
www.it-ebooks.info

http://www.it-ebooks.info/

LÖVE for Lua
Game Programming

Master the Lua programming language and build
exciting strategy-based games in 2D using the
LÖVE framework

Darmie Akinlaja

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

LÖVE for Lua Game Programming

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second published: October 2013

Production Reference: 2251013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-160-8

www.packtpub.com

Cover Image by Asher Wishkerman (wishkerman@hotmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Author
Darmie Akinlaja

Reviewers
Stanislav Costiuc

Alexander Krasij

Acquisition Editor
Akram Hussain

Kartikey Pandey

Commissioning Editor
Harsha Bharwani

Technical Editors
Gaurav Thingalaya

Dennis John

Project Coordinator
Michelle Quadros

Proofreader
Stephen Copestake

Indexer
Monica Ajmera Mehta

Graphics
Valentina Dsilva

Production Coordinator
Kyle Albuquerque

Cover Work
Kyle Albuquerque

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Darmie Akinlaja is a physicist and software developer who actively develops and
contributes to the architecture of RubiQube—a cross-platform mobile application
that gives users access to a variety of innovative HTML5 applications based on their
location. He serves as the Head of Mobile at MobiQube Ltd., a software company
located in the city of Lagos, Nigeria, where he's dedicated to developing rich mobile
applications for clients.

In 2008, Darmie supported his college best friend in developing a social network,
which enjoyed its moment of fame at the Federal University of Technology, Akure.
In 2011, his interest in video games and animations deepened, so he founded a
video game production start-up, Gigaware Enterprise, with the goal of creating the
best quality and fun games with local African contexts.

Darmie's passion for technology began at the age of 7 when he had his first encounter
with a computer system; ever since, his curiosity has helped him discover a lot about
technology and also helped him learn everything by himself.

I want to thank my family for believing in me and not giving up
on me and on my seemingly stupid dreams and ideas. My love goes
to my bestie Deborah Jesutomiwo Elijah for standing by me. I want
to thank my great friends Ademola Morebise, Olusola Amusan,
and Timilehin Ayekitan; I really appreciate your efforts in rekindling
my chutzpah. I am grateful to my employer, MobiQube, for giving
me the opportunity to flex my muscles on innovative tasks. And I
can never thank God enough for His unfailing grace and love
despite all my human efforts.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

Stanislav Costiuc comes from the town of Beltsy, Moldova. He developed an
interest in video games in his early childhood, and at around 9 years old realized
that developing them was his profession of choice.

Since then Stanislav studied the ropes of Game Design, Programming, and other
game-related disciplines as he worked on mods, collaborative projects on the
Internet, and as a freelancer. After graduating from high school he went through
Vancouver Film School's Game Design program in Canada and currently works
 as a Game Designer at Peak Games.

I would like to thank my family and Irina Turtureanu for all their
support and encouragement.

Alexander Krasij is a programmer and a minimalist. His work can be found
online at www.AlexK.net.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface 1
Chapter 1: Getting Started with LÖVE 7

Downloading LÖVE 7
For Windows users 8
For Linux users 8
For Mac users 9

Choosing your editor 9
Running a LÖVE game 9
Basic structure of LÖVE 10

Examples 11
Conf.lua 12

Summary 13
Chapter 2: LÖving Up! 15

Drawing 2D objects 15
Moving objects 16

Rotating objects 16
Moving left, right, up, or down 18

Sprites 20
Animation 20
Summary 24

Chapter 3: Before You Build a Game 25
Planning your game 25

Strategy 26
Role-playing games 26
Adventure 26
Action 26
Simulation 26

Summary 27

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Chapter 4: Making Your First Game 29
Basic level design 29

Getting your assets ready 32
Player 32
Coin 32
Antagonist 32
Diamond 32

Tile set 33
Getting started with Tiled 33
Exporting your tile map 40
Loading the game level 40
Conf.lua 41
Summary 41

Chapter 5: More About Making the Game 43
Bump on it! 43
Loading solid tiles into the bump 44
Loading the character objects (player and enemy) 45
A player character 47
The anim8 library 48

Frames 49
Animation 49
Player movement 50
Gravitation physics 52
Player collision with platform 53
Player's death 54
Draw player 55

Summary 55
Chapter 6: Meeting the Bad Guy! 57

Bad guy 57
Updating the enemy position and animation 58
Enemy collision configuration 61
Enemy death function 61
Drawing the enemy character to the screen 62
Summary 63

Chapter 7: Pickups and Head-Up Display and Sounds 65
Pickups 65

Coins 66
Diamonds 68
Life 70

Audio system 73

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Enemy collision sounds 74
Item pick sounds 75

Coin sound 75
Diamond sound 75

Head-Up Display (HUD) 76
Menu HUD 76
On clicking a button 78

Life HUD 80
Score HUD 81
Summary 82

Chapter 8: Packaging and Distributing Your Game 83
Windows executable 83
Mac apps 84
Linux 85
LÖVE on browsers 85
LÖVE on Android mobile phones 85
Summary 85

Index 87

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
LÖVE is a popular open source 2D video game framework that allows you to
leverage the simplicity of the Lua scripting language in developing game prototypes
quickly and easily. LÖVE's robustness and active community support make it a
viable framework for game development. It has empowered a lot of indie developers
of various ages around the world, giving them an edge in tapping into the lucrative
video game market.

Its simplicity and "write less build more" nature make it easy for both experienced
and novice developers.

This book is a comprehensive tutorial, demonstrating the full potential of LÖVE
framework. It takes you through building a prototype to packaging games quickly
with LÖVE.

What this book covers
Chapter 1, Getting Started with LÖVE, gets you up-and-running with LÖVE and
shows you how to install LÖVE framework and run a LÖVE game.

Chapter 2, LÖving Up!, takes you through drawing a 2D object, moving objects,
and animating a game character.

Chapter 3, Before You Build a Game, takes you through the necessary things
you need to know before you develop your game.

Chapter 4, Making Your First Game, sets the magic rolling! The chapter will
take you through designing and loading a game level, and setting up your
game characters and assets.

Chapter 5, More About Making the Game, introduces you to game
physics—adding collisions and gravity to game objects—and a
more efficient way to animate characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 6, Meeting the Bad Guy!, explains how to set up the enemy character.

Chapter 7, Pickups and Head-Up Display and Sounds, explains how to set up the
extras: pickups, sounds, and Head-Up Display (HUD).

Chapter 8, Packaging and Distributing Your Game, explains how to package and
distribute our game to various platforms, now that your game is ready to ship.

