the stack, the panic
function must first check the available space (see §4.2).

4.7 - Handling Yields in C

Internally, Lua uses the C longjmp facility to yield a coroutine. Therefore, if a C function foo calls an API
function and this API function yields (directly or indirectly by calling another function that yields), Lua cannot
return to foo any more, because the Longjmp removes its frame from the C stack.

To avoid this kind of problem, Lua raises an error whenever it tries to yield across an API call, except for three
functions: lua_yieldk, lua callk, and lua pcallk. All those functions receive a continuation function
(as a parameter named k) to continue execution after a yield.

We need to set some terminology to explain continuations. We have a C function called from Lua which we
will call the original function. This original function then calls one of those three functions in the C API, which
we will call the callee function, that then yields the current thread. (This can happen when the callee function
is Lua_yieldk, or when the callee function is either Llua_callk or lua_pcallk and the function called by
them yields.)

Suppose the running thread yields while executing the callee function. After the thread resumes, it eventually

23

will finish running the callee function. However, the callee function cannot return to the original function,
because its frame in the C stack was destroyed by the yield. Instead, Lua calls a continuation function, which
was given as an argument to the callee function. As the name implies, the continuation function should
continue the task of the original function.

As an illustration, consider the following function:

int original function (lua State *L) {
/* code 1 */
status = lua pcall(L, n, m, h); /* calls Lua */
/* code 2 */
}

Now we want to allow the Lua code being run by lua_pcall to yield. First, we can rewrite our function like
here:

int k (lua_State *L, int status, lua_KContext ctx) {

/* code 2 */
}
int original_ function (lua_State *L) {
/* code 1 */
return k(L, lua pcall(L, n, m, h), ctx);

}

In the above code, the new function k is a continuation function (with type Lua_KFunction), which should do
all the work that the original function was doing after calling lua_pcall. Now, we must inform Lua that it
must call k if the Lua code being executed by lua_pcall gets interrupted in some way (errors or yielding),
so we rewrite the code as here, replacing Llua_pcall by lua_pcallk:

int original_ function (lua_State *L) {

/* code 1 */

return k(L, lua pcallk(L, n, m, h, ctx2, k), ctxl);
}

Note the external, explicit call to the continuation: Lua will call the continuation only if needed, that is, in case
of errors or resuming after a yield. If the called function returns normally without ever yielding, lua pcallk
(and Lua_callk) will also return normally. (Of course, instead of calling the continuation in that case, you can
do the equivalent work directly inside the original function.)

Besides the Lua state, the continuation function has two other parameters: the final status of the call plus the
context value (ctx) that was passed originally to Lua_pcallk. (Lua does not use this context value; it only
passes this value from the original function to the continuation function.) For lua pcallk, the status is the
same value that would be returned by lua_pcallk, except thatitis LUA_ YIELD when being executed after a
yield (instead of LUA OK). For lua_yieldk and lua_callk, the status is always LUA_ YIELD when Lua
calls the continuation. (For these two functions, Lua will not call the continuation in case of errors, because
they do not handle errors.) Similarly, when using Lua_callk, you should call the continuation function with
LUA OK as the status. (For lua_yieldk, there is not much point in calling directly the continuation function,
because lua_yieldk usually does not return.)

Lua treats the continuation function as if it were the original function. The continuation function receives the
same Lua stack from the original function, in the same state it would be if the callee function had returned.
(For instance, after a Lua_callk the function and its arguments are removed from the stack and replaced by
the results from the call.) It also has the same upvalues. Whatever it returns is handled by Lua as if it were the
return of the original function.

4.8 - Functions and Types

Here we list all functions and types from the C API in alphabetical order. Each function has an indicator like
ThIS ['0! +P, X]

The first field, o, is how many elements the function pops from the stack. The second field, p, is how many
elements the function pushes onto the stack. (Any function always pushes its results after popping its
arguments.) A field in the form x|y means the function can push (or pop) x or y elements, depending on the

24

situation; an interrogation mark '?' means that we cannot know how many elements the function pops/pushes
by looking only at its arguments (e.g., they may depend on what is on the stack). The third field, x, tells
whether the function may raise errors: '-' means the function never raises any error; 'm' means the function
may raise out-of-memory errors and errors running a __gc metamethod; 'e' means the function may raise any
errors (it can run arbitrary Lua code, either directly or through metamethods); 'v' means the function may raise
an error on purpose.

lua_absindex
int lua_absindex (lua State *L, int idx); [-0,+0,-]

Converts the acceptable index idx into an equivalent absolute index (that is, one that does not depend on the
stack top).

lua_Alloc

typedef void * (*lua_ Alloc) (void *ud,
void *ptr,
size t osize,
size t nsize);

The type of the memory-allocation function used by Lua states. The allocator function must provide a
functionality similar to realloc, but not exactly the same. Its arguments are ud, an opaque pointer passed to
lua_newstate; ptr, a pointer to the block being allocated/reallocated/freed; osize, the original size of the
block or some code about what is being allocated; and nsize, the new size of the block.

When ptr is not NULL, osize is the size of the block pointed by ptr, that is, the size given when it was
allocated or reallocated.

When ptris NULL, osize encodes the kind of object that Lua is allocating. osize is any of LUA TSTRING,
LUA TTABLE, LUA TFUNCTION, LUA TUSERDATA, or LUA TTHREAD when (and only when) Lua is creating
a new object of that type. When osize is some other value, Lua is allocating memory for something else.

Lua assumes the following behavior from the allocator function:
When nsize is zero, the allocator must behave like free and return NULL.

When nsize is not zero, the allocator must behave like realloc. The allocator returns NULL if and only if it
cannot fulfill the request. Lua assumes that the allocator never fails when osize >= nsize.

Here is a simple implementation for the allocator function. It is used in the auxiliary library by
luaL_newstate.

static void *1 alloc (void *ud, void *ptr, size t osize,
size t nsize) {
(void)ud; (void)osize; /* not used */
if (nsize == 0) {
free(ptr);
return NULL;
}
else
return realloc(ptr, nsize);

}

Note that Standard C ensures that free (NULL) has no effect and that realloc (NULL, size) is equivalent
to malloc(size). This code assumes that realloc does not fail when shrinking a block. (Although
Standard C does not ensure this behavior, it seems to be a safe assumption.)

lua_arith
void lua_arith (lua_State *L, int op); [-(2[1), +1, €]

Performs an arithmetic or bitwise operation over the two values (or one, in the case of negations) at the top of
the stack, with the value at the top being the second operand, pops these values, and pushes the result of the
operation. The function follows the semantics of the corresponding Lua operator (that is, it may call

25

metamethods).
The value of op must be one of the following constants:

LUA_OPADD: performs addition (+)
LUA_OPSUB: performs subtraction (-)
LUA_OPMUL: performs multiplication (*)
LUA_OPDIV: performs float division (/
LUA_OPIDIV: performs floor division (
LUA_OPMOD: performs modulo (%)
LUA_OPPOW: performs exponentiation (™)

LUA_OPUNM: performs mathematical negation (unary -)
LUA_OPBNOT: performs bitwise NOT (~)

LUA_OPBAND: performs bitwise AND (&)

LUA_OPBOR: performs bitwise OR (|)

LUA_OPBXOR: performs bitwise exclusive OR (~)
LUA_OPSHL: performs left shift (<<)

LUA_OPSHR: performs right shift (>>)

)
//)

lua_atpanic

lua CFunction lua atpanic (lua State *L, lua CFunction panicf);
Sets a new panic function and returns the old one (see §4.6).

lua_call

void lua call (lua State *L, int nargs, int nresults);

Calls a function.

[-0, +0, -]

[-(nargs+1), +nresults, €]

To call a function you must use the following protocol: first, the function to be called is pushed onto the stack;
then, the arguments to the function are pushed in direct order; that is, the first argument is pushed first. Finally
you call Lua_call; nargs is the number of arguments that you pushed onto the stack. All arguments and the
function value are popped from the stack when the function is called. The function results are pushed onto the
stack when the function returns. The number of results is adjusted to nresults, unless nresults is
LUA_MULTRET. In this case, all results from the function are pushed; Lua takes care that the returned values
fit into the stack space, but it does not ensure any extra space in the stack. The function results are pushed
onto the stack in direct order (the first result is pushed first), so that after the call the last result is on the top of

the stack.

Any error inside the called function is propagated upwards (with a Longjmp).

The following example shows how the host program can do the equivalent to this Lua code:

a = f("how", t.x, 14)

Here itis in C:
lua getglobal(L, "f"); /* function to be called */
lua_pushliteral(L, "how"); /* 1st argument */
lua_getglobal(L, "t"); /* table to be indexed */
lua getfield(L, -1, "x"); /* push result of t.x (2nd arg) */
lua_remove(L, -2); /* remove 't' from the stack */
lua_pushinteger(L, 14); /* 3rd argument */
lua_call(L, 3, 1); /* call 'f' with 3 arguments and 1 result */
lua_setglobal(L, "a"); /* set global 'a' */

Note that the code above is balanced: at its end, the stack is back to its original configuration. This is

considered good programming practice.

lua_callk

void lua callk (lua_State *L,
int nargs,

[-(nargs + 1), +nresults, €]

26

int nresults,
lua_KContext ctx,
lua_KFunction k);

This function behaves exactly like Lua_call, but allows the called function to yield (see §4.7).

lua_CFunction
typedef int (*Llua_CFunction) (lua_State *L);
Type for C functions.

In order to communicate properly with Lua, a C function must use the following protocol, which defines the
way parameters and results are passed: a C function receives its arguments from Lua in its stack in direct
order (the first argument is pushed first). So, when the function starts, lua_gettop (L) returns the number of
arguments received by the function. The first argument (if any) is at index 1 and its last argument is at index
lua _gettop(L). To return values to Lua, a C function just pushes them onto the stack, in direct order (the
first result is pushed first), and returns the number of results. Any other value in the stack below the results will
be properly discarded by Lua. Like a Lua function, a C function called by Lua can also return many results.

As an example, the following function receives a variable number of numeric arguments and returns their
average and their sum:

static int foo (lua_State *L) {

int n = lua gettop(L); /* number of arguments */
lua Number sum = 0.0;
int i;

for (1 =1; 1 <= n; i++) {
if (!lua_isnumber(L, 1)) {
lua pushliteral(L, "incorrect argument");
lua _error(L);
}

sum += lua_tonumber(L. l);

}

lua pushnumber(L, sum/n); /* first result */
lua_pushnumber(L, sum); /* second result */
return 2; /* number of results */

}
lua_checkstack
int lua_checkstack (lua_State *L, int n); [-0, +0, -]

Ensures that the stack has space for at least n extra slots (that is, that you can safely push up to n values into
it). It returns false if it cannot fulfill the request, either because it would cause the stack to be larger than a
fixed maximum size (typically at least several thousand elements) or because it cannot allocate memory for
the extra space. This function never shrinks the stack; if the stack already has space for the extra slots, it is
left unchanged.

lua_close
void lua close (lua_State *L); [-0, +0, -]

Destroys all objects in the given Lua state (calling the corresponding garbage-collection metamethods, if any)
and frees all dynamic memory used by this state. On several platforms, you may not need to call this function,
because all resources are naturally released when the host program ends. On the other hand, long-running
programs that create multiple states, such as daemons or web servers, will probably need to close states as
soon as they are not needed.

lua_compare
int lua_compare (lua State *L, int indexl, int index2, int op); [-0, +0, €]

Compares two Lua values. Returns 1 if the value at index index1 satisfies op when compared with the value

27

at index index2, following the semantics of the corresponding Lua operator (that is, it may call
metamethods). Otherwise returns 0. Also returns 0 if any of the indices is not valid.

The value of op must be one of the following constants:
e LUA_OPEQ: compares for equality (==)

e LUA_OPLT: compares for less than (<)
e LUA_OPLE: compares for less or equal (<=)

lua_concat
void lua concat (lua State *L, int n); [n, +1, €

Concatenates the n values at the top of the stack, pops them, and leaves the result at the top. If nis 1, the
result is the single value on the stack (that is, the function does nothing); if n is 0, the result is the empty
string. Concatenation is performed following the usual semantics of Lua (see §3.4.6).

lua_copy
void lua copy (lua State *L, int fromidx, int toidx); [-0, +0, -]

Copies the element at index fromidx into the valid index toidx, replacing the value at that position. Values
at other positions are not affected.

lua_createtable
void lua createtable (lua State *L, int narr, int nrec); [-0, +1, m]

Creates a new empty table and pushes it onto the stack. Parameter narr is a hint for how many elements the
table will have as a sequence; parameter nrec is a hint for how many other elements the table will have. Lua
may use these hints to preallocate memory for the new table. This preallocation is useful for performance
when you know in advance how many elements the table will have. Otherwise you can use the function
lua_newtable.

lua_dump

int lua_dump (lua_State *L, [-0, +0, -]
lua Writer writer,
void *data,
int strip);

Dumps a function as a binary chunk. Receives a Lua function on the top of the stack and produces a binary
chunk that, if loaded again, results in a function equivalent to the one dumped. As it produces parts of the
chunk, lua_dump calls function writer (see lua_Writer) with the given data to write them.

If strip is true, the binary representation may not include all debug information about the function, to save
space.

The value returned is the error code returned by the last call to the writer; 0 means no errors.

This function does not pop the Lua function from the stack.
lua_error

int lua error (lua State *L); [-1,+0, V]

Generates a Lua error, using the value at the top of the stack as the error object. This function does a long
jump, and therefore never returns (see lual_error).

lua_gc
int lua gc (lua State *L, int what, int data); [-0, +0, m]

Controls the garbage collector.

28

This function performs several tasks, according to the value of the parameter what:

LUA_GCSTOP: stops the garbage collector.

LUA_GCRESTART: restarts the garbage collector.

LUA_GCCOLLECT: performs a full garbage-collection cycle.

LUA_GCCOUNT: returns the current amount of memory (in Kbytes) in use by Lua.

LUA_GCCOUNTB: returns the remainder of dividing the current amount of bytes of memory in use by Lua

by 1024.

LUA_GCSTEP: performs an incremental step of garbage collection.

e LUA_GCSETPAUSE: sets data as the new value for the pause of the collector (see §2.5) and returns the
previous value of the pause.

e LUA_GCSETSTEPMUL: sets data as the new value for the step multiplier of the collector (see §2.5) and
returns the previous value of the step multiplier.

e LUA_GCISRUNNING: returns a boolean that tells whether the collector is running (i.e., not stopped).

For more details about these options, see collectgarbage.

lua_getallocf
lua Alloc lua_getallocf (lua_State *L, void **ud); [-0, +0, -]

Returns the memory-allocation function of a given state. If ud is not NULL, Lua stores in *ud the opaque
pointer given when the memory-allocator function was set.

lua_getfield
int lua_getfield (lua_State *L, int index, const char *k); [-0,+1, €]

Pushes onto the stack the value t[k], where t is the value at the given index. As in Lua, this function may
trigger a metamethod for the "index" event (see §2.4).

Returns the type of the pushed value.

lua_getextraspace
void *lua_getextraspace (lua_State *L); [-0, +0, -]

Returns a pointer to a raw memory area associated with the given Lua state. The application can use this area
for any purpose; Lua does not use it for anything.

Each new thread has this area initialized with a copy of the area of the main thread.

By default, this area has the size of a pointer to void, but you can recompile Lua with a different size for this
area. (See LUA_EXTRASPACE in Luaconf.h.)

lua_getglobal

int lua getglobal (lua State *L, const char *name); [-0,+1, €]
Pushes onto the stack the value of the global name. Returns the type of that value.

lua_geti

int lua geti (lua State *L, int index, lua Integer i); [-0, +1, €]

Pushes onto the stack the value t[i], where t is the value at the given index. As in Lua, this function may
trigger a metamethod for the "index" event (see §2.4).

Returns the type of the pushed value.
lua_getmetatable
int lua getmetatable (lua State *L, int index); [-0, +(01), -]

If the value at the given index has a metatable, the function pushes that metatable onto the stack and

29

returns 1. Otherwise, the function returns 0 and pushes nothing on the stack.

lua_gettable
int lua_gettable (lua_State *L, int index); [-1,+1, €]

Pushes onto the stack the value t[k], where t is the value at the given index and k is the value at the top of
the stack.

This function pops the key from the stack, pushing the resulting value in its place. As in Lua, this function may
trigger a metamethod for the "index" event (see §2.4).

Returns the type of the pushed value.
lua_gettop
int lua_gettop (lua State *L); [-0, +0,-]

Returns the index of the top element in the stack. Because indices start at 1, this result is equal to the number
of elements in the stack; in particular, 0 means an empty stack.

lua_getuservalue
int lua_getuservalue (lua State *L, int index); [-0,+1,-]
Pushes onto the stack the Lua value associated with the full userdata at the given index.

Returns the type of the pushed value.
lua_insert
void lua insert (lua State *L, int index); [1,+1.-]

Moves the top element into the given valid index, shifting up the elements above this index to open space.
This function cannot be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_Integer
typedef ... lua Integer;
The type of integers in Lua.