What you need for this book
To run the examples in the book, the following software will be required:

• Operating systems:
 ° Windows XP or above (for Windows users)
 ° Ubuntu 10.10 or above (for Linux users)
 ° Mac OS X (for Mac users)

• LÖVE framework 0.80 or above (www.love2d.org)
• Tiled Map Editor (www.mapeditor.org)
• Notepad++ Text Editor (www.notepad-plus-plus.org)

Who this book is for
This book is for aspiring game developers with a decent understanding of Lua
scripting language, and anyone who wants to learn video game design. If you
are looking for a step-by-step approach to learn how to design a game from
idea to prototype quickly with a robust and easy-to-understand game engine,
this book is for you.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Code words in text are shown as follows:

"We can configure the screen size and program title using the love.conf(w)"

A block of code is set as follows:

function love.conf(w)

w.screen.width = 800

w.screen.height = 600

w.screen.title = "Goofy's Adventure"

end

A comment within a block of code starts with a double hyphen "--"

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

findSolidTiles(map)
 for i, obj in pairs(map("Objects").objects) do

 if obj.type == "player" then PlayerSpawn(obj.x,obj.y-8) end
 if obj.type == "enemy" then EnemySpawn(obj.x,obj.y-
 14,obj.properties.dir) end
 ---insert items here
 if obj.type == "diamond" then DiamondSpawn(obj.x,obj.y-16) end
 if obj.type == "coins" then CoinSpawn(obj.x,obj.y-16) end

 if obj.type == "life" then LifeSpawn(obj.x,obj.y-16) end

 end

Any command-line input or output is written as follows:

cd c:/users/DarmieAkinlaja/My Documents/My game

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: " for
example on my computer, the My game folder is stored in My Documents folder ".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a
mistake in the text or the code—we would be grateful if you would report
this to us. By doing so, you can save other readers from frustration and
help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form,
on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with LÖVE
LÖVE is a fantastic framework that leverages the Lua scripting language for
developing 2D games; it is open source, free to use, and licensed under zlib/
libpng. You can learn more about Lua programming at www.lua.org.

In this chapter we'll go through the following:

• All we need to get started with LÖVE
• How to install LÖVE
• How to run a LÖVE game
• Choosing the editors

And a step further to understand the basic structure that makes a LÖVE game.

Downloading LÖVE
Before we build our game, we need a copy of LÖVE's engine running on
our computer; a copy of the framework installed will help the computer
to interpret the code we will be writing.

Direct your web browser to www.love2d.org, scroll to the download section
of the site and choose the installer that is compatible with your computer.

It is advisable that we download an installer instead of the source codes,
except for when we want to be geeky and build it ourselves.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with LÖVE

[8]

For Windows users
When you are through with downloading the installer, run the setup and follow
the instructions.

When your installation is complete, run the program; you should see a the window
displaying a beautiful animation on the screen.

For Linux users
Linux users are required to download the .deb install file by clicking on build
number of their operating system; users running Precise Pangolin Ubuntu OS
should click on the 12.04 link. Run the install program and follow the instructions.
If the LÖVE framework is fully installed, you can double-click on a .love file to
run it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

For Mac users
Mac users should visit the LÖVE wiki (https://www.love2d.org/wiki/Getting_
Started) page for instructions on how to install LÖVE and run a packaged game.

Choosing your editor
In choosing a suitable editor, you can use any text editor that supports the Lua
programming language; we recommend Notepad++; it is free and has a clean
and non-confusing GUI.

Running a LÖVE game
First of all, we assume we do not have any LÖVE game yet. OK, then let's just write
a simple "Hello World!" program and run it with LÖVE. Open up a text editor and
write the following Lua code:

--create a display

function love.draw()
--display a text on a 800 by 600 screen in the positions x= 400, and
--y=300
 love.graphics.print('hello world!', 400, 300)

end

Now save this code as main.lua. Open a folder for your game project, put your
main.lua file inside the folder, and compress the content of the folder. Change the
.zip extension to .love. You'll notice a change in the icon of the compressed file;
it changes to a LÖVE logo. Now that we've done all that, we can run our game.
If you follow the instructions correctly, you should see a screen similar to the
following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with LÖVE

[10]

If you do not compress the file properly, you will get the following blue screen
displaying error information:

Note that it is the content of your game folder that should be compressed and not the
folder itself, and make sure the main.lua file is at the top level.

Basic structure of LÖVE
There are three basic functions that make up a LÖVE game that are essential in most
of the games you will be designing with LÖVE. For now, the following are the basics
to make a small game:

• love.load(): This preloads all the necessary assets we need to make
our game.

• love.update(dt): This is where we do most of our maths, where we deal
with events; it is called before a frame is drawn. dt is the time it takes to
draw a frame (in seconds).

• love.draw(): This draws all that we want to display on the screen.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

Examples
The basic structure of the game is done as you can see in the following code:

--load our assets
function love.load()
 --load all assets here
end

--update event
function love.update(dt)
--do the maths
end

--draw display
function love.draw()
--describe how you want/what to draw.
end

That's just it, well... maybe! So let's play with these chunks one more time.

Now let's edit main.lua to enable loading sample assets that we want to use
within the game:

function love.load()

 local myfont = love.graphics.newFont(45)

 love.graphics.setFont(myfont)

 love.graphics.setColor(0,0,0,225)

 love.graphics.setBackgroundColor(255,153,0)
end

function love.update()

end

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with LÖVE

[12]

function love.draw()

 love.graphics.print('Hello World!', 200, 200)

end

Conf.lua
Before you go on and start coding your game, you need to give your video game
some specs such as window width, window height, and window title. So set up a
new file named conf.lua; inside it you can then create your game specs as shown
in the following code snippet:

function love.conf(w)

w.screen.width = 1024

w.screen.height = 768

w.screen.title = "Goofy's Adventure"

end

You can manipulate the figures and titles any way and also change that w to
whatever variable you want.

The preceding code does the following:

• Loads our font
• Sets the font color
• Sets the background color
• Draws text on the screen
• Configures the screen size

Basically we are using the love.graphics module; it can be used to draw (in the
real sense) texts, images, and any drawable object in the scene. In the previous
code snippets, we defined our fonts with the love.graphics.newFont(45)
that formats our text by declaring the size of the font as 45. setFont() loads
the font we defined as myfont, setColor() colors the text in the RGB format,
and setBackgroundColor() sets the background.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Then we printed text using the love.graphics.print('text', x, y) function
in the draw function with three parameters parsed in it: the text and the x and y
coordinates. We are not going to do anything in the love.update() function yet,
because we are not dealing with scene events.

So let's load our game as a .love file and see what it displays:

Summary
Now we can grab a mug of cappuccino with Ray-Bans on and smile; we have
installed the LÖVE game engine, text editor, and Visual tile-level editor (Tiled).
We have also got a quick look at the basic structure for writing our game in Lua
and displayed "Hello World!" in a colored background window. Next we'll go
through how to draw 2D objects, move objects, and animate character sprites.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

LÖving Up!
Now, let's have fun with LÖVE. We'll do the following in this chapter:

• Draw objects
• Move them around
• Animate characters
• Discuss sprites

Drawing 2D objects
LÖVE's love.graphics module already has in-built functions for drawing specific
shapes such as a circle, arc, and rectangle. So let's draw all these shapes in a single
game. Create a new game folder, rename it as shapes, open a new main.lua file
in this directory, and edit it by adding the following code:

function love.load() –--loads all we need in game

--- set color for our shapes RGB

 love.graphics.setColor(0, 0, 0, 225)

--- set the background color RGB

 love.graphics.setBackgroundColor(225, 153, 0)

end

function love.draw() –--function to display/draw content to screen

---draw circle with parameters(mode, x-pos, y-pos, radius, segments)

www.it-ebooks.info

http://www.it-ebooks.info/

LÖving Up!

[16]

 love.graphics.circle("fill", 200, 300, 50, 50)

---draw rectangle with parameters(mode, x-pos, y-pos, width, height)

 love.graphics.rectangle("fill", 300, 300, 100, 100)

---draw an arc with parameters(mode,x-pos,y-pos,radius,angle1,angle2)

 love.graphics.arc("fill", 450, 300, 100, math.pi/5, math.pi/2)

end

By following the comments in the preceding code snippet, we can draw the shapes
by using the needed parameters, as shown in the following screenshot:

Moving objects
In our game we would want objects to move, rotate, or just change position.
That's the essence of a 2D game. So we are going to move an object across the
screen and also are going to rotate it.

Rotating objects
We will create a 10 x 10 square and specify the rotation angle as 0 using the
love.graphics.rotate() function; what the code will do is make the object
rotate with keyboard actions. The Boolean love.keyboard.isDown()function is
used to make keyboard inputs do certain things. Just to cause the object to rotate,
we will make the rotation angle increase or decrease in delta time. math.pi is
the angular speed, which means that the object will rotate at an angular speed of
180 degrees. Replace the previous code with the next code snippet.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[17]

First of all, we can define our variables for the angle, width, and height. A variable is
a name or an identifier for a place in the computer's memory where dynamic content
is stored; variables store information that will be used later in the code:

--variables
local angle = 0

local width = 10

local height = 10

--draw a rectangle
function love.draw()

 -- rotate

 love.graphics.rotate(angle)

 -- draw a blue rectangle

 love.graphics.setColor(0,0,225)

 love.graphics.rectangle('fill', 300, 400, width, height)

end
--update
function love.update(dt)

--- On pressing the 'd' key, rotate to the right

 if love.keyboard.isDown('d') then

 angle = angle + math.pi * dt

--- else if we press the 'a' key, rotate to the left

 elseif love.keyboard.isDown('a') then

 angle = angle - math.pi * dt
 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

LÖving Up!

[18]

Moving left, right, up, or down
In the next example, we'll cause our character to move left, right, up, or down as a
response to keyboard inputs. Before we make a character move, it is advisable to
create a table for the character, because some of the character properties might be
changed as we play the game. Basically, the property of the character that we intend
to change progressively is the position of the object in the x and y axis. Similar to
how we made the character rotate in the previous example, we will make the x and
y positions of the character change on keyboard input. The position of the object
is updated just by a simple increment x = x + 1 or y = y + 1. The initial position of
the object (in x and y coordinates) will be defined in the code example, then we'll
multiply the number of increment 1 by dt for the computer to render the movement
in delta time (this is the time your computer will take to render a frame; more about
delta time will be discussed later).

function love.load()

--- create a character table, our character is a rectangle, the
initial position of the character object in the x and y coordinate is
defined in the table as 300 and 400 respectively

character = {}
character.x = 300
character.y = 400

love.graphics.setBackgroundColor(225, 153, 0)

-- paint character blue

love.graphics.setColor(0, 0, 225)

end

function love.draw()

--- draw character
 love.graphics.rectangle("fill", character.x, character.y, 100,
100)

end

function love.update(dt)

--- On pressing the 'd' key, move to the right

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[19]

 if love.keyboard.isDown('d') then
-- the increment value can be changed depending on how far you want
the object to go in single press of the button
 character.x = character.x + 1 * dt

--- else if we press the 'a' key, move to the left

 elseif love.keyboard.isDown('a') then

 character.x = character.x – 1 * dt
 end
--- if we press the 'W' key, move to the up
if love.keyboard.isDown('w') then

 character.y = character.y – 1 * dt

--- else if we press the 'S' key, move to the down

elseif love.keyboard.isDown('s') then

 character.y = character.y + 1 * dt
 end

end

The following is the output:

Now try and run your game using the WASD keys to move the blue square about.

www.it-ebooks.info

http://www.it-ebooks.info/

LÖving Up!

[20]

Sprites
Let's briefly discuss sprites. In gaming, sprites are usually used for animation
sequences; a sprite is a single image in which individual frames of a character
animation are stored. We are going use sprites in our animations.

If you already have knowledge of graphics design, it's good for you because it is
an edge for you to define how you want your game to look like and how you want
to define animation sequences in sprites. You can try out tools such as Sprite Maker
for making your own sprites with ease; you can get a copy of Sprite Maker at
http://www.spriteland.com/sprites/sprite-maker.zip.

The following is an sample animation sprite by Marc Russell, which is available
for free at http://opengameart.org/content/gfxlib-fuzed you can find other
open source sprites at http://opengameart.org/content/
platformersidescroller-tiles:

The preceding sprite will play the animation of the character moving to the right.
The character sequence is well organized using an invisible grid, as shown in the
following screenshot:

The grid is 32 x 32; the size of our grid is very important in setting up the quads
for our game. A quad in LÖVE is a specific part of an image. Because our sprite is
a single image file, quads will be used to specify each of the sequences we want to
draw per unit time and will be the largest part part of our animation algorithm.

Animation
The animation algorithm will simply play the sprite like a tape of film; we'll be
using a basic technique here as LÖVE doesn't have an official module for that.
Some members of the LÖVE forum have come up with different libraries to ease
the way we play animations. The use of animation libraries will come up in later
chapters. First of all let us load our file:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[21]

function love.load()

 sprite = love.graphics.newImage "sprite.png"

end

Then we create quads for each part of the sprite by using love.graphics.
newQuad(x, y, width, height, sw, sh), where x is the top-left position
of the quad along the x axis, y is the top-left position of the quad along the y
axis, width is the width of the quad, height is the height of the quad, sw is
the sprite's width, and sh is the sprite's height:

love.graphics.newQuad(0, 0, 32, 32, 256, 32) --- first quad

 love.graphics.newQuad(32, 0, 32, 32, 256, 32) --- second quad

 love.graphics.newQuad(64, 0, 32, 32, 256, 32) --- Third quad

 love.graphics.newQuad(96, 0, 32, 32, 256, 32) --- Fourth quad

 love.graphics.newQuad(128, 0, 32, 32, 256, 32) --- Fifth quad

 love.graphics.newQuad(160, 0, 32, 32, 256, 32) --- Sixth quad

 love.graphics.newQuad(192, 0, 32, 32, 256, 32) --- Seventh quad

 love.graphics.newQuad(224, 0, 32, 32, 256, 32) --- Eighth quad

The preceding code can be rewritten in a more concise loop as shown in the
following code snippet:

for i=1,8 do
 love.graphics.newQuad((i-1)*32, 0, 32, 32, 256, 32)
end

As advised by LÖVE, we shouldn't state our quads in the draw() or update()
functions, because it will cause the quad data to be repeatedly loaded into memory
with every frame, which is a bad practice. So what we'll do is pretty simple; we'll load
our quad parameters in a table, while love.graphics.newQuad will be referenced
locally outside the functions. So the new code will look like the following for the
animation in the right direction:

local Quad = love.graphics.newQuad

function love.load()

sprite = love.graphics.newImage "sprite.png"

 quads = {}

www.it-ebooks.info

http://www.it-ebooks.info/

LÖving Up!