By default this type is Long long, (usually a 64-bit two-complement integer), but that can be changed to
long or int (usually a 32-bit two-complement integer). (See LUA_INT _TYPE in Luaconf.h.)

Lua also defines the constants LUA MININTEGER and LUA MAXINTEGER, with the minimum and the
maximum values that fit in this type.

lua_isboolean

int lua isboolean (lua State *L, int index); [-0, +0, -]
Returns 1 if the value at the given index is a boolean, and 0 otherwise.

lua_iscfunction

int lua iscfunction (lua State *L, int index); [-0,+0,-]
Returns 1 if the value at the given index is a C function, and 0 otherwise.

lua_isfunction

int lua isfunction (lua State *L, int index); [-0, +0, -]

Returns 1 if the value at the given index is a function (either C or Lua), and 0 otherwise.

30

lua_isinteger
int lua isinteger (lua State *L, int index); [-0, +0,-]

Returns 1 if the value at the given index is an integer (that is, the value is a number and is represented as an
integer), and 0 otherwise.

lua_islightuserdata

int lua islightuserdata (lua State *L, int index); [-0, +0,-]
Returns 1 if the value at the given index is a light userdata, and 0 otherwise.

lua_isnil

int lua isnil (lua_State *L, int index); [-0, +0, -]
Returns 1 if the value at the given index is nil, and 0 otherwise.

lua_isnone

int lua isnone (lua State *L, int index); [-0, +0, -]
Returns 1 if the given index is not valid, and 0 otherwise.

lua_isnoneornil

int lua _isnoneornil (lua State *L, int index); [-0,+0,-]
Returns 1 if the given index is not valid or if the value at this index is nil, and 0 otherwise.

lua_isnumber

int lua isnumber (lua State *L, int index); [-0, +0, -]
Returns 1 if the value at the given index is a number or a string convertible to a number, and 0 otherwise.
lua_isstring

int lua_isstring (lua_State *L, int index); [-0, +0, -]

Returns 1 if the value at the given index is a string or a number (which is always convertible to a string), and
0 otherwise.

lua_istable

int lua_istable (lua_ State *L, int index); [-0, +0, -]
Returns 1 if the value at the given index is a table, and 0 otherwise.

lua_isthread

int lua isthread (lua State *L, int index); [-0,+0,-]
Returns 1 if the value at the given index is a thread, and 0 otherwise.

lua_isuserdata

int lua isuserdata (lua State *L, int index); [-0, +0,-]
Returns 1 if the value at the given index is a userdata (either full or light), and 0 otherwise.

lua_isyieldable

31

int lua_isyieldable (lua_State *L); [-0, +0, -]
Returns 1 if the given coroutine can yield, and 0 otherwise.
lua_KContext

typedef ... lua_KContext;

The type for continuation-function contexts. It must be a numeric type. This type is defined as intptr t
when intptr_t is available, so that it can store pointers too. Otherwise, it is defined as ptrdiff t.

lua_KFunction

typedef int (*lua_KFunction) (lua State *L, int status, lua KContext ctx);

Type for continuation functions (see §4.7).

lua_len

void lua len (lua State *L, int index); [-0, +1, €]

Returns the length of the value at the given index. It is equivalent to the '#' operator in Lua (see §3.4.7) and
may trigger a metamethod for the "length" event (see §2.4). The result is pushed on the stack.

lua_load

int lua load (lua State *L, [-0, +1,-]
lua_Reader reader,
void *data,

const char *chunkname,
const char *mode);

Loads a Lua chunk without running it. If there are no errors, lua_load pushes the compiled chunk as a Lua
function on top of the stack. Otherwise, it pushes an error message.

The return values of Lua_load are:

LUA_OK: no errors;

LUA_ERRSYNTAX: syntax error during precompilation;

LUA_ERRMEM: memory allocation (out-of-memory) error;

LUA_ERRGCMM: error while running a __gc metamethod. (This error has no relation with the chunk being
loaded. It is generated by the garbage collector.)

The lua_load function uses a user-supplied reader function to read the chunk (see lua_Reader). The
data argument is an opaque value passed to the reader function.

The chunkname argument gives a name to the chunk, which is used for error messages and in debug
information (see §4.9).

lua_load automatically detects whether the chunk is text or binary and loads it accordingly (see program
luac). The string mode works as in function load, with the addition that a NULL value is equivalent to the
string "bt".

lua_load uses the stack internally, so the reader function must always leave the stack unmodified when
returning.

If the resulting function has upvalues, its first upvalue is set to the value of the global environment stored at
index LUA RIDX GLOBALS in the registry (see §4.5). When loading main chunks, this upvalue will be the
__ENV variable (see §2.2). Other upvalues are initialized with nil.

lua_newstate
lua State *lua newstate (lua Alloc f, void *ud); [-0, +0,-]

Creates a new thread running in a new, independent state. Returns NULL if it cannot create the thread or the

32

state (due to lack of memory). The argument f is the allocator function; Lua does all memory allocation for this
state through this function (see lua_Alloc). The second argument, ud, is an opaque pointer that Lua passes
to the allocator in every call.

lua_newtable
void lua newtable (lua State *L); [-0, +1, m]

Creates a new empty table and pushes it onto the stack. It is equivalent to lua_createtable(L, 0, 0).

lua_newthread
lua_State *lua_newthread (lua State *L); [-0, +1, m]

Creates a new thread, pushes it on the stack, and returns a pointer to a Llua_State that represents this new
thread. The new thread returned by this function shares with the original thread its global environment, but has
an independent execution stack.

There is no explicit function to close or to destroy a thread. Threads are subject to garbage collection, like any
Lua object.

lua_newuserdata
void *lua newuserdata (lua State *L, size t size); [-0, +1, m]

This function allocates a new block of memory with the given size, pushes onto the stack a new full userdata
with the block address, and returns this address. The host program can freely use this memory.

lua_next
int lua next (lua State *L, int index); [-1, +(2]0), €]

Pops a key from the stack, and pushes a key—value pair from the table at the given index (the "next" pair after
the given key). If there are no more elements in the table, then Tua_next returns 0 (and pushes nothing).

A typical traversal looks like this:

/* table is in the stack at index 't' */
lua_pushnil(L); /* first key */
while (lua next(L, t) !=0) {
/* uses 'key' (at index -2) and 'value' (at index -1) */
printf("%ss - %s\n",
lua_typename(L, lua type(L, -2)),
lua_typename(L, lua type(L, -1)));
/* removes 'value'; keeps 'key' for next iteration */
lua pop(L, 1);
}

While traversing a table, do not call Lua_tolstring directly on a key, unless you know that the key is
actually a string. Recall that Llua_tolstring may change the value at the given index; this confuses the next
callto lua_next.

See function next for the caveats of modifying the table during its traversal.
lua_Number
typedef ... lua_Number;

The type of floats in Lua.

By default this type is double, but that can be changed to a single float or a long double. (See
LUA FLOAT TYPE in Luaconf.h.)

lua_numbertointeger

33

int lua_numbertointeger (lua_ Number n, lua Integer *p);

Converts a Lua float to a Lua integer. This macro assumes that n has an integral value. If that value is within
the range of Lua integers, it is converted to an integer and assigned to *p. The macro results in a boolean
indicating whether the conversion was successful. (Note that this range test can be tricky to do correctly
without this macro, due to roundings.)

This macro may evaluate its arguments more than once.

lua_pcall
int lua pcall (lua State *L, int nargs, int nresults, int msgh) {-(nargs + 1), +(nresuilts|1), -]
Calls a function in protected mode.

Both nargs and nresults have the same meaning as in Lua_call. If there are no errors during the call,
lua_pcall behaves exactly like Lua_call. However, if there is any error, Lua_pcall catches it, pushes a
single value on the stack (the error object), and returns an error code. Like lua call, lua pcall always
removes the function and its arguments from the stack.

If msgh is 0, then the error object returned on the stack is exactly the original error object. Otherwise, msgh is
the stack index of a message handler. (This index cannot be a pseudo-index.) In case of runtime errors, this
function will be called with the error object and its return value will be the object returned on the stack by
lua pcall.

Typically, the message handler is used to add more debug information to the error object, such as a stack
traceback. Such information cannot be gathered after the return of Lua_pcall, since by then the stack has
unwound.

The lua_pcall function returns one of the following constants (defined in Lua. h):

LUA_OK (0): success.

LUA_ERRRUN: a runtime error.

LUA_ERRMEM: memory allocation error. For such errors, Lua does not call the message handler.
LUA_ERRERR: error while running the message handler.

LUA_ERRGCMM: error while running a _ gc metamethod. For such errors, Lua does not call the
message handler (as this kind of error typically has no relation with the function being called).

lua_pcallk

int lua_pcallk (lua_State *L, [-(nargs + 1), +(nresults|1), -]
int nargs,
int nresults,
int msgh,

lua_KContext ctx,
lua KFunction Kk);

This function behaves exactly like Lua_pcall, but allows the called function to yield (see §4.7).

lua_pop

void lua pop (lua State *L, int n); [-n, +0, -]
Pops n elements from the stack.

lua_pushboolean

void lua pushboolean (lua State *L, int b); [0, +1,-]
Pushes a boolean value with value b onto the stack.

lua_pushcclosure

void lua pushcclosure (lua_State *L, lua CFunction fn, int n); [-n, +1, m|

34

Pushes a new C closure onto the stack.

When a C function is created, it is possible to associate some values with it, thus creating a C closure (see
§4.4); these values are then accessible to the function whenever it is called. To associate values with a
C function, first these values must be pushed onto the stack (when there are multiple values, the first value is
pushed first). Then lua_pushcclosure is called to create and push the C function onto the stack, with the
argument n telling how many values will be associated with the function. Lua_pushcclosure also pops
these values from the stack.

The maximum value for n is 255.

When n is zero, this function creates a light C function, which is just a pointer to the C function. In that case, it
never raises a memory error.

lua_pushcfunction

void lua pushcfunction (lua_State *L, lua_CFunction f); [-0, +1,-]

Pushes a C function onto the stack. This function receives a pointer to a C function and pushes onto the stack
a Lua value of type function that, when called, invokes the corresponding C function.

Any function to be callable by Lua must follow the correct protocol to receive its parameters and return its
results (see Lua_CFunction).

lua_pushfstring

const char *lua pushfstring (lua State *L, const char *fmt, ...); [-0,+1, €]

Pushes onto the stack a formatted string and returns a pointer to this string. It is similar to the ISO C function
sprintf, but has some important differences:

e You do not have to allocate space for the result: the result is a Lua string and Lua takes care of memory
allocation (and deallocation, through garbage collection).

e The conversion specifiers are quite restricted. There are no flags, widths, or precisions. The conversion
specifiers can only be '%%' (inserts the character '%'), '%ss' (inserts a zero-terminated string, with no size
restrictions), sf' (inserts a Lua_Number), '%I' (inserts a Lua_Integer), sp' (inserts a pointer as a
hexadecimal numeral), 'sd' (inserts an int), '%c' (inserts an int as a one-byte character), and 'sU'

(inserts a long int as a UTF-8 byte sequence).

Unlike other push functions, this function checks for the stack space it needs, including the slot for its result.

lua_pushglobaltable

void lua pushglobaltable (lua State *L); [-0, +1,-]
Pushes the global environment onto the stack.

lua_pushinteger

void lua_pushinteger (lua State *L, lua Integer n); [-0, +1,]
Pushes an integer with value n onto the stack.

lua_pushlightuserdata

void lua_pushlightuserdata (lua_State *L, void *p); [0, +1,]
Pushes a light userdata onto the stack.

Userdata represent C values in Lua. A light userdata represents a pointer, a void*. It is a value (like a
number): you do not create it, it has no individual metatable, and it is not collected (as it was never created). A
light userdata is equal to "any" light userdata with the same C address.

lua_pushliteral

35

const char *lua pushliteral (lua_State *L, const char *s); [0, +1, m]

This macro is equivalent to Lua_pushstring, but should be used only when s is a literal string.

lua_pushlstring
const char *lua pushlstring (lua_State *L, const char *s, size t len); [-0, +1, m]

Pushes the string pointed to by s with size len onto the stack. Lua makes (or reuses) an internal copy of the
given string, so the memory at s can be freed or reused immediately after the function returns. The string can
contain any binary data, including embedded zeros.

Returns a pointer to the internal copy of the string.

lua_pushnil

void lua pushnil (lua State *L); [-0,+1,-]
Pushes a nil value onto the stack.

lua_pushnumber

void lua pushnumber (lua State *L, lua Number n); [-0, +1,-]
Pushes a float with value n onto the stack.

lua_pushstring

const char *lua pushstring (lua State *L, const char *s); [-0, +1, m]

Pushes the zero-terminated string pointed to by s onto the stack. Lua makes (or reuses) an internal copy of
the given string, so the memory at s can be freed or reused immediately after the function returns.

Returns a pointer to the internal copy of the string.
If s is NULL, pushes nil and returns NULL.
lua_pushthread
int lua pushthread (lua State *L); [-0,+1,-]
Pushes the thread represented by L onto the stack. Returns 1 if this thread is the main thread of its state.
lua_pushvalue
void lua pushvalue (lua State *L, int index); [-0,+1.-]
Pushes a copy of the element at the given index onto the stack.
lua_pushvfstring
const char *lua pushvfstring (lua State *L, [-0, +1, m]
const char *fmt,
va_ list argp);

Equivalent to lua pushfstring, except that it receives a va list instead of a variable number of
arguments.

lua_rawequal

int lua_rawequal (lua State *L, int indexl, int index2); [-0, +0,-]

Returns 1 if the two values in indices index1 and index2 are primitively equal (that is, without calling the
___eq metamethod). Otherwise returns 0. Also returns 0 if any of the indices are not valid.

36

lua_rawget
int lua rawget (lua State *L, int index); 1, +1.-]

Similar to Llua_gettable, but does a raw access (i.e., without metamethods).

lua_rawgeti
int lua_rawgeti (lua_State *L, int index, lua Integer n); [-0,+1,-]

Pushes onto the stack the value t[n], where t is the table at the given index. The access is raw, that is, it
does not invoke the index metamethod.

Returns the type of the pushed value.

lua_rawgetp
int lua_rawgetp (lua_State *L, int index, const void *p); [-0, +1,-]

Pushes onto the stack the value t[k], where t is the table at the given index and Kk is the pointer p
represented as a light userdata. The access is raw; that is, it does not invoke the index metamethod.

Returns the type of the pushed value.

lua_rawlen
size t lua rawlen (lua State *L, int index); [-0,+0,-]

Returns the raw "length" of the value at the given index: for strings, this is the string length; for tables, this is
the result of the length operator ('#') with no metamethods; for userdata, this is the size of the block of memory
allocated for the userdata; for other values, it is 0.

lua_rawset
void lua rawset (lua State *L, int index); [-2,+0, m]

Similar to Lua_settable, but does a raw assignment (i.e., without metamethods).

lua_rawseti
void lua rawseti (lua State *L, int index, lua Integer 1i); [-1, +0, m]

Does the equivalent of t[i] = v, where t is the table at the given index and v is the value at the top of the
stack.

This function pops the value from the stack. The assignment is raw, that is, it does not invoke the
__newindex metamethod.

lua_rawsetp
void lua rawsetp (lua State *L, int index, const void *p); [-1, +0, m]

Does the equivalent of t[p] = v, where t is the table at the given index, p is encoded as a light userdata,
and v is the value at the top of the stack.

This function pops the value from the stack. The assignment is raw, that is, it does not invoke ~ newindex
metamethod.

lua_Reader

typedef const char * (*lua Reader) (lua State *L,
void *data,
size t *size);

The reader function used by Lua_load. Every time it needs another piece of the chunk, lua_load calls the

37

reader, passing along its data parameter. The reader must return a pointer to a block of memory with a new
piece of the chunk and set size to the block size. The block must exist until the reader function is called
again. To signal the end of the chunk, the reader must return NULL or set size to zero. The reader function
may return pieces of any size greater than zero.

lua_register
void lua register (lua_State *L, const char *name, lua CFunction f); [-0, +0, €]
Sets the C function f as the new value of global name. It is defined as a macro:

#define lua register(L,n,f) \
(lua_pushcfunction(L, f), lua setglobal(L, n))

lua_remove
void lua remove (lua State *L, int index); [-1,+0,-]

Removes the element at the given valid index, shifting down the elements above this index to fill the gap. This
function cannot be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_replace
void lua replace (lua State *L, int index); [-1,+0,-]

Moves the top element into the given valid index without shifting any element (therefore replacing the value at
that given index), and then pops the top element.

lua_resume
int lua resume (lua State *L, lua State *from, int nargs); [-7,+7,-]
Starts and resumes a coroutine in the given thread L.