[22]

 quads['right'] ={}
 quads['left'] = {}
 for j=1,8 do
 quads['right'][j] = Quad((j-1)*32, 0, 32, 32, 256, 32);
 quads['left'][j] = Quad((j-1)*32, 0, 32, 32, 256, 32);
-- for the character to face the opposite direction, the quad need to
be flipped by using the Quad:flip(x, y) method, where x and why are
Boolean.
 quads.left[j]:flip(true, false) --flip horizontally x = true, y
= false

 end
end

Now that our animation table is set, it is important that we set a Boolean value for
the state of our character. At the start of the game our character is idle, so we set
idle to true. Also, there are a number of quads the algorithm should read in order
to play our animation. In our case, we have eight quads, so we need a maximum of
eight iterations, as shown in the following code snippet:

local Quad = love.graphics.newQuad

function love.load()

character= {}
character.player = love.graphics.newImage("sprite.png")
character.x = 50
character.y = 50
direction = "right"
iteration = 1

max = 8

idle = true
timer = 0.1
 quads = {}
 quads['right'] ={}
 quads['left'] = {}
 for j=1,8 do
 quads['right'][j] = Quad((j-1)*32, 0, 32, 32, 256, 32);
 quads['left'][j] = Quad((j-1)*32, 0, 32, 32, 256, 32);
-- for the character to face the opposite direction, the quad need to
be flipped by using the Quad:flip(x, y) method, where x and why are
Boolean.
 quads.left[j]:flip(true, false) --flip horizontally x = true, y
= false
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[23]

Now let us update our motion; if a certain key is pressed, the animation should
play; if the key is released, the animation should stop. Also, if the key is pressed,
the character should change position. We'll be using the love.keypressed callback
function here, as shown in the following code snippet:

function love.update(dt)

 if idle == false then

 timer = timer + dt
 if timer > 0.2 then
 timer = 0.1
-- The animation will play as the iteration increases, so we just
write iteration = iteration + 1, also we'll stop reset our iteration
at the maximum of 8 with a timer update to keep the animation smooth.
 iteration = iteration + 1
 if love.keyboard.isDown('right') then
 sprite.x = sprite.x + 5
 end
if love.keyboard.isDown('left') then
 sprite.x = sprite.x - 5
 end
 if iteration > max then

 iteration = 1
 end
 end
 end
end

function love.keypressed(key)

 if quads[key] then
 direction = key
 idle = false
 end
end

function love.keyreleased(key)

 if quads[key] and direction == key then

 idle = true

 iteration = 1

 direction = "right"

 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

LÖving Up!

[24]

Finally, we can draw our character on the screen. Here we'll be using
love.graphics.drawq(image, quad, x, y), where image is the
image data, quad will load our quads table, x is the position in x axis
and y is the position in the y axis:

function love.draw()

 love.graphics.drawq(sprite.player, quads[direction][iteration],
sprite.x,
sprite.y)

end

So let's package our game and run it to see the magic in action by pressing the left
or right navigation key:

Summary
That is all for this chapter. We have learned how to draw 2D objects on the screen
and move the objects in four directions. We we delved into the usage of sprites for
animations and how to play these animations with code. In the next chapter we
will learn what we need to know in making our first game.

www.it-ebooks.info

http://www.it-ebooks.info/

Before You Build a Game
In designing a video game there are a few things you must know. You cannot just
wake up one morning and say, "Yeah! I want to make a game". Developing a game
is much more like building a house. To build a house, you need a plan and the
necessary materials ready.

Before you start, you should ask yourself, "How good is my geometry?" "Do I
have a fair understanding of physics?" "Can I code enough?" If yes, yes, and yes,
you are good to go! And if no, you should take your time to study and understand
the basics of displacement (http://wikipedia.org/wiki/displacement),
speed (en.wikipdia.org/wiki/velocity), and the application of coordinate
geometry (http://www.math.com/school/subject3/lessons/S3U1L2GL.html).

Since we are considering 2D games, we should be more concerned about the x and y
axes of our game objects; the z coordinate is out of the question because we we will
only need to refer to that in 3D.

Planning your game
The concept of two-dimensional game is putting all objects in a plane; the z
coordinate represents depth, which will not be considered in this scope.
Knowing this, all your game graphics are expected to be on a plane, where the
x axis and y axis are only considered. Your game objects can move up, left,
down, right, in diagonals, and at angles within the x and y coordinates.

What's the idea? How will the game be played? You may want it to be in the
isometric view (http://wikipedia.org/wiki/isometric_projection) or
like a side-scroll, in which the game world presented perpendicular to the
direction the characters are facing on the screen. The examples of side-scrolling
can be found at http://www.giantbomb.com/side-scrolling/3015-299/games/.

www.it-ebooks.info

http://www.it-ebooks.info/

Before You Build a Game

[26]

Who's playing your game? You can start with your friends and build a game they'll
love to play. What genre is your game? You should be able to define what genre your
game is; your game can be a combination of one or more genres. Below are the video
game genres we have today:

• Strategy
• Role-playing game
• Adventure
• Action
• Simulation

Strategy
This kind of game requires skills, careful reasoning, and planning to achieve the
desired victory. In most strategy games, the player's decisions will determine
what's next.

Role-playing games
Role-playing video games (commonly referred to as RPGs) are a video game genre
where the player controls the actions of a protagonist, as this character lives in an open
world. Common RPGs are based on the dungeon and monster concept; the character
plays his way through dungeons and gets to fight a monster (usually a dragon).

Adventure
This genre involves the player playing the role of a protagonist, where he interacts
with the virtual environment based on a story or role. This usually involves puzzle-
like encounters.

Action
This emphasizes physical challenges, which may include fighting, shooting,
pick objects, and avoid obstacles. This usually involves quick reflexes, accuracy,
and timing to overcome obstacles.

Simulation
This is a genre of game that involves the simulation of real-life objects in a virtual
world. For example, you can build a simulation game for flying a jet or driving a car.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[27]

Summary
Now that we have learned what we need to know to build our first game, in the next
chapter we'll learn how to design our game.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game
Now we can design our game world. In this chapter, we'll do the following:

• Create a tile map
• Import our tile set
• Set up edit layers
• Export the final product

Basic level design
Before you begin level design on your computer, you should sketch the level
layout—a draft of what the full design may look like. For example, we can sketch
a simple level for a platformer game; this example is based on a jungle with many
rocky platforms. The player is going to be picking coins and diamonds and also
avoiding antagonists.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game

[30]

Then, with whatever computer graphics tool available, you can transfer your sketch
to the computer and color it into a more attractive design. (The current design is
based on the open-source platformer game assets provided at http://opengameart.
org/content/gfxlib-fuzed).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[31]

And the following screenshot shows what my final game should look like with a few
edits, coins, diamonds, and antagonists:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game

[32]

Getting your assets ready
Having all your assets ready is very important, which includes all the sprites you
will need and the tile set of your level. The tile set design is just a fragmentation of
the finished sketch you made previously; breaking them into jigsaw-like pieces is
necessary for you to design your game level with Tiled.