To start a coroutine, you push onto the thread stack the main function plus any arguments; then you call
lua_resume, with nargs being the number of arguments. This call returns when the coroutine suspends or
finishes its execution. When it returns, the stack contains all values passed to lua_yield, or all values
returned by the body function. lua resume returns LUA YIELD if the coroutine yields, LUA OK if the
coroutine finishes its execution without errors, or an error code in case of errors (see Llua_pcall).

In case of errors, the stack is not unwound, so you can use the debug API over it. The error object is on the
top of the stack.

To resume a coroutine, you remove any results from the last Llua_yield, put on its stack only the values to
be passed as results from yield, and then call Llua_resume.

The parameter from represents the coroutine that is resuming L. If there is no such coroutine, this parameter
can be NULL.

lua_rotate

void lua_rotate (lua_State *L, int idx, int n); [-0, +0, -]
Rotates the stack elements between the valid index idx and the top of the stack. The elements are rotated n
positions in the direction of the top, for a positive n, or -n positions in the direction of the bottom, for a

negative n. The absolute value of n must not be greater than the size of the slice being rotated. This function
cannot be called with a pseudo-index, because a pseudo-index is not an actual stack position.

lua_setallocf
void lua setallocf (lua State *L, lua Alloc f, void *ud); [-0, +0,-]

Changes the allocator function of a given state to f with user data ud.

lua_setfield

38

void lua_setfield (lua_State *L, int index, const char *k); [-1,+0, €]

Does the equivalent to t[k] = v, where t is the value at the given index and v is the value at the top of the
stack.

This function pops the value from the stack. As in Lua, this function may trigger a metamethod for the
"newindex" event (see §2.4).

lua_setglobal
void lua_setglobal (lua_ State *L, const char *name); [-1,+0, €]

Pops a value from the stack and sets it as the new value of global name.

lua_seti
void lua_seti (lua_State *L, int index, lua Integer n); [-1,+0, €]

Does the equivalentto t[n] = v, where t is the value at the given index and v is the value at the top of the
stack.

This function pops the value from the stack. As in Lua, this function may trigger a metamethod for the
"newindex" event (see §2.4).

lua_setmetatable
void lua setmetatable (lua State *L, int index); [-1,+0,-]

Pops a table from the stack and sets it as the new metatable for the value at the given index.

lua_settable
void lua settable (lua State *L, int index); [-2, +0, €]

Does the equivalent to t[k] = v, where t is the value at the given index, v is the value at the top of the
stack, and k is the value just below the top.

This function pops both the key and the value from the stack. As in Lua, this function may trigger a
metamethod for the "newindex" event (see §2.4).

lua_settop
void lua settop (lua State *L, int index); [-2, +?,-]

Accepts any index, or 0, and sets the stack top to this index. If the new top is larger than the old one, then the
new elements are filled with nil. If index is 0, then all stack elements are removed.

lua_setuservalue
void lua setuservalue (lua State *L, int index); [-1,+0,-]

Pops a value from the stack and sets it as the new value associated to the full userdata at the given index.

lua_State
typedef struct lua State lua_State;

An opaque structure that points to a thread and indirectly (through the thread) to the whole state of a Lua
interpreter. The Lua library is fully reentrant: it has no global variables. All information about a state is
accessible through this structure.

A pointer to this structure must be passed as the first argument to every function in the library, except to
lua newstate, which creates a Lua state from scratch.

lua_status

39

int lua_status (lua_State *L); [-0, +0, -]
Returns the status of the thread L.

The status can be 0 (LUA OK) for a normal thread, an error code if the thread finished the execution of a
lua_resume with an error, or LUA_YIELD if the thread is suspended.

You can only call functions in threads with status LUA_OK. You can resume threads with status LUA_OK (to
start a new coroutine) or LUA_YIELD (to resume a coroutine).

lua_stringtonumber
size t lua_stringtonumber (lua_State *L, const char *s); [-0, +1,-]

Converts the zero-terminated string s to a number, pushes that number into the stack, and returns the total
size of the string, that is, its length plus one. The conversion can result in an integer or a float, according to the
lexical conventions of Lua (see §3.1). The string may have leading and trailing spaces and a sign. If the string
is not a valid numeral, returns 0 and pushes nothing. (Note that the result can be used as a boolean, true if the
conversion succeeds.)

lua_toboolean
int lua toboolean (lua State *L, int index); [-0, +0, -]

Converts the Lua value at the given index to a C boolean value (0 or 1). Like all tests in Lua,
lua_toboolean returns true for any Lua value different from false and nil; otherwise it returns false. (If you
want to accept only actual boolean values, use Lua_isboolean to test the value's type.)

lua_tocfunction
lua CFunction lua_tocfunction (lua_State *L, int index); [-0, +0, -]

Converts a value at the given index to a C function. That value must be a C function; otherwise, returns NULL.

lua_tointeger
lua Integer lua tointeger (lua State *L, int index); [-0, +0, -]

Equivalent to lua_tointegerx with isnum equal to NULL.

lua_tointegerx
lua Integer lua tointegerx (lua State *L, int index, int *isnum); [-0,+0,-]

Converts the Lua value at the given index to the signed integral type lua_Integer. The Lua value must be
an integer, or a number or string convertible to an integer (see §3.4.3); otherwise, lua_tointegerx
returns 0.

If isnumis not NULL, its referent is assigned a boolean value that indicates whether the operation succeeded.

lua_tolstring
const char *lua_tolstring (lua_ State *L, int index, size t *1len); [-0, +0, m]

Converts the Lua value at the given index to a C string. If Len is not NULL, it sets *Len with the string length.
The Lua value must be a string or a number; otherwise, the function returns NULL. If the value is a number,
then lua tolstring also changes the actual value in the stack to a string. (This change confuses
lua_next when lua_tolstring is applied to keys during a table traversal.)

lua_ tolstring returns a pointer to a string inside the Lua state. This string always has a zero ('\0') after its
last character (as in C), but can contain other zeros in its body.

Because Lua has garbage collection, there is no guarantee that the pointer returned by lua_tolstring will
be valid after the corresponding Lua value is removed from the stack.

40

lua_tonumber
lua Number lua_ tonumber (lua State *L, int index); [-0, +0, -]

Equivalent to Lua_tonumberx with isnum equal to NULL.

lua_tonumberx
lua_Number lua_tonumberx (lua State *L, int index, int *isnum); [-0,+0,-]

Converts the Lua value at the given index to the C type lua_Number (see lua Number). The Lua value
must be a number or a string convertible to a number (see §3.4.3); otherwise, Lua_tonumberx returns 0.

If isnumis not NULL, its referent is assigned a boolean value that indicates whether the operation succeeded.
lua_topointer

const void *lua_topointer (lua_State *L, int index); [-0, +0, -]
Converts the value at the given index to a generic C pointer (void*). The value can be a userdata, a table, a
thread, or a function; otherwise, lua_topointer returns NULL. Different objects will give different pointers.
There is no way to convert the pointer back to its original value.

Typically this function is used only for hashing and debug information.

lua_tostring

const char *lua_tostring (lua_State *L, int index); [-0, +0, m]
Equivalent to Llua_tolstring with len equal to NULL.

lua_tothread

lua State *lua tothread (lua State *L, int index); [-0, +0, -]

Converts the value at the given index to a Lua thread (represented as lua_State*). This value must be a
thread; otherwise, the function returns NULL.

lua_touserdata
void *lua touserdata (lua_State *L, int index); [-0, +0, -]

If the value at the given index is a full userdata, returns its block address. If the value is a light userdata,
returns its pointer. Otherwise, returns NULL.

lua_type

int lua_type (lua_ State *L, int index); [-0, +0, -]
Returns the type of the value in the given valid index, or LUA_ TNONE for a non-valid (but acceptable) index.
The types returned by lua_ type are coded by the following constants defined in Lua.h: LUA TNIL (0),

LUA TNUMBER, LUA TBOOLEAN, LUA TSTRING, LUA TTABLE, LUA TFUNCTION, LUA TUSERDATA,
LUA TTHREAD, and LUA_TLIGHTUSERDATA.

lua_typename

const char *lua_typename (lua_State *L, int tp); [-0, +0, -]
Returns the name of the type encoded by the value tp, which must be one the values returned by lua_type.
lua_Unsigned

typedef ... lua_Unsigned;

The unsigned version of Lua_Integer.

41

lua_upvalueindex
int lua upvalueindex (int 1i); [-0, +0, -]

Returns the pseudo-index that represents the i-th upvalue of the running function (see §4.4).

lua_version
const lua Number *lua version (lua State *L); [-0, +0,-]

Returns the address of the version number (a C static variable) stored in the Lua core. When called with a
valid lua_State, returns the address of the version used to create that state. When called with NULL, returns
the address of the version running the call.

lua_Writer

typedef int (*lua Writer) (lua State *L,
const void* p,
size t sz,
void* ud);

The type of the writer function used by Lua_dump. Every time it produces another piece of chunk, Lua_dump
calls the writer, passing along the buffer to be written (p), its size (sz), and the data parameter supplied to
lua_dump.

The writer returns an error code: 0 means no errors; any other value means an error and stops lua_dump
from calling the writer again.

lua_xmove
void lua xmove (lua State *from, lua State *to, int n); [-7,+7,-]
Exchange values between different threads of the same state.

This function pops n values from the stack f rom, and pushes them onto the stack to.

lua_yield
int lua yield (lua State *L, int nresults); 7,42, €]

This function is equivalent to Lua_yieldk, but it has no continuation (see §4.7). Therefore, when the thread
resumes, it continues the function that called the function calling Lua_yield.

lua_yieldk

int lua_yieldk (lua_State *L, [-2, +7, €]
int nresults,
lua_KContext ctx,
lua_KFunction Kk);

Yields a coroutine (thread).

When a C function calls lua_yieldk, the running coroutine suspends its execution, and the call to
lua_resume that started this coroutine returns. The parameter nresults is the number of values from the
stack that will be passed as results to Lua_resume.

When the coroutine is resumed again, Lua calls the given continuation function Kk to continue the execution of
the C function that yielded (see §4.7). This continuation function receives the same stack from the previous
function, with the n results removed and replaced by the arguments passed to Lua_resume. Moreover, the
continuation function receives the value ctx that was passed to Lua_yieldk.

Usually, this function does not return; when the coroutine eventually resumes, it continues executing the
continuation function. However, there is one special case, which is when this function is called from inside a
line or a count hook (see §4.9). In that case, lua_yieldk should be called with no continuation (probably in
the form of lua_yield) and no results, and the hook should return immediately after the call. Lua will yield

42

and,

when the coroutine resumes again, it will continue the normal execution of the (Lua) function that

triggered the hook.

This function can raise an error if it is called from a thread with a pending C call with no continuation function,
or it is called from a thread that is not running inside a resume (e.g., the main thread).

4.9 - The Debug Interface

Lua has no built-in debugging facilities. Instead, it offers a special interface by means of functions and hooks.
This interface allows the construction of different kinds of debuggers, profilers, and other tools that need
"inside information" from the interpreter.

lua_Debug
typedef struct lua Debug {
int event;
const char *name; /* (n) */
const char *namewhat; /* (n) */
const char *what; /* (S) */
const char *source; /* (S) */
int currentline; /* (1) */
int linedefined; /* (S) */
int lastlinedefined; /* (S) */
unsigned char nups; /* (u) number of upvalues */
unsigned char nparams; /* (u) number of parameters */
char isvararg; /* (u) */
char istailcall; /* (t) */
char short src[LUA IDSIZE]; /* (S) */

/* private part */
other fields
} lua Debug;

A structure used to carry different pieces of information about a function or an activation record.

lua_

getstack fills only the private part of this structure, for later use. To fill the other fields of Lua_Debug

with useful information, call lua_getinfo.

The fields of Lua_Debug have the following meaning:

source: the name of the chunk that created the function. If source starts with a '@, it means that the
function was defined in a file where the file name follows the '@. If source starts with a '=', the
remainder of its contents describe the source in a user-dependent manner. Otherwise, the function was
defined in a string where source is that string.

short_src: a "printable" version of source, to be used in error messages.

linedefined: the line number where the definition of the function starts.

lastlinedefined: the line number where the definition of the function ends.

what: the string "Lua" if the function is a Lua function, "C" if it is a C function, "main" if it is the main
part of a chunk.

currentline: the current line where the given function is executing. When no line information is
available, currentline is set to -1.

name: a reasonable name for the given function. Because functions in Lua are first-class values, they do
not have a fixed name: some functions can be the value of multiple global variables, while others can be
stored only in a table field. The lua_getinfo function checks how the function was called to find a
suitable name. If it cannot find a name, then name is set to NULL.

namewhat: explains the name field. The value of namewhat can be "global", "local", "method",
"field", "upvalue", or "" (the empty string), according to how the function was called. (Lua uses
the empty string when no other option seems to apply.)

istailcall: true if this function invocation was called by a tail call. In this case, the caller of this level
is not in the stack.

e nups: the number of upvalues of the function.
e nparams: the number of fixed parameters of the function (always 0 for C functions).
e isvararg: true if the function is a vararg function (always true for C functions).

lua_gethook

43

lua_Hook lua_gethook (lua State *L); [-0,+0,-]

Returns the current hook function.

lua_gethookcount
int lua_gethookcount (lua State *L); [-0, +0, -]

Returns the current hook count.

lua_gethookmask
int lua gethookmask (lua State *L); [-0,+0,-]

Returns the current hook mask.

lua_getinfo
int lua getinfo (lua State *L, const char *what, lua Debug *ar); [-(0[1), +(0[1]2), €]
Gets information about a specific function or function invocation.

To get information about a function invocation, the parameter ar must be a valid activation record that was
filled by a previous call to lua_getstack or given as argument to a hook (see Lua_Hook).

To get information about a function you push it onto the stack and start the what string with the character '>'.
(In that case, Lua_getinfo pops the function from the top of the stack.) For instance, to know in which line a
function f was defined, you can write the following code:

lua Debug ar;

lua getglobal(L, "f"); /* get global 'f' */
lua_getinfo(L, ">S", &ar);

printf("%d\n", ar.linedefined);

Each character in the string what selects some fields of the structure ar to be filled or a value to be pushed
on the stack:

e 'n':fills in the field name and namewhat;

'S': fills in the fields source, short_src, linedefined, lastlinedefined, and what;

"U': fills in the field currentline;

't': fills in the field istailcall;

'u': fills in the fields nups, nparams, and isvararg;

"f': pushes onto the stack the function that is running at the given level;

'L': pushes onto the stack a table whose indices are the numbers of the lines that are valid on the
function. (A valid line is a line with some associated code, that is, a line where you can put a break point.
Non-valid lines include empty lines and comments.)

If this option is given together with option 'f', its table is pushed after the function.

This function returns 0 on error (for instance, an invalid option in what).

lua_getlocal
const char *lua getlocal (lua State *L, const lua Debug *ar, int n); [-0, +(0[1), -]
Gets information about a local variable of a given activation record or a given function.

In the first case, the parameter ar must be a valid activation record that was filled by a previous call to
lua_getstack or given as argument to a hook (see Lua_Hook). The index n selects which local variable to
inspect; see debug.getlocal for details about variable indices and names.

lua_getlocal pushes the variable's value onto the stack and returns its name.

In the second case, ar must be NULL and the function to be inspected must be at the top of the stack. In this
case, only parameters of Lua functions are visible (as there is no information about what variables are active)
and no values are pushed onto the stack.

44

Returns NULL (and pushes nothing) when the index is greater than the number of active local variables.

lua_getstack
int lua_getstack (lua_State *L, int level, lua Debug *ar); [-0, +0, -]
Gets information about the interpreter runtime stack.

This function fills parts of a Lua_Debug structure with an identification of the activation record of the function
executing at a given level. Level 0 is the current running function, whereas level n+1 is the function that has
called level n (except for tail calls, which do not count on the stack). When there are no errors,
lua_getstack returns 1; when called with a level greater than the stack depth, it returns 0.

lua_getupvalue
const char *lua getupvalue (lua State *L, int funcindex, int n); [-0, +(0[1), -]

Gets information about the n-th upvalue of the closure at index funcindex. It pushes the upvalue's value
onto the stack and returns its name. Returns NULL (and pushes nothing) when the index n is greater than the
number of upvalues.

For C functions, this function uses the empty string as a name for all upvalues. (For Lua functions,
upvalues are the external local variables that the function uses, and that are consequently included in its
closure.)

Upvalues have no particular order, as they are active through the whole function. They are numbered in an
arbitrary order.

lua_Hook
typedef void (*lua Hook) (lua State *L, lua Debug *ar);
Type for debugging hook functions.

Whenever a hook is called, its ar argument has its field event set to the specific event that triggered the
hook. Lua identifies these events with the following constants: LUA HOOKCALL, LUA HOOKRET,
LUA HOOKTAILCALL, LUA HOOKLINE, and LUA HOOKCOUNT. Moreover, for line events, the field
currentlineis also set. To get the value of any other field in ar, the hook must call Lua_getinfo.