Player
The sprite of the player with several poses towards the east can be flipped to the
opposite direction using Quad:flip, as demonstrated in the previous chapter:

Coin
The following is a sprite of coins with several poses so that we can animate it to rotate:

Antagonist
Hey, meet the bad guy. His sprite given here can be used to make him pace about a
specific region within the game world:

Diamond
Similar to the coin, the diamond sprite is designed to glitter. The glittering effect can be
achieved by animating it. (The animation of coins and diamonds will be done later):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[33]

Tile set
The following screenshot shows a tile of images that can be arranged with the
Tiled Map Editor (a guide on how to use the Tiled Map Editor can be seen later)
to form a game world the way we imagine it—like a jigsaw puzzle!

Getting started with Tiled
Get a copy of Tiled from http://www.mapeditor.org/ and run the Tiled program
because before we go ahead; you need to check that your settings are correct
(navigate to Tiled | Preferences). I recommend the Base64 encoding, because it
produces a smaller file; this makes your game load faster:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game

[34]

Now open a new file in Tiled, select Orthogonal, and choose your preferred
width and height for the tile size. We'll be using the 16 x 16 tile size in this
example. The level design will be scaled to screen while playing:

Load your tile set by navigating to Tiled | Map | New Tileset and selecting
your preferred tile set (note that your sprites and tiles must be in the root folder
of our game). Select and place the respective tiles in the grids while designing
the game level:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[35]

Because we now have our tile set ready, select and place each tile in the respective
grid till we form the design we imagined.

The following screenshot shows the surfaces that we would want our player or any
moving object to collide with. It is necessary to set up a collision layer so that we
can differentiate the collidable part (which the player or other characters will collide
with) from the other parts that the player will not collide with:

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game

[36]

We can go ahead and design layer 2, which is the part the player will not collide
with. To create a new layer, navigate to Tiled | Layer | Add Layer:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[37]

Now that we have layer 2, we should also put the jungle shadow, which is the third
layer; each of the layers will be referenced in our game. If the layers are placed on
top of each other, we'll have the almost-complete design ready. But to give our
players a nice experience with the game, we may have to put in some background
layers too, such as the deep dark forest feature. It should take just an hour to finish
the whole design.

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game

[38]

The following is the deep dark forest background that we would add to our game:

You can add the preceding background using the following lines of code:

bg = love.graphics.newImage("background.png")function love.draw()
 love.graphics.draw(bg)
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[39]

By bringing it all together; we can have an almost complete view of our game world.
Pretty neat, isn't it?

www.it-ebooks.info

http://www.it-ebooks.info/

Making Your First Game

[40]

Exporting your tile map
To export our design (tile map), we'll simply click on the Save as menu under the
Edit tab, name the map, and save it in .tmx format. We chose the .tmx format
because it's the format the Advanced Tiled Map will be working with. Make sure
the exported .tmx file is in the root folder with your other game assets.

Loading the game level
Advanced Tiled Loader is an open source script (concept), and can be found on
GitHub at https://github.com/Kadoba/Advanced-Tiled-Loader. Download it,
decompress it, and put the Advanced-Tiled-Loader-master folder in the source
directory of your game. Then create a maps directory and place your exported .tmx
file (tile map file) and the tile sprite image (we want to assume you designed your
game level from this directory, else your game might return some errors) in it.
So the script to load our tile map is as follows:

--platformer with TILED

local loader = require ("Advanced-Tiled-Loader-master/Loader")

---the path to our .tmx files and sprites

loader.path = "maps/"

function love.load()

 love.graphics.setBackgroundColor(225, 153, 0)

-- load the level and bind the variable map

 map = loader.load("tilemap.tmx")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[41]

end

function love.draw()

 map:draw()

end

That's it. Now you can run your game and see; it's that simple. You should see your
level design display as you did it. We might have to resize the window frame to fit
our game.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/supportand register to have the files e-mailed directly to you.

Conf.lua
For the tile map we just designed, it is necessary that we change the screen
configuration to match it. The following is the new config.lua file:

function love.conf(w)

 w.screen.width = 640

 w.screen.height = 480

 w.title = "Goofy's Adventure"

end

Summary
And that's it! Now that we have done this, we'll continue with adding collision
callback to tiles and other objects in the game in the next chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game
We have learned how to use the Tiled program and design our game level.
Now we'll learn how to load our tiled level design within the game using
the Advanced TiledMap Loader (ATL) and add collisions using the
bump.lua library by Kikito.

In this chapter, we'll learn how to do the following:

• Add collisions to tiles and objects
• Load the player and enemy into the game world
• Add a gravitational force

We'll also learn a new and quicker method of animating the characters by using
the anim8 library.

Bump on it!
This is where we'll configure our collision system using the bump.lua library. bump.
lua is a lightweight library that can be found at http://github.com/kikito/bump.
lua. Let's edit our previous code and set up the bump. We'll also set up our player
to move within the solid world and collide with it. It's a long chunk, so you need to
follow the comments to understand what each chunk does!

1. First of all we require the bump library within main.lua:
bump = require "bump"

2. Next, we define our collision callback function bump.collision(),
between two objects:
function bump.collision(obj1, obj2, dx, dy)

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game

[44]

3. Then we define the conditions for a collision between the two objects:
function bump.shouldCollide(obj1, obj2)

4. With this, we get an object and return its collision boundary, which is usually
a rectangle of parameters l, t, w, and h:

function bump.getBBox(obj)
 return obj.l, obj.t, obj.w, obj.h
end

We'll come back and fill the blank spaces between these chunks after we have loaded
our solid tiles and objects (characters).

Loading solid tiles into the bump
Now we are going to fetch all the solid tiles/layers and make them respond to
collision. We'll do this by the using the FindSolidTiles() function; but first
we'll load the tiles from Tiled with LoadTiledMap(levelFile) which will later
override map = loader.load() that we already defined; this is because we want
our bumped tiles to load when the tile map loads:

 --our tiles are 16x16 sizes, so we should declare the width and
height as 16
 local tWidth = 16
 local tHeight = 16
function LoadTileMap(levelFile)
 map = loader.load(levelFile)
 FindSolidTiles(map)
--set this to false, will be made true later on.
 map.drawObjects = false
end

---create a table to hold all the solid tiles, you can call it blocks

blocks = {}
---from the layer labelled "platform" within tiled, we call the layer
and strip out all the tiles,
function FindSolidTiles(map)
 layer = map.layers["platform"]
-- get the width and height of each and set them inside the
 for tileX=1,map.width do
 for tileY=1,map.height do
 local tile = layer(tileX-1, tileY-1)
 if tile then

---set the rectangle of the tiles, l, t, w and h parameters and make

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[45]

static and collidable

 local block = {l=(tileX-1)*16,t=(tileY-1)*16,w= tWidth,h=
tHeight }

 blocks[#blocks+1] = block
 ---make solid tiles collidable
 bump.addStatic(block)
 end
 end
 end
end

Loading the character objects (player
and enemy)
Character objects must be first loaded within the Tiled program by creating an object
layer. You can do this by performing the following steps:

1. Click on Layer and select Add Object Layer.
2. On the right-hand side pane, rename the layer as Characters.
3. Then import the tile sets/sprites of our characters by clicking on Map,

then selecting New Tileset, and then importing the tile set as shown in
the following screenshot:

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game

[46]

Be sure of the size of each cell in the sprite, as shown in the preceding screenshot.
The sprite cell size is 32 x 32. We can now place the objects in the preferred position.
After you place the object, right-click on it and set the object property (the type is
either enemy or player) for our player, as shown in the following screenshot:

We can follow the same set of instructions for the enemy:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[47]

Set the type as enemy, create a value of -1, and give it a name dir on the table,
as seen in the preceding screenshot. This is because we'll be calling on the enemy
character to know which direction it's taking while it moves in a loop.

Now we'll define the player and enemy entities in chunks of code: what they'll do,
how they'll interact, and also make them collidable with bump.

A player character
The player character will be doing simple things such as killing the enemy,
jumping, and walking towards the left or right, making it spawn, and also
colliding with the platform.

---set the player's collider box left, Right and height spaces

playerCollideboxL = 8

playerCollideboxR = 8

playerCollideboxY = 4

The player spawn function binds the collider with the player's left, right,
and height space parameters. Our player is size 32:

function PlayerSpawn(x,y)

 local left = x + playerCollideboxL
 local right = 32
 local height = 32 - playerCollideboxY

1. Create a table to hold all the player's necessary properties:
player = {}
player.name="player"

---player left
player.l=x

--player bottom space

player.t=y+playerCollideboxY

--player right space

player.w=right

--player height
player.h=height

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game

[48]

--current layer's velocity (vY) in the Y axis
player.vY=0
--player's current direction

player.dir=1

2. Add player to bump, so the player can collide too:

bump.add(player)

--where's the player, up or down?
IsOnGround = false

IsJumping = false

JumpRel = true

end

The anim8 library
We have already set up our player and collider box; the player object is now
collidable, but we need to animate it. Earlier on, we already created animation with
quad (Chapter 2, LÖving Up!). Now we'll be using a cleaner and straightforward
animation library—anim8 (love2D.org/wiki/anim8). Just as with the bump library
and ATL, we are also going to require the anim8 library in main.lua; be sure that
you have already downloaded a copy of the library for use and make sure anim8.
lua is in the same directory with main.lua.

anim8 = require "anim8"

1. Set the player character sprite, the same one we loaded in Tiled as the player
object:
playerSprite = love.graphics.newImage("maps/sprite.png")

2. Set up the character's grid and size (playerSprite:getWidth() and
playerSprite:getHeight())"
local a8 = anim8.newGrid(32,32,playerSprite:getWidth(),
playerSprite:getHeight())

3. Now let's define our animation states:

playerWalkRight = anim8.newAnimation('loop', a8('1-8',1), 0.1)
playerJumpRight = anim8.newAnimation('loop', a8(4,1), 0.1)
playerIdleRight = anim8.newAnimation('loop', a8(1,1), 0.1)

playerWalkLeft = anim8.newAnimation('loop', a8('1-

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[49]

8',1),0.1,nil,true)

playerJumpLeft = anim8.newAnimation('loop', a8(4,1), 0.1,nil,true)

playerIdleLeft = anim8.newAnimation('loop', a8(1,1), 0.1,nil,true)

The preceding function, anim8.newAnimation(), holds the parameters mode,
frames, default delay, delays, and flip in the syntax anim8.newAnimation
(mode, frames, defaultDelay, delay, flippedV, flippedH) and creates
a new animation.

Frames
Frames can be easily declared with the grid by building groups of quads of the same
size. To do this we need to define the size of each strip of the character in a sprite and
also the size of the whole sprite itself. That is what we have defined previously in
anim8.newGrid(). It's a convenient way of getting frames from sprites. The frames
are like cells of a different pose of the character sprite and are distributed in columns
such that frame (1, 1) is the one in the first row and in the first column. From what
we did in a8('1-8', 1), we get the previous row of eight elements; that is, we want
the animation to be played through the eight columns of the sprite.

Animation
Animations are group of frames interchanged through a row in a sprite over and over
again. It is written in the form anim8.newAnimation(mode, frames, defaultDelay,
delays, flippedV, flippedH), where the mode of the animation can be loop, once,
or bounce.

• loop: In this mode, the animation can play through the frame; when it
reaches the last, it starts all over again

• once: In this mode, the animation gets repeated just once and stays on the
last frame until it is reset

• bounce: In this mode, as you might have predicted, the animation plays till
the last frame, but this time doesn't start over from the first; it just plays the
animation backwards and goes forward again

The delays value is optional; it specifies the individual delay of frames—the lag
before the next frame is played. flippedV and flippedH are used to determine if
we want our animation to flip vertically or horizontally.

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game

[50]

Player movement
We already set up our animation states but the player has to move while being
animated. When we move the player to any direction, the animation will play
along in delta time. The player will also be responding to keyboard inputs such
as WASD:

function PlayerMovement(dt)
local speed = 100

IsOnGround = false
 if (love.keyboard.isDown("up") or love.keyboard.isDown("x")) then

1. Check whether the player is on the ground:
 if (IsOnGround == true) then
 --be sure the jump key is not being held down

 if JumpRel then

2. Set the value of the initial jump force to that of the jump acceleration:
 JumpForce = JumpAccel

3. Set the y velocity to the jump force value:
 player.vY = JumpForce

4. Ensure that the player is jumping; we use the following line of code:
 IsJumping = true

5. If the jump key is held down:
 JumpRel = false
 JumpTimer = 0.065
 end
 else

6. Check whether the player is jumping and whether the jump key is being
held down:
 if (IsJumping) and (JumpRel == false) then
 if (JumpTimer > 0) then
 --- push player upwards
 JumpForce = JumpForce + JumpAccel * dt
 player.vY = JumpForce
 end
 end
 end
 end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[51]

7. If we press left key:
 if love.keyboard.isDown('left') then

--move player and animate it to the left
 player.l = player.l - speed * dt
 playAnimation = playerWalkLeft
 player.dir = -1

8. Else move and animate player to the right if the right key pressed:
 elseif love.keyboard.isDown('right') then
 player.l = player.l + speed * dt
 playAnimation = playerWalkRight
 player.dir = 1

9. Set idle states if player's direction is greater than zero:
 else
 if (player.dir > 0) then playAnimation = playerIdleRight

 else playAnimation = playerIdleLeft end
 end

10. Update the animation sequence in delta time:
 playAnimation:update(dt)
---if the player is not jumping remain at ground zero
if not IsJumping then
 JumpForce = 0
 end

11. If the player falls in a canal, the player has fallen off the tile map; this means
that the height between the player's bottom and the ground is greater than
the height of the tile map, so the player dies:

 if (player.t > map.height*16) then Die() end
---when the player jumps, and the timer is greater than zero,
suspend the player on air for sometime before drop
 if (JumpTimer > 0) then
 JumpTimer = JumpTimer - dt
 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game