For call events, event can be LUA_HOOKCALL, the normal value, or LUA_HOOKTAILCALL, for a tail call; in
this case, there will be no corresponding return event.

While Lua is running a hook, it disables other calls to hooks. Therefore, if a hook calls back Lua to execute a
function or a chunk, this execution occurs without any calls to hooks.

Hook functions cannot have continuations, that is, they cannot call lua yieldk, lua pcallk, or
lua_callk with a non-null k.

Hook functions can yield under the following conditions: Only count and line events can yield; to yield, a hook
function must finish its execution calling Llua_yield with nresults equal to zero (that is, with no values).

lua_sethook
void lua sethook (lua State *L, lua Hook f, int mask, int count); [-0, +0, -]
Sets the debugging hook function.

Argument f is the hook function. mask specifies on which events the hook will be called: it is formed by a
bitwise OR of the constants LUA MASKCALL, LUA MASKRET, LUA MASKLINE, and LUA MASKCOUNT. The
count argument is only meaningful when the mask includes LUA_MASKCOUNT. For each event, the hook is
called as explained below:

e The call hook: is called when the interpreter calls a function. The hook is called just after Lua enters the
new function, before the function gets its arguments.
e The return hook: is called when the interpreter returns from a function. The hook is called just before

45

Lua leaves the function. There is no standard way to access the values to be returned by the function.

e The line hook: is called when the interpreter is about to start the execution of a new line of code, or
when it jumps back in the code (even to the same line). (This event only happens while Lua is executing
a Lua function.)

e The count hook: is called after the interpreter executes every count instructions. (This event only
happens while Lua is executing a Lua function.)

A hook is disabled by setting mask to zero.

lua_setlocal
const char *lua_setlocal (lua State *L, const lua Debug *ar, int n); [-(0[1), +0, -]

Sets the value of a local variable of a given activation record. It assigns the value at the top of the stack to the
variable and returns its name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index is greater than the number of active local variables.

Parameters ar and n are as in function Lua_getlocal.

lua_setupvalue
const char *lua setupvalue (lua State *L, int funcindex, int n); [-(0[1), +0, -]

Sets the value of a closure's upvalue. It assigns the value at the top of the stack to the upvalue and returns its
name. It also pops the value from the stack.

Returns NULL (and pops nothing) when the index n is greater than the number of upvalues.

Parameters funcindex and n are as in function Lua_getupvalue.

lua_upvalueid
void *lua _upvalueid (lua_State *L, int funcindex, int n); [-0, +0,-]
Returns a unique identifier for the upvalue numbered n from the closure at index funcindex.

These unique identifiers allow a program to check whether different closures share upvalues. Lua closures
that share an upvalue (that is, that access a same external local variable) will return identical ids for those
upvalue indices.

Parameters funcindex and n are as in function lua_getupvalue, but n cannot be greater than the
number of upvalues.

lua_upvaluejoin

void lua_upvaluejoin (lua_State *L, int funcindex1, int nl, [-0, +0, -]
int funcindex2, int n2);

Make the nl-th upvalue of the Lua closure at index funcindex1 refer to the n2-th upvalue of the Lua closure
atindex funcindex2.

5 — The Auxiliary Library

The auxiliary library provides several convenient functions to interface C with Lua. While the basic API
provides the primitive functions for all interactions between C and Lua, the auxiliary library provides higher-
level functions for some common tasks.

All functions and types from the auxiliary library are defined in header file lauxlib.h and have a prefix
lual .

All functions in the auxiliary library are built on top of the basic API, and so they provide nothing that cannot be
done with that API. Nevertheless, the use of the auxiliary library ensures more consistency to your code.

46

Several functions in the auxiliary library use internally some extra stack slots. When a function in the auxiliary
library uses less than five slots, it does not check the stack size; it simply assumes that there are enough
slots.

Several functions in the auxiliary library are used to check C function arguments. Because the error message
is formatted for arguments (e.g., "bad argument #1"), you should not use these functions for other stack
values.

Functions called LuaL_check* always raise an error if the check is not satisfied.

5.1 - Functions and Types
Here we list all functions and types from the auxiliary library in alphabetical order.

luaL_addchar
void luaL addchar (luaL Buffer *B, char c); [-2, +2, m|

Adds the byte c to the buffer B (see luaL_Buffer).

luaL_addlstring
void lualL _addlstring (lualL Buffer *B, const char *s, size t 1); [-7,+7, m]

Adds the string pointed to by s with length 1 to the buffer B (see luaL Buffer). The string can contain
embedded zeros.

luaL_addsize
void lualL_addsize (luaL Buffer *B, size t n); [-2, +2,-]

Adds to the buffer B (see luaL Buffer) a string of length n previously copied to the buffer area (see
luaL _prepbuffer).

lual_addstring
void lualL_addstring (luaL Buffer *B, const char *s); [-7, +?, m]

Adds the zero-terminated string pointed to by s to the buffer B (see luaL_Buffer).

lual_addvalue
void lualL_addvalue (luaL Buffer *B); [-1, +2, m]
Adds the value at the top of the stack to the buffer B (see LuaL_Buffer). Pops the value.

This is the only function on string buffers that can (and must) be called with an extra element on the stack,
which is the value to be added to the buffer.

lualL_argcheck

void luaL argcheck (lua State *L, [-0, +0, V]
int cond,
int arg,
const char *extramsg);

Checks whether cond is true. If it is not, raises an error with a standard message (see luaL_argerror).
lual_argerror

int lualL_argerror (lua_State *L, int arg, const char *extramsg); [-0,+0, V]

Raises an error reporting a problem with argument arg of the C function that called it, using a standard
message that includes extramsg as a comment:

47

bad argument #arg to 'funcname' (extramsg)

This function never returns.

luaL_Buffer

typedef struct lualL Buffer luaL Buffer;

Type for a string buffer.

A string buffer allows C code to build Lua strings piecemeal. Its pattern of use is as follows:

o First declare a variable b of type luaL Buffer.

e Then initialize it with a call luaL_buffinit(L, &b).

e Then add string pieces to the buffer calling any of the LuaL_add* functions.

e Finish by calling LluaL_pushresult (&b). This call leaves the final string on the top of the stack.

If you know beforehand the total size of the resulting string, you can use the buffer like this:

e First declare a variable b of type LluaL_Buffer.

e Then initialize it and preallocate a space of size sz with a call luaL_buffinitsize(L, &b, sz).

e Then copy the string into that space.

e Finish by calling luaL_pushresultsize(&b, sz), where sz is the total size of the resulting string
copied into that space.

During its normal operation, a string buffer uses a variable number of stack slots. So, while using a buffer, you
cannot assume that you know where the top of the stack is. You can use the stack between successive calls
to buffer operations as long as that use is balanced; that is, when you call a buffer operation, the stack is at
the same level it was immediately after the previous buffer operation. (The only exception to this rule is

luaL_addvalue.) After calling luaL pushresult the stack is back to its level when the buffer was
initialized, plus the final string on its top.

luaL_buffinit
void lualL buffinit (lua_State *L, luaL Buffer *B); [-0,+0,-]

Initializes a buffer B. This function does not allocate any space; the buffer must be declared as a variable (see
luaL Buffer).

luaL_buffinitsize

char *luaL buffinitsize (lua_State *L, luaL Buffer *B, size t sz); [-?,+7, m]
Equivalent to the sequence luaL_buffinit, lualL_prepbuffsize.

lual_callmeta

int lual_callmeta (lua_State *L, int obj, const char *e); [-0, +(0[1), €]
Calls a metamethod.

If the object at index obj has a metatable and this metatable has a field e, this function calls this field passing
the object as its only argument. In this case this function returns true and pushes onto the stack the value

returned by the call. If there is no metatable or no metamethod, this function returns false (without pushing any
value on the stack).

luaL_checkany

void lualL checkany (lua_State *L, int arg); [-0,+0, V]
Checks whether the function has an argument of any type (including nil) at position arg.
luaL_checkinteger

lua_Integer lualL_checkinteger (lua State *L, int arg); [-0,+0, V]

48

Checks whether the function argument arg is an integer (or can be converted to an integer) and returns this
integer castto a Lua_Integer.

luaL_checklstring
const char *lualL checklstring (lua State *L, int arg, size t *1); [-0,+0, V]

Checks whether the function argument arg is a string and returns this string; if 1 is not NULL fills *1 with the
string's length.

This function uses lua_tolstring to get its result, so all conversions and caveats of that function apply
here.

luaL_checknumber
lua Number lualL checknumber (lua State *L, int arg); [-0,+0, V]

Checks whether the function argument arg is a number and returns this number.

luaL_checkoption

int lualL_checkoption (lua_State *L, [-0,+0, V]
int arg,
const char *def,
const char *const lst[]);

Checks whether the function argument arg is a string and searches for this string in the array 1st (which
must be NULL-terminated). Returns the index in the array where the string was found. Raises an error if the
argument is not a string or if the string cannot be found.

If def is not NULL, the function uses def as a default value when there is no argument arg or when this
argument is nil.

This is a useful function for mapping strings to C enums. (The usual convention in Lua libraries is to use
strings instead of numbers to select options.)

luaL_checkstack
void lualL_checkstack (lua State *L, int sz, const char *msg); [-0,+0, V]

Grows the stack size to top + sz elements, raising an error if the stack cannot grow to that size. msg is an
additional text to go into the error message (or NULL for no additional text).

luaL_checkstring
const char *lualL checkstring (lua State *L, int arg); [-0,+0, V]
Checks whether the function argument arg is a string and returns this string.

This function uses lua_tolstring to get its result, so all conversions and caveats of that function apply
here.

lual_checktype

void luaL checktype (lua State *L, int arg, int t); [-0, +0, V]
Checks whether the function argument arg has type t. See lua_type for the encoding of types for t.
lualL_checkudata

void *lualL checkudata (lua State *L, int arg, const char *tname); [-0,+0, V]

Checks whether the function argument arg is a userdata of the type tname (see luaL_newmetatable) and
returns the userdata address (see lua_touserdata).

49

luaL_checkversion
void luaL checkversion (lua State *L); [-0, +0, V]
Checks whether the core running the call, the core that created the Lua state, and the code making the call

are all using the same version of Lua. Also checks whether the core running the call and the core that created
the Lua state are using the same address space.

lualL_dofile
int lualL_dofile (lua State *L, const char *filename); [-0, +?, €]
Loads and runs the given file. It is defined as the following macro:

(luaL_loadfile(L, filename) || lua pcall(L, O, LUA MULTRET, 0))
It returns false if there are no errors or true in case of errors.
lual_dostring
int lual_dostring (lua_State *L, const char *str); [-0, +?,-]
Loads and runs the given string. It is defined as the following macro:

(luaL_loadstring(L, str) || lua_pcall(L, 0, LUA MULTRET, 0))
It returns false if there are no errors or true in case of errors.
lualL_error
int lualL_error (lua State *L, const char *fmt, ...); [-0,+0, V]
Raises an error. The error message format is given by fmt plus any extra arguments, following the same
rules of Llua_pushfstring. It also adds at the beginning of the message the file name and the line number
where the error occurred, if this information is available.

This function never returns, but it is an idiom to use it in C functions as return lualL_error(args).
lual_execresult

int lual_execresult (lua State *L, int stat); [-0, +3, m]

This function produces the return values for process-related functions in the standard library (0s.execute
and io.close).

lualL_fileresult
int lualL fileresult (lua State *L, int stat, const char *fname); [-0, +(113), m]

This function produces the return values for file-related functions in the standard library (io.open,
os.rename, file:seek, etc.).

luaL_getmetafield
int lual_getmetafield (lua State *L, int obj, const char *e); [-0, +(0[1), m]
Pushes onto the stack the field e from the metatable of the object at index obj and returns the type of pushed

value. If the object does not have a metatable, or if the metatable does not have this field, pushes nothing and
returns LUA_TNIL.

luaL_getmetatable

int lual getmetatable (lua State *L, const char *tname); [-0, +1, m]

Pushes onto the stack the metatable associated with name tname in the registry (see LuaL_newmetatable)

50

(nil if there is no metatable associated with that name). Returns the type of the pushed value.

luaL_getsubtable
int lualL_getsubtable (lua State *L, int idx, const char *fname); [-0, +1, €]

Ensures that the value t[fname], where t is the value at index idx, is a table, and pushes that table onto
the stack. Returns true if it finds a previous table there and false if it creates a new table.

lual_gsub

const char *lualL gsub (lua State *L, [-0, +1, m]
const char *s,
const char *p,
const char *r);

Creates a copy of string s by replacing any occurrence of the string p with the string r. Pushes the resulting
string on the stack and returns it.

lual_len
lua Integer luaL len (lua State *L, int index); [-0, +0, €]
Returns the "length" of the value at the given index as a numbers; it is equivalent to the '#' operator in Lua (see

§3.4.7). Raises an error if the result of the operation is not an integer. (This case only can happen through
metamethods.)

luaL_loadbuffer

int lualL loadbuffer (lua State *L, [-0, +1,-]
const char *buff,
size t sz,

const char *name);

Equivalent to luaL_loadbufferx with mode equal to NULL.

lualL_loadbufferx

int lual_loadbufferx (lua_State *L, [-0,+1,-]
const char *buff,
size t sz,
const char *name,
const char *mode);

Loads a buffer as a Lua chunk. This function uses lua_load to load the chunk in the buffer pointed to by
buff with size sz.

This function returns the same results as lua_load. name is the chunk name, used for debug information
and error messages. The string mode works as in function Lua_load.

lual_loadfile
int lualL_loadfile (lua_State *L, const char *filename); [-0, +1, m|

Equivalent to LluaL_loadfilex with mode equal to NULL.

lual_loadfilex

int lualL loadfilex (lua State *L, const char *filename, [-0, +1, m]
const char *mode);

Loads a file as a Lua chunk. This function uses lua_load to load the chunk in the file named filename. If
filename is NULL, then it loads from the standard input. The first line in the file is ignored if it starts with a #.

51

The string mode works as in function lua_load.

This function returns the same results as lua_load, but it has an extra error code LUA ERRFILE for file-
related errors (e.g., it cannot open or read the file).

As lua_load, this function only loads the chunk; it does not run it.

luaL_loadstring

int lual_loadstring (lua_State *L, const char *s); [-0, +1,-]

Loads a string as a Lua chunk. This function uses lua_load to load the chunk in the zero-terminated string
S.

This function returns the same results as Lua_load.
Also as lua_load, this function only loads the chunk; it does not run it.
luaL_newlib
void luaL newlib (lua State *L, const luaL Reg 1[1); [-0, +1, m]
Creates a new table and registers there the functions in list 1.
It is implemented as the following macro:
(LuaL newlibtable(L,1), lualL setfuncs(L,1,0))
The array 1 must be the actual array, not a pointer to it.
luaL_newlibtable
void luaL newlibtable (lua State *L, const lualL Reg l[]); [-0, +1, m]

Creates a new table with a size optimized to store all entries in the array 1 (but does not actually store them).
It is intended to be used in conjunction with LluaL_setfuncs (see luaL_newlib).

It is implemented as a macro. The array 1 must be the actual array, not a pointer to it.
luaL_newmetatable

int lual_newmetatable (lua State *L, const char *tname); [0, +1, m]
If the registry already has the key tname, returns 0. Otherwise, creates a new table to be used as a metatable
for userdata, adds to this new table the pair __name = tname, adds to the registry the pair [tname] = new
table, and returns 1. (The entry __name is used by some error-reporting functions.)

In both cases pushes onto the stack the final value associated with tname in the registry.

luaL_newstate

lua State *luaL newstate (void); [-0, +0, -]
Creates a new Lua state. It calls Lua_newstate with an allocator based on the standard C realloc function
and then sets a panic function (see §4.6) that prints an error message to the standard error output in case of
fatal errors.

Returns the new state, or NULL if there is a memory allocation error.

luaL_openlibs

void lualL openlibs (lua State *L); [-0, +0, €]

Opens all standard Lua libraries into the given state.

lual_opt

52

T lualL_opt (L, func, arg, dflt); [-0, +0, €]
This macro is defined as follows:
(lua_isnoneornil(L, (arg)) ? (dflt) : func(L,(arg)))

In words, if the argument arg is nil or absent, the macro results in the default dflt. Otherwise, it results in
the result of calling func with the state L and the argument index arg as parameters. Note that it evaluates
the expression dflt only if needed.

luaL_optinteger
lua Integer lualL optinteger (lua State *L, [-0,+0, V]
int arg,

lua_Integer d);

If the function argument arg is an integer (or convertible to an integer), returns this integer. If this argument is
absent or is nil, returns d. Otherwise, raises an error.

lualL_optlstring

const char *lualL optlstring (lua State *L, [-0,+0,]
int arg,
const char *d,
size t *1);

If the function argument arg is a string, returns this string. If this argument is absent or is nil, returns d.
Otherwise, raises an error.

If Uis not NULL, fills the position *1 with the result's length. If the result is NULL (only possible when returning
dand d == NULL), its length is considered zero.

This function uses lua_tolstring to get its result, so all conversions and caveats of that function apply
here.

luaL_optnumber

lua_Number lualL optnumber (lua_State *L, int arg, lua_ Number d); [-0,+0,]

If the function argument arg is a number, returns this number. If this argument is absent or is nil, returns d.
Otherwise, raises an error.

luaL_optstring

const char *lualL optstring (lua_State *L, [-0,+0,v]
int arg,
const char *d);

If the function argument arg is a string, returns this string. If this argument is absent or is nil, returns d.
Otherwise, raises an error.

lualL_prepbuffer

char *luaL_prepbuffer (luaL Buffer *B); [-?, +2, m]
Equivalent to LluaL_prepbuffsize with the predefined size LUAL BUFFERSIZE.

luaL_prepbuffsize

char *luaL prepbuffsize (luaL Buffer *B, size t sz); [-7, +?, m]

Returns an address to a space of size sz where you can copy a string to be added to buffer B (see
luaL_Buffer). After copying the string into this space you must call luaL_addsize with the size of the
string to actually add it to the buffer.

53

lual_pushresult
void lualL pushresult (luaL Buffer *B); -7, +1, m]

Finishes the use of buffer B leaving the final string on the top of the stack.

luaL_pushresultsize
void lualL pushresultsize (lualL Buffer *B, size t sz); [-?,+1, m]

Equivalent to the sequence lual addsize, luaL pushresult.

luaL_ref
int lualL_ref (lua State *L, int t); [-1, +0, m|

Creates and returns a reference, in the table at index t, for the object at the top of the stack (and pops the
object).

A reference is a unique integer key. As long as you do not manually add integer keys into table t, luaL_ref
ensures the uniqueness of the key it returns. You can retrieve an object referred by reference r by calling
lua_rawgeti(L, t, r).Function LluaL unref frees a reference and its associated object.

If the object at the top of the stack is nil, LluaL_ref returns the constant LUA REFNIL. The constant
LUA NOREF is guaranteed to be different from any reference returned by lualL_ref.

luaL_Reg

typedef struct lualL Reg {
const char *name;
lua_CFunction func;

} lualL_Reg;

Type for arrays of functions to be registered by luaL_setfuncs. name is the function name and func is a
pointer to the function. Any array of LuaL_Reg must end with a sentinel entry in which both name and func
are NULL.

lualL_requiref

void lualL requiref (lua_State *L, const char *modname, [-0,+1, €]
lua_CFunction openf, int glb);

If modname is not already present in package.loaded, calls function openf with string modname as an
argument and sets the call result in package. loaded[modname], as if that function has been called through
require.

If glb is true, also stores the module into global modname.

Leaves a copy of the module on the stack.

lualL_setfuncs
void lualL setfuncs (lua State *L, const luaL Reg *1, int nup); [-nup, +0, m]

Registers all functions in the array 1 (see LualL_Reg) into the table on the top of the stack (below optional
upvalues, see next).

When nup is not zero, all functions are created sharing nup upvalues, which must be previously pushed on
the stack on top of the library table. These values are popped from the stack after the registration.

lualL_setmetatable
void lualL_setmetatable (lua_State *L, const char *tname); [-0, +0, -]

Sets the metatable of the object at the top of the stack as the metatable associated with name tname in the

54

registry (see LuaL_newmetatable).

lualL_Stream
typedef struct lual_Stream {
FILE *f;
lua CFunction closef;
} lual_Stream;
The standard representation for file handles, which is used by the standard 1/O library.

A file handle is implemented as a full userdata, with a metatable called LUA FILEHANDLE (where
LUA FILEHANDLE is a macro with the actual metatable's name). The metatable is created by the 1/O library
(see luaL_newmetatable).

This userdata must start with the structure LuaL_Stream; it can contain other data after this initial structure.
Field f points to the corresponding C stream (or it can be NULL to indicate an incompletely created handle).
Field closef points to a Lua function that will be called to close the stream when the handle is closed or
collected; this function receives the file handle as its sole argument and must return either true (in case of
success) or nil plus an error message (in case of error). Once Lua calls this field, it changes the field value to
NULL to signal that the handle is closed.

lual_testudata
void *luaL testudata (lua State *L, int arg, const char *tname); [-0, +0, m]

This function works like LuaL_checkudata, except that, when the test fails, it returns NULL instead of raising
an error.

lual_tolstring
const char *lualL tolstring (lua State *L, int idx, size t *len); [-0,+1, €]

Converts any Lua value at the given index to a C string in a reasonable format. The resulting string is pushed
onto the stack and also returned by the function. If Len is not NULL, the function also sets *len with the string
length.

If the value has a metatable with a tostring field, then luaL tolstring calls the corresponding
metamethod with the value as argument, and uses the result of the call as its result.

lual_traceback

void lualL traceback (lua State *L, lua State *L1, const char *msg, [-0, +1, m]
int level);

Creates and pushes a traceback of the stack L1. If msg is not NULL it is appended at the beginning of the
traceback. The level parameter tells at which level to start the traceback.

lual_typename

const char *lualL_typename (lua_State *L, int index); [-0, +0, -]
Returns the name of the type of the value at the given index.

luaL_unref

void lualL unref (lua State *L, int t, int ref); [-0,+0,-]

Releases reference ref from the table at index t (see lualL_ref). The entry is removed from the table, so
that the referred object can be collected. The reference ref is also freed to be used again.

If ref is LUA_NOREF or LUA REFNIL, luaL unref does nothing.

luaL_where

55

void luaL where (lua State *L, int 1lvl); [-0, +1, m]

Pushes onto the stack a string identifying the current position of the control at level 1vl in the call stack.
Typically this string has the following format:

chunkname:currentline:
Level 0 is the running function, level 1 is the function that called the running function, etc.

This function is used to build a prefix for error messages.

6 — Standard Libraries

The standard Lua libraries provide useful functions that are implemented directly through the C API. Some of
these functions provide essential services to the language (e.g., type and getmetatable); others provide
access to "outside" services (e.g., I/0); and others could be implemented in Lua itself, but are quite useful or
have critical performance requirements that deserve an implementation in C (e.g., table.sort).

All libraries are implemented through the official C API and are provided as separate C modules. Currently,
Lua has the following standard libraries:

e basic library (§6.1);

e coroutine library (§6.2);

e package library (§6.3);

e string manipulation (§6.4);

e basic UTF-8 support (§6.5);

e table manipulation (§6.6);

e mathematical functions (§6.7) (sin, log, etc.);
e input and output (§6.8);

e operating system facilities (§6.9);

e debug facilities (§6.10).

Except for the basic and the package libraries, each library provides all its functions as fields of a global table
or as methods of its objects.

To have access to these libraries, the C host program should call the LuaL_openlibs function, which opens
all standard libraries. Alternatively, the host program can open them individually by using LuaL_requiref to
call luaopen base (for the basic library), Lluaopen package (for the package library),
luaopen_coroutine (for the coroutine library), luaopen string (for the string library), luaopen utf8
(for the UTF8 library), Luaopen_table (for the table library), luaopen_math (for the mathematical library),
luaopen_io (for the I/O library), Luaopen_os (for the operating system library), and Luaopen_debug (for
the debug library). These functions are declared in Lualib.h.

6.1 - Basic Functions

The basic library provides core functions to Lua. If you do not include this library in your application, you
should check carefully whether you need to provide implementations for some of its facilities.

assert (v [, message])

Calls error if the value of its argument v is false (i.e., nil or false); otherwise, returns all its arguments. In
case of error, message is the error object; when absent, it defaults to "assertion failed!"

collectgarbage ([opt [, arg]])

This function is a generic interface to the garbage collector. It performs different functions according to its first
argument, opt:

e "collect": performs a full garbage-collection cycle. This is the default option.

e "stop": stops automatic execution of the garbage collector. The collector will run only when explicitly
invoked, until a call to restart it.

e "restart": restarts automatic execution of the garbage collector.

56

e "count": returns the total memory in use by Lua in Kbytes. The value has a fractional part, so that it
multiplied by 1024 gives the exact number of bytes in use by Lua (except for overflows).

e "step": performs a garbage-collection step. The step "size" is controlled by arg. With a zero value, the
collector will perform one basic (indivisible) step. For non-zero values, the collector will perform as if that
amount of memory (in KBytes) had been allocated by Lua. Returns true if the step finished a collection
cycle.

e "setpause': sets arg as the new value for the pause of the collector (see §2.5). Returns the previous
value for pause.

e "setstepmul”: sets arg as the new value for the step muitiplier of the collector (see §2.5). Returns the
previous value for step.

e "isrunning": returns a boolean that tells whether the collector is running (i.e., not stopped).

dofile ([filename])

Opens the named file and executes its contents as a Lua chunk. When called without arguments, dofile
executes the contents of the standard input (stdin). Returns all values returned by the chunk. In case of
errors, dofile propagates the error to its caller (that is, dofile does not run in protected mode).

error (message [, level])

Terminates the last protected function called and returns message as the error object. Function error never
returns.

Usually, error adds some information about the error position at the beginning of the message, if the
message is a string. The level argument specifies how to get the error position. With level 1 (the default),
the error position is where the error function was called. Level 2 points the error to where the function that
called error was called; and so on. Passing a level 0 avoids the addition of error position information to the
message.

G

A global variable (not a function) that holds the global environment (see §2.2). Lua itself does not use this
variable; changing its value does not affect any environment, nor vice versa.

getmetatable (object)

If object does not have a metatable, returns nil. Otherwise, if the object's metatable has a _metatable
field, returns the associated value. Otherwise, returns the metatable of the given object.

ipairs (t)
Returns three values (an iterator function, the table t, and 0) so that the construction
for i,v in ipairs(t) do body end

will iterate over the key—value pairs (1,t[1]), (2,t[2]), ..., up to the first nil value.

load (chunk [, chunkname [, mode [, env]]])

Loads a chunk.

If chunk is a string, the chunk is this string. If chunk is a function, Load calls it repeatedly to get the chunk
pieces. Each call to chunk must return a string that concatenates with previous results. A return of an empty
string, nil, or no value signals the end of the chunk.

If there are no syntactic errors, returns the compiled chunk as a function; otherwise, returns nil plus the error
message.

If the resulting function has upvalues, the first upvalue is set to the value of env, if that parameter is given, or
to the value of the global environment. Other upvalues are initialized with nil. (When you load a main chunk,
the resulting function will always have exactly one upvalue, the _ENV variable (see §2.2). However, when you
load a binary chunk created from a function (see string.dump), the resulting function can have an arbitrary
number of upvalues.) All upvalues are fresh, that is, they are not shared with any other function.

57

chunkname is used as the name of the chunk for error messages and debug information (see §4.9). When
absent, it defaults to chunk, if chunk is a string, or to "=(1oad)" otherwise.

The string mode controls whether the chunk can be text or binary (that is, a precompiled chunk). It may be the
string "b" (only binary chunks), "t" (only text chunks), or "bt" (both binary and text). The default is "bt".

Lua does not check the consistency of binary chunks. Maliciously crafted binary chunks can crash the
interpreter.

loadfile ([filename [, mode [, env]]])

Similar to Load, but gets the chunk from file filename or from the standard input, if no file name is given.

next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a table and its second argument is an
index in this table. next returns the next index of the table and its associated value. When called with nil as
its second argument, next returns an initial index and its associated value. When called with the last index, or
with nil in an empty table, next returns nil. If the second argument is absent, then it is interpreted as nil. In
particular, you can use next (t) to check whether a table is empty.

The order in which the indices are enumerated is not specified, even for numeric indices. (To traverse a table
in numerical order, use a numerical for.)

The behavior of next is undefined if, during the traversal, you assign any value to a non-existent field in the
table. You may however modify existing fields. In particular, you may clear existing fields.

pairs (t)
If t has a metamethod _ pairs, calls it with t as argument and returns the first three results from the call.
Otherwise, returns three values: the next function, the table t, and nil, so that the construction
for k,v in pairs(t) do body end
will iterate over all key—value pairs of table t.

See function next for the caveats of modifying the table during its traversal.

pcall (f [, argl, ---])

Calls function f with the given arguments in protected mode. This means that any error inside f is not
propagated; instead, pcall catches the error and returns a status code. lts first result is the status code (a
boolean), which is true if the call succeeds without errors. In such case, pcall also returns all results from the
call, after this first result. In case of any error, pcall returns false plus the error message.

print (-++)
Receives any number of arguments and prints their values to stdout, using the tostring function to
convert each argument to a string. print is not intended for formatted output, but only as a quick way to

show a value, for instance for debugging. For complete control over the output, use string.format and
io.write.

rawequal (v1, v2)
Checks whether v1 is equal to v2, without invoking the eq metamethod. Returns a boolean.

rawget (table, index)

Gets the real value of table[index], without invoking the ~index metamethod. table must be a table;
index may be any value.

rawlen (v)

58

Returns the length of the object v, which must be a table or a string, without invoking the _ 1en metamethod.
Returns an integer.

rawset (table, index, value)

Sets the real value of table[index] to value, without invoking the ~ newindex metamethod. table must
be a table, index any value different from nil and NaN, and value any Lua value.

This function returns table.

select (index, :-+)

If index is a number, returns all arguments after argument number index; a negative number indexes from
the end (-1 is the last argument). Otherwise, index must be the string "#", and select returns the total
number of extra arguments it received.

setmetatable (table, metatable)

Sets the metatable for the given table. (To change the metatable of other types from Lua code, you must use
the debug library (§6.10).) If metatable is nil, removes the metatable of the given table. If the original
metatable has a __metatable field, raises an error.

This function returns table.

tonumber (e [, base])

When called with no base, tonumber tries to convert its argument to a number. If the argument is already a
number or a string convertible to a number, then tonumber returns this number; otherwise, it returns nil.

The conversion of strings can result in integers or floats, according to the lexical conventions of Lua (see
§3.1). (The string may have leading and trailing spaces and a sign.)

When called with base, then e must be a string to be interpreted as an integer numeral in that base. The base
may be any integer between 2 and 36, inclusive. In bases above 10, the letter 'A" (in either upper or lower
case) represents 10, 'B' represents 11, and so forth, with 'Z' representing 35. If the string e is not a valid
numeral in the given base, the function returns nil.

tostring (v)

Receives a value of any type and converts it to a string in a human-readable format. (For complete control of
how numbers are converted, use string.format.)

If the metatable of v has a tostring field, then tostring calls the corresponding value with v as
argument, and uses the result of the call as its result.

type (v)

Returns the type of its only argument, coded as a string. The possible results of this function are "nil" (a
string, not the value nil), "number", "string", "boolean", "table", "function", "thread", and
"userdata".

_VERSION

A global variable (not a function) that holds a string containing the running Lua version. The current value of
this variable is "Lua 5.3".

xpcall (f, msgh [, argl, ---])
This function is similar to pcall, except that it sets a new message handler msgh.
6.2 - Coroutine Manipulation

This library comprises the operations to manipulate coroutines, which come inside the table coroutine. See

59

§2.6 for a general description of coroutines.

coroutine.create (f)

Creates a new coroutine, with body f. f must be a function. Returns this new coroutine, an object with type
"thread".

coroutine.isyieldable ()
Returns true when the running coroutine can yield.

A running coroutine is yieldable if it is not the main thread and it is not inside a non-yieldable C function.

coroutine.resume (co [, vall, --:])

Starts or continues the execution of coroutine co. The first time you resume a coroutine, it starts running its
body. The values vall, ... are passed as the arguments to the body function. If the coroutine has yielded,
resume restarts it; the values vall, ... are passed as the results from the yield.

If the coroutine runs without any errors, resume returns true plus any values passed to yield (when the
coroutine yields) or any values returned by the body function (when the coroutine terminates). If there is any
error, resume returns false plus the error message.

coroutine.running ()

Returns the running coroutine plus a boolean, true when the running coroutine is the main one.

coroutine.status (co)

Returns the status of coroutine co, as a string: "running", if the coroutine is running (that is, it called
status); "suspended", if the coroutine is suspended in a call to yield, or if it has not started running yet;
"normal" if the coroutine is active but not running (that is, it has resumed another coroutine); and "dead" if
the coroutine has finished its body function, or if it has stopped with an error.

coroutine.wrap (f)

Creates a new coroutine, with body f. f must be a function. Returns a function that resumes the coroutine
each time it is called. Any arguments passed to the function behave as the extra arguments to resume.
Returns the same values returned by resume, except the first boolean. In case of error, propagates the error.

coroutine.yield (--+)

Suspends the execution of the calling coroutine. Any arguments to yield are passed as extra results to
resume.

6.3 - Modules

The package library provides basic facilities for loading modules in Lua. It exports one function directly in the
global environment: require. Everything else is exported in a table package.

require (modname)

Loads the given module. The function starts by looking into the package. Loaded table to determine whether
modname is already loaded. If it is, then require returns the value stored at package.loaded[modname].
Otherwise, it tries to find a loader for the module.