[52]

Gravitation physics
When the jump key is pressed, we want the player to jump and land (respond to
gravity); the player will be displaced in space player.t at the velocity of player.vY.
The value of player.t and player.vY will increase while travelling northwards
and reduce when travelling southwards, but first let's set up our gravitation physics.
In Tiled, edit the property of your tile map, click on Map, select Map Properties,
and set an empty field for gravity. Then update the LoadTileMap() function to
fetch the map property for gravity:

function LoadTileMap(levelFile)
 map = loader.load(levelFile)
---set gravity to 1000
 gravity = 1000

 FindSolidTiles(map)
 ---since we have setup player property in previous chunk, fetch
player object and let it spawn to position

for i, obj in pairs(map("Characters").objects) do

 if obj.type == "player" then PlayerSpawn(obj.x,obj.y-8) end

 end

 map.drawObjects = false

end

Now let's make the player drop when it jumps. Add the following code to the
PlayerMovement(dt) chunk:

---the gravitational pull
--There is an increment in the upward movement of the player
 player.vY = player.vY + gravity*dt/2

--also the space between the bottom of our player, player.t increases
with respect to the velocity player.vY

 player.t = player.t + (player.vY * dt)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[53]

So let us create the jump callback when the up or X key is pressed and released in a
separate chunk:

function love.keyreleased(k)

--the moment you push the key and then release it perform the jump

 if k=="up" then JumpRel = true end

 if k=="x" then JumpRel = true end
end

Player collision with platform
The impact of the player with the platform should be equal and opposite; when the
player hits a tile, it is displaced slightly, the incremental change in the motion of the
player in x axis (dx) should be negative when the player hits a wall, thereby stopping
it or displacing it in the opposite direction.

Thus we update the bump.collision() function set in our bump configuration:

function bump.collision(obj1, obj2, dx, dy)

1. If the first object to collide is the player, the second object is displaced:
 if obj1 == player then

 collidePlayerWithPlatform(dx,dy,obj2)

2. Else, if the first object happens to be the platform and the second is the
player, displace in the opposite direction:
 elseif obj2 == player then

 collidePlayerWithPlatform(-dx,-dy,obj1)
 end
end

3. Set the collision behavior:
function collidePlayerWithPlatform(dx, dy, obj)

---the block is already a static bump, now set the object on
collision as the block

local block = obj

--if the displacement isn't upwards and the block is below the

www.it-ebooks.info

http://www.it-ebooks.info/

More About Making the Game

[54]

player, then the player is still on the ground and not jumping

 if ((dy < 0) and (obj.t > player.t)) then

 IsOnGround = true

 IsJumping = false

 player.vY = 0

---else if the player position is up
 elseif (dy > 0) then

 player.vY = 0
 end

4. Change position with respect to the direction of the displacement:

 player.l = player.l + dx
 player.t = player.t + dy

 end

Player's death
So what happens when our hero dies? He respawns (that means his position resets)
or his life cells reduce:

---for now make the player re-spawn to position 32,32 on the tilemap
when it dies.
function Die()

 player.l = 32

 player.t = 32
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[55]

Draw player
That's it! We got our player fully set up; now let's draw our player to display:

function DrawPlayer()
---draw the player sprite in the collide box
--playAnimation:Draw(image, X, Y)
playAnimation:draw(playerSprite,player.l-playerCollideboxL, player.t-
playerCollideboxY)
 end

Now we can update our love.draw() chunk to draw the player in LÖVE:

function love.draw()

 map:draw()

 DrawPlayer()
end

Summary
Whew! That was a whole lot, loading the tile map, adding physics (collision and
gravity), and player animations; quite technical compared with the previous
chapters but clean enough. In the next chapter, we'll set up the antagonist and
how it will interact with other objects in the game world.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Meeting the Bad Guy!
Now let's set up the antagonist. The bad guy's job is easy; he'll be placed at certain
posts and just moves to and fro, like a guard. When the player collides with the
enemy, he dies! But when the player jumps on top of the enemy, the enemy dies! You
know, just as with the regular NES Super Mario.

Bad guy
We'll define the bad guy's properties; these include his spawn point, direction of
motion, and speed of movement.

--the enemy table holds all the parameter we need for the enemy's
movement
enemyTable = {}
--length
enemyTable.l=0
--space between the bottom and the ground
enemyTable.t=0
--width
enemyTable.w=32
--height
enemyTable.h=32
--direction
enemyTable.dir=-1
--initial velocity in x direction
enemyTable.vX = 0
--animation state based on direction
enemyTable.animation = EnemyLeft
---set speed and death/life Boolean
local EnemySpeed = 25
local EnemyDied = false
--get the enemy sprite image file
local enemyImage =

www.it-ebooks.info

http://www.it-ebooks.info/

Meeting the Bad Guy!

[58]

 love.graphics.newImage("maps/wheelie_right.png")

---configure animation for enemy
local a8 = anim8.newGrid(32, 32, enemyImage:getWidth(),
 enemyImage:getHeight())
local EnemyRight = anim8.newAnimation(a8('1-4',1), 0.9)
local EnemyLeft = anim8.newAnimation(a8('1-4',1),),0.9,nil,true)
---now the EnemySpawn() function, this basically holds the
 parameters to update the enemy's position and to and fro
 movement.
function EnemySpawn(x,y,dir)
--for multiple enemies
 local id = #enemyTable+1

 enemyTable[id] = {
 name="enemy",
 --position of enemy grid box from the left

 l=x,
 -- the space between the platform and buttom of the enemy
 character
 t=math.floor(y/16)*16+4,
 --width of the enemy collider
 w=18,
 --height of the enemy collider
 h=32,
 --direction of motion
 dir=dir,
 vX=0,
 animation=EnemyLeft,

 dead = false

 }
 ---add enemy to the bump, to make it collide with platform
 bump.add(enemyTable[id])
end

Updating the enemy position and
animation
The enemy's position and animation need constant update. First, we have to know
the enemy's current state (dead or alive). If the enemy is alive, update the position
and play animation; if not, don't.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[59]

First of all, add the enemy information to the list of solid tiles in
FindSolidTiles(map):

function LoadTileMap(levelFile)
 map = loader.load(levelFile)
---set gravity to 1000
 gravity = 1000

 FindSolidTiles(map)
 ---list all solid tiles
 for i, obj in pairs(map("Characters").objects) do

 if obj.type == "player" then PlayerSpawn(obj.x,obj.y-8) end
 if obj.type == "enemy" then EnemySpawn(obj.x,obj.y-16,
 obj.properties.dir) end

 end

 map.drawObjects = false

end

Then update the enemy's current state and movement, as shown in the following
code:

function EnemyUpdate(dt)

 if EnemyDied then

 EnemyDied = false
 --remove the enemy from scene when player kills enemy, scan
 through the table and check if dead == true remove enemy
 table
 for i = #enemyTable, 1, -1 do

 if (enemyTable[i].dead == true) then

 bump.remove(enemyTable[i])

 table.remove(enemyTable, i)

 end
 end
 end

 ---in pairs of i, where v is the value, scan through enemyTable

www.it-ebooks.info

http://www.it-ebooks.info/

Meeting the Bad Guy!