To find a loader, require is guided by the package. searchers sequence. By changing this sequence, we
can change how require looks for a module. The following explanation is based on the default configuration
for package.searchers.

First require queries package.preload[modname]. If it has a value, this value (which must be a function)
is the loader. Otherwise require searches for a Lua loader using the path stored in package.path. If that
also fails, it searches for a C loader using the path stored in package. cpath. If that also fails, it tries an all-

60

in-one loader (see package.searchers).

Once a loader is found, require calls the loader with two arguments: modname and an extra value
dependent on how it got the loader. (If the loader came from a file, this extra value is the file name.) If the
loader returns any non-nil value, require assigns the returned value to package.loaded[modname]. If
the loader does not return a non-nil value and has not assigned any value to package.loaded[modname],
then require assigns true to this entry. In any case, require returns the final value of
package.loaded[modname].

If there is any error loading or running the module, or if it cannot find any loader for the module, then require
raises an error.

package.config
A string describing some compile-time configurations for packages. This string is a sequence of lines:

e The first line is the directory separator string. Default is "\' for Windows and '/ for all other systems.

e The second line is the character that separates templates in a path. Defaultis ';".

e The third line is the string that marks the substitution points in a template. Default is '?".

e The fourth line is a string that, in a path in Windows, is replaced by the executable's directory. Default is
' I 1

o The fifth line is a mark to ignore all text after it when building the Luaopen__ function name. Default is '-".
package.cpath

The path used by require to search for a C loader.

Lua initializes the C path package.cpath in the same way it initializes the Lua path package.path, using
the environment variable LUA_CPATH 5 3, or the environment variable LUA_CPATH, or a default path defined
in Luaconf.h.

package.loaded

A table used by require to control which modules are already loaded. When you require a module modname
and package.loaded[modname] is not false, require simply returns the value stored there.

This variable is only a reference to the real table; assignments to this variable do not change the table used by
require.

package.loadlib (libname, funcname)

Dynamically links the host program with the C library 1ibname.

If funcname is "*", then it only links with the library, making the symbols exported by the library available to
other dynamically linked libraries. Otherwise, it looks for a function funcname inside the library and returns
this function as a C function. So, funcname must follow the lua CFunction prototype (see
lua CFunction).

This is a low-level function. It completely bypasses the package and module system. Unlike require, it does
not perform any path searching and does not automatically adds extensions. Libname must be the complete
file name of the C library, including if necessary a path and an extension. funcname must be the exact name
exported by the C library (which may depend on the C compiler and linker used).

This function is not supported by Standard C. As such, it is only available on some platforms (Windows, Linux,
Mac OS X, Solaris, BSD, plus other Unix systems that support the d1fcn standard).

package.path
The path used by require to search for a Lua loader.

At start-up, Lua initializes this variable with the value of the environment variable LUA_ PATH 5 3 or the
environment variable LUA_PATH or with a default path defined in Luaconf . h, if those environment variables
are not defined. Any "; ;" in the value of the environment variable is replaced by the default path.

61

package.preload
A table to store loaders for specific modules (see require).

This variable is only a reference to the real table; assignments to this variable do not change the table used by
require.

package.searchers
A table used by require to control how to load modules.

Each entry in this table is a searcher function. When looking for a module, require calls each of these
searchers in ascending order, with the module name (the argument given to require) as its sole parameter.
The function can return another function (the module loader) plus an extra value that will be passed to that
loader, or a string explaining why it did not find that module (or nil if it has nothing to say).

Lua initializes this table with four searcher functions.
The first searcher simply looks for a loader in the package.preload table.

The second searcher looks for a loader as a Lua library, using the path stored at package.path. The search
is done as described in function package.searchpath.

The third searcher looks for a loader as a C library, using the path given by the variable package.cpath.
Again, the search is done as described in function package. searchpath. For instance, if the C path is the
string

"./?.s0;./?7.d11;/usr/local/?/init.so"

the searcher for module foo will try to open the files ./foo.so, ./foo.dll, and /usr/local
/foo/init.so, in that order. Once it finds a C library, this searcher first uses a dynamic link facility to link
the application with the library. Then it tries to find a C function inside the library to be used as the loader. The
name of this C function is the string "Lluaopen_" concatenated with a copy of the module name where each
dot is replaced by an underscore. Moreover, if the module name has a hyphen, its suffix after (and including)
the first hyphen is removed. For instance, if the module name is a.b.c-v2.1, the function name will be
luaopen_a b c.

The fourth searcher tries an all-in-one loader. It searches the C path for a library for the root name of the given
module. For instance, when requiring a.b. c, it will search for a C library for a. If found, it looks into it for an
open function for the submodule; in our example, that would be Luaopen_a_b_c. With this facility, a package
can pack several C submodules into one single library, with each submodule keeping its original open
function.

All searchers except the first one (preload) return as the extra value the file name where the module was
found, as returned by package. searchpath. The first searcher returns no extra value.

package.searchpath (name, path [, sep [, rep]])
Searches for the given name in the given path.

A path is a string containing a sequence of templates separated by semicolons. For each template, the
function replaces each interrogation mark (if any) in the template with a copy of name wherein all occurrences
of sep (a dot, by default) were replaced by rep (the system's directory separator, by default), and then tries to
open the resulting file name.

For instance, if the path is the string
"./?.lua;./?.1c;/usr/local/?/init. lua"

the search for the name foo.a will try to open the files ./foo/a.lua, ./foo/a.lc, and /usr/local
/foo/a/init.lua, in that order.

Returns the resulting name of the first file that it can open in read mode (after closing the file), or nil plus an
error message if none succeeds. (This error message lists all file names it tried to open.)

62

6.4 - String Manipulation

This library provides generic functions for string manipulation, such as finding and extracting substrings, and
pattern matching. When indexing a string in Lua, the first character is at position 1 (not at 0, as in C). Indices
are allowed to be negative and are interpreted as indexing backwards, from the end of the string. Thus, the
last character is at position -1, and so on.

The string library provides all its functions inside the table string. It also sets a metatable for strings where
the _index field points to the string table. Therefore, you can use the string functions in object-oriented
style. For instance, string.byte(s, i) can be written as s:byte(1i).

The string library assumes one-byte character encodings.

string.byte (s [, i [, i1])

Returns the internal numeric codes of the characters s[i], s[i+1], ..., s[j1. The default value for i is 1; the
default value for j is i. These indices are corrected following the same rules of function string. sub.

Numeric codes are not necessarily portable across platforms.

string.char ()

Receives zero or more integers. Returns a string with length equal to the number of arguments, in which each
character has the internal numeric code equal to its corresponding argument.

Numeric codes are not necessarily portable across platforms.

string.dump (function [, strip])

Returns a string containing a binary representation (a binary chunk) of the given function, so that a later Load
on this string returns a copy of the function (but with new upvalues). If strip is a true value, the binary
representation may not include all debug information about the function, to save space.

Functions with upvalues have only their number of upvalues saved. When (re)loaded, those upvalues receive
fresh instances containing nil. (You can use the debug library to serialize and reload the upvalues of a
function in a way adequate to your needs.)

string.find (s, pattern [, init [, plain]])

Looks for the first match of pattern (see §6.4.1) in the string s. If it finds a match, then find returns the
indices of s where this occurrence starts and ends; otherwise, it returns nil. A third, optional numeric
argument init specifies where to start the search; its default value is 1 and can be negative. A value of true
as a fourth, optional argument plain turns off the pattern matching facilities, so the function does a plain "find
substring” operation, with no characters in pattern being considered magic. Note that if plain is given, then
init must be given as well.

If the pattern has captures, then in a successful match the captured values are also returned, after the two
indices.

string.format (formatstring, -:-)

Returns a formatted version of its variable number of arguments following the description given in its first
argument (which must be a string). The format string follows the same rules as the ISO C function sprintf.
The only differences are that the options/modifiers *, h, L, 1, n, and p are not supported and that there is an
extra option, g.

The g option formats a string between double quotes, using escape sequences when necessary to ensure
that it can safely be read back by the Lua interpreter. For instance, the call

string.format('%q', 'a string with "quotes" and \n new line')
may produce the string:

"a string with \"quotes\" and \

63

new line"

Options A, a, E, e, f, G, and g all expect a number as argument. Options ¢, d, i, 0, u, X, and X expect an
integer. When Lua is compiled with a C89 compiler, options A and a (hexadecimal floats) do not support any
modifier (flags, width, length).

Option s expects a string; if its argument is not a string, it is converted to one following the same rules of
tostring. If the option has any modifier (flags, width, length), the string argument should not contain
embedded zeros.

string.gmatch (s, pattern)

Returns an iterator function that, each time it is called, returns the next captures from pattern (see §6.4.1)
over the string s. If pattern specifies no captures, then the whole match is produced in each call.

As an example, the following loop will iterate over all the words from string s, printing one per line:

s = "hello world from Lua"

for w in string.gmatch(s, "%a+") do
print(w)

end

The next example collects all pairs key=value from the given string into a table:

t={}

s = "from=world, to=Lua"

for k, v in string.gmatch(s, " (%w+)=(%w+)") do
t[k] = v

end

For this function, a caret "' at the start of a pattern does not work as an anchor, as this would prevent the
iteration.

string.gsub (s, pattern, repl [, n])

Returns a copy of s in which all (or the first n, if given) occurrences of the pattern (see §6.4.1) have been
replaced by a replacement string specified by repl, which can be a string, a table, or a function. gsub also
returns, as its second value, the total number of matches that occurred. The name gsub comes from Global
SUBstitution.

If repl is a string, then its value is used for replacement. The character % works as an escape character: any
sequence in repl of the form %d, with d between 1 and 9, stands for the value of the d-th captured substring.
The sequence %0 stands for the whole match. The sequence %% stands for a single %.

If repl is a table, then the table is queried for every match, using the first capture as the key.

If repl is a function, then this function is called every time a match occurs, with all captured substrings
passed as arguments, in order.

In any case, if the pattern specifies no captures, then it behaves as if the whole pattern was inside a capture.

If the value returned by the table query or by the function call is a string or a number, then it is used as the
replacement string; otherwise, if it is false or nil, then there is no replacement (that is, the original match is
kept in the string).

Here are some examples:

x = string.gsub("hello world", "(%w+)", "%l %1")
--> x="hello hello world world"

x = string.gsub("hello world", "%sw+", "%0 %0", 1)
--> x="hello hello world"

x = string.gsub("hello world from Lua", "(%w+)%s*(%w+)", "%2 %1")
--> x="world hello Lua from"

64

x = string.gsub("home = $HOME, user = $USER", "%$(%w+)", os.getenv)
--> x="home = /home/roberto, user = roberto"

x = string.gsub("4+5 = $return 4+5%$", "%$(.-)%$", function (s)
return load(s) ()
end)
--> x="4+5 = 9"

local t = {name="1lua", version="5.3"}

x = string.gsub("$name-$version.tar.gz", "%$(%sw+)", t)
--> x="lua-5.3.tar.gz"

string.len (s)

Receives a string and returns its length. The empty string "" has length 0. Embedded zeros are counted, so
"a\000bc\000" has length 5.

string.lower (s)

Receives a string and returns a copy of this string with all uppercase letters changed to lowercase. All other
characters are left unchanged. The definition of what an uppercase letter is depends on the current locale.

string.match (s, pattern [, init])

Looks for the first match of pattern (see §6.4.1) in the string s. If it finds one, then match returns the
captures from the pattern; otherwise it returns nil. If pattern specifies no captures, then the whole match is
returned. A third, optional numeric argument init specifies where to start the search; its default value is 1
and can be negative.

string.pack (fmt, v1, v2,)

Returns a binary string containing the values v1, v2, etc. packed (that is, serialized in binary form) according
to the format string fmt (see §6.4.2).

string.packsize (fmt)

Returns the size of a string resulting from string. pack with the given format. The format string cannot have
the variable-length options 's' or 'z’ (see §6.4.2).

string.rep (s, n [, sep])

Returns a string that is the concatenation of n copies of the string s separated by the string sep. The default
value for sep is the empty string (that is, no separator). Returns the empty string if n is not positive.

(Note that it is very easy to exhaust the memory of your machine with a single call to this function.)

string.reverse (s)

Returns a string that is the string s reversed.
string.sub (s, i [, j])

Returns the substring of s that starts at 1 and continues until j; 1 and j can be negative. If j is absent, then it
is assumed to be equal to -1 (which is the same as the string length). In particular, the call
string.sub(s,1,j) returns a prefix of s with length j, and string.sub(s, -1i) (for a positive i) returns
a suffix of s with length 1i.

If, after the translation of negative indices, 1 is less than 1, it is corrected to 1. If j is greater than the string
length, it is corrected to that length. If, after these corrections, i is greater than j, the function returns the
empty string.

string.unpack (fmt, s [, pos])

65

Returns the values packed in string s (see string.pack) according to the format string fmt (see §6.4.2). An
optional pos marks where to start reading in s (default is 1). After the read values, this function also returns
the index of the first unread byte in s.

string.upper (s)

Receives a string and returns a copy of this string with all lowercase letters changed to uppercase. All other
characters are left unchanged. The definition of what a lowercase letter is depends on the current locale.

6.4.1 - Patterns

Patterns in Lua are described by regular strings, which are interpreted as patterns by the pattern-matching
functions string.find, string.gmatch, string.gsub, and string.match. This section describes the
syntax and the meaning (that is, what they match) of these strings.

Character Class:

A character class is used to represent a set of characters. The following combinations are allowed in
describing a character class:

x: (where x is not one of the magic characters ~$()%. [] *+- ?) represents the character x itself.

.: (a dot) represents all characters.

: represents all letters.

: represents all control characters.

: represents all digits.

: represents all printable characters except space.

: represents all lowercase letters.

: represents all punctuation characters.

: represents all space characters.

: represents all uppercase letters.

w: represents all alphanumeric characters.

X: represents all hexadecimal digits.

X: (where x is any non-alphanumeric character) represents the character x. This is the standard way to
escape the magic characters. Any non-alphanumeric character (including all punctuation characters,
even the non-magical) can be preceded by a 's' when used to represent itself in a pattern.

e [set]: represents the class which is the union of all characters in set. A range of characters can be

specified by separating the end characters of the range, in ascending order, with a '-". All classes %x

described above can also be used as components in set. All other characters in set represent

themselves. For example, [%w] (or [_%w]) represents all alphanumeric characters plus the
underscore, [0-7] represents the octal digits, and [0-7%1%-] represents the octal digits plus the
lowercase letters plus the '-' character.

nwWIoT FQ QN9

o

0° 0° 0° 6° 0° 0° O° o° o° o° o°

You can put a closing square bracket in a set by positioning it as the first character in the set. You can
put an hyphen in a set by positioning it as the first or the last character in the set. (You can also use an
escape for both cases.)

The interaction between ranges and classes is not defined. Therefore, patterns like [%a-z] or [a-%%]
have no meaning.

e [~set]: represents the complement of set, where set is interpreted as above.

For all classes represented by single letters (%a, %c, etc.), the corresponding uppercase letter represents the
complement of the class. For instance, %S represents all non-space characters.

The definitions of letter, space, and other character groups depend on the current locale. In particular, the
class [a-z] may not be equivalent to %1.

Pattern Item:

A pattern item can be

e a single character class, which matches any single character in the class;
e a single character class followed by "*', which matches zero or more repetitions of characters in the
class. These repetition items will always match the longest possible sequence;

66

e a single character class followed by '+', which matches one or more repetitions of characters in the
class. These repetition items will always match the longest possible sequence;

e a single character class followed by '-', which also matches zero or more repetitions of characters in the
class. Unlike '*', these repetition items will always match the shortest possible sequence;

e a single character class followed by '?', which matches zero or one occurrence of a character in the
class. It always matches one occurrence if possible;

e %n, for nbetween 1 and 9; such item matches a substring equal to the n-th captured string (see below);

® %bxy, where x and y are two distinct characters; such item matches strings that start with x, end with y,
and where the x and y are balanced. This means that, if one reads the string from left to right, counting
+1 for an x and -7 for a y, the ending y is the first y where the count reaches 0. For instance, the item
%b () matches expressions with balanced parentheses.

e %f[set], a frontier pattern; such item matches an empty string at any position such that the next
character belongs to set and the previous character does not belong to set. The set set is interpreted as
previously described. The beginning and the end of the subject are handled as if they were the character
\0'.

Pattern:

A pattern is a sequence of pattern items. A caret "' at the beginning of a pattern anchors the match at the
beginning of the subject string. A '$' at the end of a pattern anchors the match at the end of the subject string.
At other positions, '~ and '$' have no special meaning and represent themselves.

Captures:

A pattern can contain sub-patterns enclosed in parentheses; they describe captures. When a match
succeeds, the substrings of the subject string that match captures are stored (captured) for future use.
Captures are numbered according to their left parentheses. For instance, in the pattern " (a* (.)%w(%s*))",
the part of the string matching "a* (.)%w(%s*)" is stored as the first capture (and therefore has number 1);

the character matching "." is captured with number 2, and the part matching "ss*" has number 3.

As a special case, the empty capture () captures the current string position (a number). For instance, if we
apply the pattern " ()aa()" on the string "flaaap", there will be two captures: 3 and 5.

6.4.2 - Format Strings for Pack and Unpack

The first argument to string.pack, string.packsize, and string.unpack is a format string, which
describes the layout of the structure being created or read.

A format string is a sequence of conversion options. The conversion options are as follows:

<: sets little endian

>: sets big endian

=: sets native endian

1 [n]: sets maximum alignment to n (default is native alignment)
b: a signed byte (char)

B: an unsigned byte (char)

h: a signed short (native size)

H: an unsigned short (native size)
1: a signed long (native size)

L: an unsigned long (native size)

j:alua Integer

J:a lua_Unsigned

T:asize t (native size)

i[n]: a signed int with n bytes (default is native size)

I[n]: an unsigned int with n bytes (default is native size)

f: a float (native size)

d: a doub'le (native size)

n: a lua_Number

cn: a fixed-sized string with n bytes

2: a zero-terminated string

s[n]: a string preceded by its length coded as an unsigned integer with n bytes (defaultis a size t)
X: one byte of padding

[)
[]
[]
L]
[)
[]
[]
[]
[)
[)
[]
[]
L]
[)
[]
[]
L]
[)
[)
[]
[]
°
e Xop: an empty item that aligns according to option op (which is otherwise ignored)

67

e ' ": (empty space) ignored

(A "[n]" means an optional integral numeral.) Except for padding, spaces, and configurations (options "xX
<=>1"), each option corresponds to an argument (in string.pack) or a result (in string.unpack).

For options "!n", "sn", "in", and "In", n can be any integer between 1 and 16. All integral options check
overflows; string.pack checks whether the given value fits in the given size; string.unpack checks
whether the read value fits in a Lua integer.

Any format string starts as if prefixed by "! 1=", that is, with maximum alignment of 1 (no alignment) and native
endianness.

Alignment works as follows: For each option, the format gets extra padding until the data starts at an offset
that is a multiple of the minimum between the option size and the maximum alignment; this minimum must be
a power of 2. Options "c" and "z" are not aligned; option "s" follows the alignment of its starting integer.

All padding is filled with zeros by string.pack (and ignored by string.unpack).

6.5 - UTF-8 Support

This library provides basic support for UTF-8 encoding. It provides all its functions inside the table utf8. This
library does not provide any support for Unicode other than the handling of the encoding. Any operation that
needs the meaning of a character, such as character classification, is outside its scope.

Unless stated otherwise, all functions that expect a byte position as a parameter assume that the given

position is either the start of a byte sequence or one plus the length of the subject string. As in the string
library, negative indices count from the end of the string.

utf8.char (--+)

Receives zero or more integers, converts each one to its corresponding UTF-8 byte sequence and returns a
string with the concatenation of all these sequences.

utf8.charpattern

The pattern (a string, not a function) "[\0-\x7F\xC2-\xF4]1[\x80-\xBF]*" (see §6.4.1), which matches
exactly one UTF-8 byte sequence, assuming that the subject is a valid UTF-8 string.

utf8.codes (s)
Returns values so that the construction
for p, ¢ in utf8.codes(s) do body end

will iterate over all characters in string s, with p being the position (in bytes) and ¢ the code point of each
character. It raises an error if it meets any invalid byte sequence.

utf8.codepoint (s [, i [, i11)

Returns the codepoints (as integers) from all characters in s that start between byte position i and j (both
included). The default for i is 1 and for j is i. It raises an error if it meets any invalid byte sequence.

utf8.len (s [, i [, i1D)
Returns the number of UTF-8 characters in string s that start between positions i and j (both inclusive). The

default for i is 1 and for j is -1. If it finds any invalid byte sequence, returns a false value plus the position of
the first invalid byte.

utf8.offset (s, n [, i])

Returns the position (in bytes) where the encoding of the n-th character of s (counting from position 1) starts.
A negative n gets characters before position i. The default for i is 1 when n is non-negative and #s + 1

68

otherwise, so that utf8.offset(s, -n) gets the offset of the n-th character from the end of the string. If
the specified character is neither in the subject nor right after its end, the function returns nil.

As a special case, when n is 0 the function returns the start of the encoding of the character that contains the
i-th byte of s.

This function assumes that s is a valid UTF-8 string.

6.6 — Table Manipulation

This library provides generic functions for table manipulation. It provides all its functions inside the table
table.

Remember that, whenever an operation needs the length of a table, all caveats about the length operator
apply (see §3.4.7). All functions ignore non-numeric keys in the tables given as arguments.

table.concat (list [, sep [, i [, j111)

Given a list where all elements are strings or numbers, returns the string List[i]..sep..list[i+1]
sep..list[j]. The default value for sep is the empty string, the default for 1 is 1, and the default for j is
#list. If iis greater than j, returns the empty string.

table.insert (list, [pos,] value)

Inserts element value at position pos in list, shifting up the elements list[pos], list[pos+1],
+, list[#1list]. The default value for pos is #1ist+1, so that a call table.insert(t,x) inserts x at
the end of list t.

table.move (a1, f, e, t [,a2])

Moves elements from table al to table a2, performing the equivalent to the following multiple assignment:
a2[t], -+ = al[f],---,al[e]. The default for a2 is al. The destination range can overlap with the
source range. The number of elements to be moved must fit in a Lua integer.

Returns the destination table a2.

table.pack (-++)

Returns a new table with all parameters stored into keys 1, 2, etc. and with a field "n" with the total number of
parameters. Note that the resulting table may not be a sequence.

table.remove (list [, pos])

Removes from 1ist the element at position pos, returning the value of the removed element. When pos is
an integer between 1 and #list, it shifts down the elements list[pos+1], 1list[pos+2], ---,
list[#1list] and erases element list[#list]; The index pos can also be 0 when #list is 0, or #list
+ 1;in those cases, the function erases the element list[pos].

The default value for pos is #1ist, so that a call table. remove (1) removes the last element of list 1.

table.sort (list [, comp])

Sorts list elements in a given order, in-place, from 1ist[1] to list[#1list]. If comp is given, then it must
be a function that receives two list elements and returns true when the first element must come before the
second in the final order (so that, after the sort, i < j implies not comp(list[j],list[i])). If comp is
not given, then the standard Lua operator < is used instead.

Note that the comp function must define a strict partial order over the elements in the list; that is, it must be
asymmetric and transitive. Otherwise, no valid sort may be possible.

The sort algorithm is not stable: elements considered equal by the given order may have their relative
positions changed by the sort.

69

table.unpack (list [, i [, j11)
Returns the elements from the given list. This function is equivalent to
return list[i], list[i+1], ---, list[j]
By default, 1 is 1 and j is #list.
6.7 — Mathematical Functions
This library provides basic mathematical functions. It provides all its functions and constants inside the table
math. Functions with the annotation "integer/float" give integer results for integer arguments and float
results for float (or mixed) arguments. Rounding functions (math.ceil, math.floor, and math.modf)
return an integer when the result fits in the range of an integer, or a float otherwise.
math.abs (x)
Returns the absolute value of x. (integer/float)
math.acos (x)
Returns the arc cosine of x (in radians).
math.asin (x)
Returns the arc sine of x (in radians).
math.atan (y [, x])

Returns the arc tangent of y/x (in radians), but uses the signs of both parameters to find the quadrant of the
result. (It also handles correctly the case of x being zero.)

The default value for x is 1, so that the call math.atan(y) returns the arc tangent of y.
math.ceil (x)

Returns the smallest integral value larger than or equal to x.

math.cos (x)

Returns the cosine of x (assumed to be in radians).

math.deg (x)

Converts the angle x from radians to degrees.

math.exp (x)

Returns the value eX (where e is the base of natural logarithms).

math.floor (x)

Returns the largest integral value smaller than or equal to x.

math.fmod (X, y)

Returns the remainder of the division of x by y that rounds the quotient towards zero. (integer/float)
math.huge

The float value HUGE_VAL, a value larger than any other numeric value.

70

math.log (x [, base])

Returns the logarithm of x in the given base. The default for base is e (so that the function returns the natural
logarithm of x).

math.max (x,)

Returns the argument with the maximum value, according to the Lua operator <. (integer/float)
math.maxinteger

An integer with the maximum value for an integer.

math.min (x, -++)

Returns the argument with the minimum value, according to the Lua operator <. (integer/float)
math.mininteger

An integer with the minimum value for an integer.

math.modf (x)

Returns the integral part of X and the fractional part of x. Its second result is always a float.

math.pi

The value of .

math.rad (x)

Converts the angle x from degrees to radians.

math.random ([m [, n]])

When called without arguments, returns a pseudo-random float with uniform distribution in the range [0,7).
When called with two integers m and n, math.random returns a pseudo-random integer with uniform

distribution in the range [m, n]. (The value n-m cannot be negative and must fit in a Lua integer.) The call
math.random(n) is equivalent to math.random(1,n).

This function is an interface to the underling pseudo-random generator function provided by C.
math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds produce equal sequences of numbers.
math.sin (x)

Returns the sine of x (assumed to be in radians).

math.sqrt (x)

Returns the square root of x. (You can also use the expression x™0.5 to compute this value.)

math.tan (x)

Returns the tangent of x (assumed to be in radians).

math.tointeger (x)

If the value X is convertible to an integer, returns that integer. Otherwise, returns nil.

71

math.type (x)

Returns "integer" if x is an integer, "float" if it is a float, or nil if x is not a number.

math.ult (m, n)

Returns a boolean, true if and only if integer m is below integer n when they are compared as unsigned
integers.

6.8 - Input and Output Facilities

The /O library provides two different styles for file manipulation. The first one uses implicit file handles; that is,
there are operations to set a default input file and a default output file, and all input/output operations are over
these default files. The second style uses explicit file handles.

When using implicit file handles, all operations are supplied by table 10. When using explicit file handles, the
operation 10.open returns a file handle and then all operations are supplied as methods of the file handle.

The table 10 also provides three predefined file handles with their usual meanings from C: io.stdin,
io.stdout, and io.stderr. The I/O library never closes these files.

Unless otherwise stated, all I/O functions return nil on failure (plus an error message as a second result and a
system-dependent error code as a third result) and some value different from nil on success. On non-POSIX
systems, the computation of the error message and error code in case of errors may be not thread safe,
because they rely on the global C variable errno.

io.close ([file])

Equivalentto file:close(). Without a file, closes the default output file.

io.flush ()

Equivalentto io.output () :flush().
io.input ([file])

When called with a file name, it opens the named file (in text mode), and sets its handle as the default input
file. When called with a file handle, it simply sets this file handle as the default input file. When called without
parameters, it returns the current default input file.

In case of errors this function raises the error, instead of returning an error code.

io.lines ([filename, ---])

Opens the given file name in read mode and returns an iterator function that works like file:lines(---)
over the opened file. When the iterator function detects the end of file, it returns no values (to finish the loop)
and automatically closes the file.

The call io.lines () (with no file name) is equivalent to io.input():lines("*1");that s, it iterates over
the lines of the default input file. In this case it does not close the file when the loop ends.

In case of errors this function raises the error, instead of returning an error code.

io.open (filename [, mode])

This function opens a file, in the mode specified in the string mode. In case of success, it returns a new file
handle.

The mode string can be any of the following:

"r": read mode (the default);

"w'': write mode;

"a'": append mode;

"r+": update mode, all previous data is preserved;

72

e "w+'": update mode, all previous data is erased,;
e "a+": append update mode, previous data is preserved, writing is only allowed at the end of file.

The mode string can also have a 'b' at the end, which is needed in some systems to open the file in binary
mode.

io.output ([file])

Similar to 10. input, but operates over the default output file.
io.popen (prog [, mode])

This function is system dependent and is not available on all platforms.

Starts program prog in a separated process and returns a file handle that you can use to read data from this
program (if mode is " r", the default) or to write data to this program (if mode is "w").

io.read (--+)
Equivalentto io.input():read(---).
io.tmpfile ()

In case of success, returns a handle for a temporary file. This file is opened in update mode and it is
automatically removed when the program ends.

io.type (obj)

Checks whether obj is a valid file handle. Returns the string "file" if obj is an open file handle, "closed
file" if obj is a closed file handle, or nil if obj is not a file handle.

io.write (-+-)
Equivalentto io.output() :write(---).

file:close ()

Closes file. Note that files are automatically closed when their handles are garbage collected, but that takes
an unpredictable amount of time to happen.

When closing a file handle created with io.popen, file:close returns the same values returned by
0s.execute.

file:flush ()

Saves any written data to file.
file:lines (--+)

Returns an iterator function that, each time it is called, reads the file according to the given formats. When no
format is given, uses "1" as a default. As an example, the construction

for ¢ in file:lines(1l) do body end

will iterate over all characters of the file, starting at the current position. Unlike io.lines, this function does
not close the file when the loop ends.

In case of errors this function raises the error, instead of returning an error code.
filerread (-+-)
Reads the file file, according to the given formats, which specify what to read. For each format, the function

returns a string or a number with the characters read, or nil if it cannot read data with the specified format. (In
this latter case, the function does not read subsequent formats.) When called without formats, it uses a default

73

format that reads the next line (see below).
The available formats are

e "n":reads a numeral and returns it as a float or an integer, following the lexical conventions of Lua. (The
numeral may have leading spaces and a sign.) This format always reads the longest input sequence that
is a valid prefix for a numeral; if that prefix does not form a valid numeral (e.g., an empty string, "0x", or
"3.4e-"), it is discarded and the function returns nil.

"a": reads the whole file, starting at the current position. On end of file, it returns the empty string.

"1": reads the next line skipping the end of line, returning nil on end of file. This is the default format.
"L": reads the next line keeping the end-of-line character (if present), returning nil on end of file.
number: reads a string with up to this number of bytes, returning nil on end of file. If number is zero, it
reads nothing and returns an empty string, or nil on end of file.

The formats "1" and "L" should be used only for text files.

file:seek ([whence [, offset]])

Sets and gets the file position, measured from the beginning of the file, to the position given by offset plus a
base specified by the string whence, as follows:

e "set": base is position 0 (beginning of the file);
e "cur": base is current position;
e "end": base is end of file;

In case of success, seek returns the final file position, measured in bytes from the beginning of the file. If
seek fails, it returns nil, plus a string describing the error.

The default value for whence is "cur", and for offset is 0. Therefore, the call file:seek() returns the
current file position, without changing it; the call file:seek("set") sets the position to the beginning of the
file (and returns 0); and the call file:seek("end") sets the position to the end of the file, and returns its
size.

file:setvbuf (mode [, size])
Sets the buffering mode for an output file. There are three available modes:

e "no": no buffering; the result of any output operation appears immediately.

o "full": full buffering; output operation is performed only when the buffer is full or when you explicitly
flush the file (see io0. flush).

e "line": line buffering; output is buffered until a newline is output or there is any input from some special
files (such as a terminal device).

For the last two cases, size specifies the size of the buffer, in bytes. The default is an appropriate size.
file:write (++)
Writes the value of each of its arguments to file. The arguments must be strings or numbers.

In case of success, this function returns file. Otherwise it returns nil plus a string describing the error.
6.9 - Operating System Facilities

This library is implemented through table os.

os.clock ()

Returns an approximation of the amount in seconds of CPU time used by the program.

os.date ([format [, time]])

Returns a string or a table containing date and time, formatted according to the given string format.

If the time argument is present, this is the time to be formatted (see the os. time function for a description of

74

this value). Otherwise, date formats the current time.

If format starts with '!", then the date is formatted in Coordinated Universal Time. After this optional
character, if format is the string "*t", then date returns a table with the following fields: year, month
(1-12), day (1-31), hour (0-23), min (0-59), sec (0-61), wday (weekday, 1-7, Sunday is 1), yday (day of
the year, 1-366), and isdst (daylight saving flag, a boolean). This last field may be absent if the information
is not available.

If format is not "*t", then date returns the date as a string, formatted according to the same rules as the
ISO C function strftime.

When called without arguments, date returns a reasonable date and time representation that depends on the
host system and on the current locale. (More specifically, 0s .date() is equivalent to os.date("%c").)

On non-POSIX systems, this function may be not thread safe because of its reliance on C function gmtime
and C function Localtime.

os.difftime (t2, t1)

Returns the difference, in seconds, from time t1l to time t2 (where the times are values returned by
0s.time). In POSIX, Windows, and some other systems, this value is exactly t2-t1.

os.execute ([command])

This function is equivalent to the ISO C function system. It passes command to be executed by an operating
system shell. Its first result is true if the command terminated successfully, or nil otherwise. After this first
result the function returns a string plus a number, as follows:

e "exit": the command terminated normally; the following number is the exit status of the command.
e "signal": the command was terminated by a signal; the following number is the signal that terminated
the command.

When called without a command, os .execute returns a boolean that is true if a shell is available.
os.exit ([code [, close]])
Calls the ISO C function exit to terminate the host program. If code is true, the returned status is

EXIT SUCCESS; if code is false, the returned status is EXIT FAILURE; if code is a number, the returned
status is this number. The default value for code is true.

If the optional second argument close is true, closes the Lua state before exiting.
os.getenv (varname)

Returns the value of the process environment variable varname, or nil if the variable is not defined.

os.remove (filename)

Deletes the file (or empty directory, on POSIX systems) with the given name. If this function fails, it returns nil,
plus a string describing the error and the error code. Otherwise, it returns true.

os.rename (oldname, newname)

Renames the file or directory named oldname to newname. If this function fails, it returns nil, plus a string
describing the error and the error code. Otherwise, it returns true.

os.setlocale (locale [, category])

Sets the current locale of the program. Locale is a system-dependent string specifying a locale; category is
an optional string describing which category to change: "all", "collate", "ctype", "monetary",
"numeric", or "time"; the default category is "all". The function returns the name of the new locale, or
nil if the request cannot be honored.

If Locale is the empty string, the current locale is set to an implementation-defined native locale. If Locale is

75

the string "C", the current locale is set to the standard C locale.

When called with nil as the first argument, this function only returns the name of the current locale for the
given category.

This function may be not thread safe because of its reliance on C function setlocale.

os.time ([table])

Returns the current time when called without arguments, or a time representing the local date and time
specified by the given table. This table must have fields year, month, and day, and may have fields hour
(default is 12), min (default is 0), sec (default is 0), and isdst (default is nil). Other fields are ignored. For a
description of these fields, see the os . date function.

The values in these fields do not need to be inside their valid ranges. For instance, if sec is -10, it means -10
seconds from the time specified by the other fields; if hour is 1000, it means +1000 hours from the time
specified by the other fields.

The returned value is a number, whose meaning depends on your system. In POSIX, Windows, and some
other systems, this number counts the number of seconds since some given start time (the "epoch"). In other
systems, the meaning is not specified, and the number returned by time can be used only as an argument to
os.dateand os.difftime.

os.tmpname ()

Returns a string with a file name that can be used for a temporary file. The file must be explicitly opened
before its use and explicitly removed when no longer needed.

On POSIX systems, this function also creates a file with that name, to avoid security risks. (Someone else
might create the file with wrong permissions in the time between getting the name and creating the file.) You
still have to open the file to use it and to remove it (even if you do not use it).

When possible, you may prefer to use io.tmpfile, which automatically removes the file when the program
ends.

6.10 - The Debug Library

This library provides the functionality of the debug interface (§4.9) to Lua programs. You should exert care
when using this library. Several of its functions violate basic assumptions about Lua code (e.g., that variables
local to a function cannot be accessed from outside; that userdata metatables cannot be changed by Lua
code; that Lua programs do not crash) and therefore can compromise otherwise secure code. Moreover,
some functions in this library may be slow.

All functions in this library are provided inside the debug table. All functions that operate over a thread have
an optional first argument which is the thread to operate over. The default is always the current thread.

debug.debug ()

Enters an interactive mode with the user, running each string that the user enters. Using simple commands
and other debug facilities, the user can inspect global and local variables, change their values, evaluate
expressions, and so on. A line containing only the word cont finishes this function, so that the caller
continues its execution.

Note that commands for debug.debug are not lexically nested within any function and so have no direct
access to local variables.

debug.gethook ([thread])

Returns the current hook settings of the thread, as three values: the current hook function, the current hook
mask, and the current hook count (as set by the debug. sethook function).

debug.getinfo ([thread,] f [, what])

Returns a table with information about a function. You can give the function directly or you can give a number

76

as the value of f, which means the function running at level f of the call stack of the given thread: level 0 is
the current function (getinfo itself); level 1 is the function that called getinfo (except for tail calls, which do
not count on the stack); and so on. If f is a number larger than the number of active functions, then getinfo
returns nil.

The returned table can contain all the fields returned by Lua getinfo, with the string what describing which
fields to fill in. The default for what is to get all information available, except the table of valid lines. If present,
the option 'f' adds a field named func with the function itself. If present, the option 'L' adds a field named
activelines with the table of valid lines.

For instance, the expression debug.getinfo(1l,"n").name returns a name for the current function, if a
reasonable name can be found, and the expression debug.getinfo(print) returns a table with all
available information about the print function.

debug.getlocal ([thread,] f, local)

This function returns the name and the value of the local variable with index Local of the function at level f of
the stack. This function accesses not only explicit local variables, but also parameters, temporaries, etc.

The first parameter or local variable has index 1, and so on, following the order that they are declared in the
code, counting only the variables that are active in the current scope of the function. Negative indices refer to
vararg parameters; -1 is the first vararg parameter. The function returns nil if there is no variable with the
given index, and raises an error when called with a level out of range. (You can call debug.getinfo to
check whether the level is valid.)

Variable names starting with '(' (open parenthesis) represent variables with no known names (internal
variables such as loop control variables, and variables from chunks saved without debug information).

The parameter f may also be a function. In that case, getlocal returns only the name of function
parameters.

debug.getmetatable (value)

Returns the metatable of the given value or nil if it does not have a metatable.

debug.getregistry ()

Returns the registry table (see §4.5).
debug.getupvalue (f, up)

This function returns the name and the value of the upvalue with index up of the function f. The function
returns nil if there is no upvalue with the given index.

Variable names starting with '(' (open parenthesis) represent variables with no known names (variables from
chunks saved without debug information).

debug.getuservalue (u)

Returns the Lua value associated to u. If u is not a full userdata, returns nil.

debug.sethook ([thread,] hook, mask [, count])

Sets the given function as a hook. The string mask and the number count describe when the hook will be
called. The string mask may have any combination of the following characters, with the given meaning:

e 'c": the hook is called every time Lua calls a function;
e 'r': the hook is called every time Lua returns from a function;
e '"U': the hook is called every time Lua enters a new line of code.

Moreover, with a count different from zero, the hook is called also after every count instructions.
When called without arguments, debug . sethook turns off the hook.

When the hook is called, its first parameter is a string describing the event that has triggered its call: "call"

77

(or "tail call"), "return", "line", and "count". For line events, the hook also gets the new line
number as its second parameter. Inside a hook, you can call getinfo with level 2 to get more information
about the running function (level 0 is the getinfo function, and level 1 is the hook function).

debug.setlocal ([thread,] level, local, value)

This function assigns the value value to the local variable with index Local of the function at level level of
the stack. The function returns nil if there is no local variable with the given index, and raises an error when
called with a level out of range. (You can call getinfo to check whether the level is valid.) Otherwise, it
returns the name of the local variable.

See debug.getlocal for more information about variable indices and names.

debug.setmetatable (value, table)

Sets the metatable for the given value to the given table (which can be nil). Returns value.

debug.setupvalue (f, up, value)

This function assigns the value value to the upvalue with index up of the function f. The function returns nil
if there is no upvalue with the given index. Otherwise, it returns the name of the upvalue.

debug.setuservalue (udata, value)

Sets the given value as the Lua value associated to the given udata. udata must be a full userdata.

Returns udata.

debug.traceback ([thread,] [message [, level]])

If message is present but is neither a string nor nil, this function returns message without further processing.
Otherwise, it returns a string with a traceback of the call stack. The optional message string is appended at
the beginning of the traceback. An optional Level number tells at which level to start the traceback (default is
1, the function calling t raceback).

debug.upvalueid (f, n)
Returns a unique identifier (as a light userdata) for the upvalue numbered n from the given function.

These unique identifiers allow a program to check whether different closures share upvalues. Lua closures
that share an upvalue (that is, that access a same external local variable) will return identical ids for those
upvalue indices.

debug.upvaluejoin (f1, n1, f2, n2)

Make the nl-th upvalue of the Lua closure f1 refer to the n2-th upvalue of the Lua closure 2.

7 — Lua Standalone

Although Lua has been designed as an extension language, to be embedded in a host C program, it is also
frequently used as a standalone language. An interpreter for Lua as a standalone language, called simply
lua, is provided with the standard distribution. The standalone interpreter includes all standard libraries,
including the debug library. Its usage is:

lua [options] [script [args]]
The options are:

-e stat: executes string stat;
-1 mod: "requires" mod;
-1: enters interactive mode after running script,

[]
[]
[]
e -V: prints version information;

78

e -E:ignores environment variables;
e --:stops handling options;
e -: executes stdin as a file and stops handling options.

After handling its options, lua runs the given script. When called without arguments, lua behaves as lua -v
-1 when the standard input (stdin) is a terminal, and as lua - otherwise.

When called without option -E, the interpreter checks for an environment variable LUA INIT 5 3 (or
LUA INIT if the versioned name is not defined) before running any argument. If the variable content has the
format @filename, then Lua executes the file. Otherwise, Lua executes the string itself.

When called with option -E, besides ignoring LUA_INIT, Lua also ignores the values of LUA PATH and
LUA CPATH, setting the values of package.path and package.cpath with the default paths defined in
luaconf.h.

All options are handled in order, except -1 and -E. For instance, an invocation like
$ lua -e'a=1l' -e 'print(a)' script.lua

will first set a to 1, then print the value of a, and finally run the file script. lua with no arguments. (Here $ is
the shell prompt. Your prompt may be different.)

Before running any code, lua collects all command-line arguments in a global table called arg. The script
name goes to index 0, the first argument after the script name goes to index 1, and so on. Any arguments
before the script name (that is, the interpreter name plus its options) go to negative indices. For instance, in
the call

$ lua -la b.lua t1 t2
the table is like this:

arg = { [-2] = "lua", [-1] = "-la",
[0] = "b.lua",
[1] = "t1", [2] = "t2" }

If there is no script in the call, the interpreter name goes to index 0, followed by the other arguments. For
instance, the call

$ lua -e "print(arg[1])"

will print "-e". If there is a script, the script is called with parameters arg[1], -+, arg[#arg]. (Like all chunks
in Lua, the script is compiled as a vararg function.)

In interactive mode, Lua repeatedly prompts and waits for a line. After reading a line, Lua first try to interpret
the line as an expression. If it succeeds, it prints its value. Otherwise, it interprets the line as a statement. If
you write an incomplete statement, the interpreter waits for its completion by issuing a different prompt.

If the global variable PROMPT contains a string, then its value is used as the prompt. Similarly, if the global
variable PROMPT2 contains a string, its value is used as the secondary prompt (issued during incomplete
statements).

In case of unprotected errors in the script, the interpreter reports the error to the standard error stream. If the
error object is not a string but has a metamethod _ tostring, the interpreter calls this metamethod to
produce the final message. Otherwise, the interpreter converts the error object to a string and adds a stack
traceback to it.

When finishing normally, the interpreter closes its main Lua state (see Lua_close). The script can avoid this
step by calling 0s.exit to terminate.

To allow the use of Lua as a script interpreter in Unix systems, the standalone interpreter skips the first line of
a chunk if it starts with #. Therefore, Lua scripts can be made into executable programs by using chmod +x
and the #! form, as in

#!/usr/local/bin/lua

(Of course, the location of the Lua interpreter may be different in your machine. If Lua is in your PATH, then

79

#!/usr/bin/env lua

is a more portable solution.)

8 — Incompatibilities with the Previous
Version

Here we list the incompatibilities that you may find when moving a program from Lua 5.2 to Lua 5.3. You can
avoid some incompatibilities by compiling Lua with appropriate options (see file Luaconf.h). However, all
these compatibility options will be removed in the future.

Lua versions can always change the C APl in ways that do not imply source-code changes in a program, such
as the numeric values for constants or the implementation of functions as macros. Therefore, you should not
assume that binaries are compatible between different Lua versions. Always recompile clients of the Lua API
when using a new version.

Similarly, Lua versions can always change the internal representation of precompiled chunks; precompiled
chunks are not compatible between different Lua versions.

The standard paths in the official distribution may change between versions.

8.1 - Changes in the Language

e The main difference between Lua 5.2 and Lua 5.3 is the introduction of an integer subtype for numbers.
Although this change should not affect "normal" computations, some computations (mainly those that
involve some kind of overflow) can give different results.

You can fix these differences by forcing a number to be a float (in Lua 5.2 all numbers were float), in
particular writing constants with an ending .0 or using x = X + 0.0 to convert a variable. (This
recommendation is only for a quick fix for an occasional incompatibility; it is not a general guideline for
good programming. For good programming, use floats where you need floats and integers where you
need integers.)

e The conversion of a float to a string now adds a .0 suffix to the result if it looks like an integer. (For
instance, the float 2.0 will be printed as 2.0, not as 2.) You should always use an explicit format when
you need a specific format for numbers.

(Formally this is not an incompatibility, because Lua does not specify how numbers are formatted as
strings, but some programs assumed a specific format.)

e The generational mode for the garbage collector was removed. (It was an experimental feature in
Lua5.2)

8.2 — Changes in the Libraries

e The bit32 library has been deprecated. It is easy to require a compatible external library or, better yet,
to replace its functions with appropriate bitwise operations. (Keep in mind that bit32 operates on 32-bit
integers, while the bitwise operators in Lua 5.3 operate on Lua integers, which by default have 64 bits.)

e The Table library now respects metamethods for setting and getting elements.

e The ipairs iterator now respects metamethods and its ipairs metamethod has been deprecated.

e Option names in i0.read do not have a starting '*' anymore. For compatibility, Lua will continue to
accept (and ignore) this character.

e The following functions were deprecated in the mathematical library: atan2, cosh, sinh, tanh, pow,
frexp, and ldexp. You can replace math.pow(x,y) with Xx*y; you can replace math.atan2 with
math.atan, which now accepts one or two parameters; you can replace math. ldexp (x,exp) with x
* 2.0%exp. For the other operations, you can either use an external library or implement them in Lua.

e The searcher for C loaders used by require changed the way it handles versioned names. Now, the
version should come after the module name (as is usual in most other tools). For compatibility, that
searcher still tries the old format if it cannot find an open function according to the new style. (Lua 5.2
already worked that way, but it did not document the change.)

80

e The call collectgarbage("count") now returns only one result. (You can compute that second
result from the fractional part of the first result.)

8.3 — Changes in the API

e Continuation functions now receive as parameters what they needed to get through lua_getctx, so
lua _getctx has been removed. Adapt your code accordingly.

e Function Lua_dump has an extra parameter, strip. Use 0 as the value of this parameter to get the old
behavior.

e Functions to inject/project unsigned integers (lua_pushunsigned, Tlua_tounsigned
lua_tounsignedx, luaL checkunsigned, lualL optunsigned) were deprecated. Use their
signed equivalents with a type cast.

e Macros to project non-default integer types (luaL_checkint, luaL optint, lualL_checklong
luaL_optlong) were deprecated. Use their equivalent over lua_Integer with a type cast (or, when
possible, use lua_Integer in your code).

9 - The Complete Syntax of Lua

Here is the complete syntax of Lua in extended BNF. As usual in extended BNF, {A} means 0 or more As, and
[A] means an optional A. (For operator precedences, see §3.4.8; for a description of the terminals Name,
Numeral, and LiteralString, see §3.1.)

chunk ::= block

block ::

{stat} [retstat]

stat ::= ;" |
varlist ‘=’ explist |
functioncall |
label |
break |
goto Name |
do block end |
while exp do block end |
repeat block until exp |
if exp then block {elseif exp then block} [else block] end |
for Name ‘=" exp ‘,’ exp [‘,’ exp] do block end |
for namelist in explist do block end |
function funcname funcbody |
local function Name funcbody |
local namelist [‘=' explist]

retstat ::= return [explist] [‘;']

label ::= ‘::’ Name ‘::’

funcname ::= Name {‘.’ Name} [‘:’ Name]

varlist ::= var {‘,’ var}

var ::= Name | prefixexp ‘[’ exp ‘]’ | prefixexp ‘.’ Name

namelist ::= Name {‘,’ Name}

explist ::= exp {‘,’ exp}

exp ::= nil | false | true | Numeral | LiteralString | ‘...’ | functiondef |

prefixexp | tableconstructor | exp binop exp | unop exp

prefixexp ::= var | functioncall | ‘(' exp)’

functioncall ::= prefixexp args | prefixexp ‘:’ Name args

args ::= ‘(' [explist] ‘)’ | tableconstructor | LiteralString

functiondef ::= function funcbody

funcbody ::= ‘(' [parlist] ‘)’ block end

parlist ::= namelist [‘,’ ‘..."]1 | ‘...’

tableconstructor ::= ‘{’ [fieldlist] ‘}’

fieldlist ::= field {fieldsep field} [fieldsep]

field ::= ‘[’ exp ‘1’ ‘=" exp | Name ‘=" exp | exp

fieldsep ::= *,” | *;’

binop ::= ‘+’ R I R AR IR //AS IO B M
C IR I R I I P
SR e I B e
and | or

unop ::= ‘=" | not | ‘#" | ‘~’

last update: fri feb 3 07:26:45 brst 2017