[60]

 for i,v in ipairs(enemyTable) do
 ---and update the displacement velocity vX in particular
 direction dir
 v.vX = (EnemySpeed * v.dir) * dt
 ---get the tiles of the platform
 local vXtile

 --if displacement velocity vX is greater than 0, round the
 left, width and displacement velocity parameters as the
 xTile
 if (v.vX > 0) then vXtile = math.floor((v.l + v.w + v.vX) /
 16)
 --else still roundup anyway, but with the displacement
 velocity less than zero

 else vXtile = math.floor((v.l + v.vX) / 16) end
 --round the top parameter of the enemy gridbox as the yTile
 local yTile = math.floor(v.t / 16) + 1
 ---we have created a bounding to the enemy to know the x and y
 tile that it collides with, now find the tiles in the layer
 of tilemap

 local tile = layer(vXtile, yTile)

 --if the enemy collides on neither of the x or y tiles, change
 direction of motion
 if (tile == nil) then
 v.dir = v.dir * -1
 ---else keep moving, by updating position from left with
 displacement velocity
 else

 v.l = v.l + v.vX

 end
 --let the enemy sprite play animation based on direction

 if (v.dir == 1) then v.animation = EnemyRight
 else v.animation = EnemyLeft end
 --update the animation
 v.animation:update(dt)
 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[61]

Enemy collision configuration
What happens when the enemy character collides with something (a player or
world).
Here, we'll configure the enemy state (dead or alive) based on what it collides with.

function collideEnemyWithPlatform(dx,dy,v,obj)

 if obj == player then
 --if the player lands on the top of the enemy character, kill
 enemy

 if (player.t + player.h < v.t + 8) then
 EnemyDie(v)

 else
 --else if the above condition is not met, kill player
 Die()
 end
 end
end

Enemy death function
Okay! We've defined in the previous chunks that the enemy can die when the player
hits on top of its head. And we have written a few lines of command to destroy the
enemy object on the screen. When the enemy death state is set as true, the chunks
given here
sets the enemy state as dead whenever the function EnemyDie() is called, as shown
in the following code:

--v holds the properties of the enemy character, so the dead
 Boolean will be set to true whenever the EnemyDie(v) function is
 called.
function EnemyDie(v)
 v.dead = true
 EnemyDied = true

end

www.it-ebooks.info

http://www.it-ebooks.info/

Meeting the Bad Guy!

[62]

Drawing the enemy character to the
screen
We have defined our enemy character in the previous chunks, but we will now draw
it to screen with the following chunk:

function DrawEnemy()

 for i,v in ipairs(enemyTable) do
 v.animation:draw(enemyImage, v.l-8, v.t-16)
 end
end

You should call the DrawEnemy() function within the love.draw() function; if not,
it will not display on the screen.

function love.draw()
 map:draw()
 DrawPlayer()
 DrawEnemy()
end

Finally, add the enemy's bump configuration:

--Bump configuration

function bump.collision(obj1, obj2, dx, dy)
 --Bump configuration for player

 if obj1 == player then
 collidePlayerWithPlatform(dx,dy,obj2)
 elseif obj2 == player then
 collidePlayerWithPlatform(-dx,-dy,obj1)
 end
 --Bump configuration for enemy

 for i,v in ipairs(enemyTable) do

 if obj1 == v then
 collideEnemyWithPlatform(dx,dy,v,obj2)
 elseif obj2 == v then
 collideEnemyWithPlatform(-dx,-dy,v,obj1)
 end
 end

end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[63]

Summary
Now that's all with our enemy character; it can die when a player hits it from the top,
and also it moves to and fro like a guard. In the next chapter we will set up game
states such as Game Over, and create Head-Up Display on the screen to update
game statistics (life and pickups).

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up
Display and Sounds

We've got our player, enemy, and most of the game all set up, but that's not all.
Now we'll be adding pickups (coins and diamonds), and setting up Head-Up
Display (HUD), and audio.

Pickups
Let's give the player the task of picking stuff up while it's trying to avoid the
antagonists. The pickup items will be in the form of coins and diamonds to
reward the player, or up the player's lifespan. And by rewarding the player,
we are adding to the player's score. These pickup items include the following:

• Coins
• Diamonds
• Life

Now let's update our LoadLevel() function to load our items; we assume we have
already added these objects in the Tiled map.

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[66]

The items enlisted can be loaded into our game code as highlighted in bold
text, similar to the way we loaded the player and enemy character inside in
the LoadLevel() function, as shown in the following code:

function LoadLevel(levelFile)
 map = loader.load(levelFile)
 ---fetch gravity property from map
 gravity = map.properties.gravity
 --- set gravity to 1000
 gravity = 1000

 FindSolidTiles(map)
 for i, obj in pairs(map("Objects").objects) do

 if obj.type == "player" then PlayerSpawn(obj.x,obj.y-8) end
 if obj.type == "enemy" then EnemySpawn(obj.x,obj.y-
 14,obj.properties.dir) end
 ---insert items here
 if obj.type == "diamond" then DiamondSpawn(obj.x,obj.y-16) end
 if obj.type == "coins" then CoinSpawn(obj.x,obj.y-16) end

 if obj.type == "life" then LifeSpawn(obj.x,obj.y-16) end

 end

 map.drawObjects = false

end

Items can be drawn and collided on, similar to the way we set up our enemy
character; all chunks for the coins, diamonds, and lives are similar.

Coins
We can define the coin parameters and add bump to make it collidable with the
player object. When the player collides with the coin, it disappears and we'll update
the value for the coins picked on the screen later in this chapter, as shown in the
following code:

--We'll first set a table to hold the item's bump parameters

CoinTable = {

 l=x,
 t=y,
 w=16,
 h=16

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[67]

}
---has the coin been picked? Nah!
local CoinPicked = false
---get the coin image sprite
local CoinImage = love.graphics.newImage("maps/coins.png")
--animate coin, this will make the coin glitter
local a8 = anim8.newGrid(16, 16, CoinImage:getWidth(),
 CoinImage:getHeight())
local CoinGlit = anim8.newAnimation('loop', a8('1-8',1), 0.1)

----set the spawn function and add coin to bump (make it
 collidable)
function CoinSpawn(x,y)
 --for multiple coins display
 local id = #CoinTable+1
 CoinTable[id] = {
 name="coin",
 l=x,

 t=math.floor(y/16)*16+2,
 w=16,
 h=16,

 picked = false

 }
---add coin to bump as static object
 bump.addStatic(CoinTable[id])
end
---now draw coin to screen based on our spawn parameters, that way ---
--they are placed exactly where we want them
function CoinDraw()

 for i,v in ipairs(CoinTable) do
 CoinGlit:draw(CoinImage, v.l, v.t)
 end
end
---the collide callback when player hits the coin, calls CoinPick(v)
which tells that coin picked = true

function collideCoinWithPlatform(dx,dy,v,obj)

 if obj == player then
 CoinPick(v)
 end
end

--- update on the coin's state

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[68]

function CoinUpdate(dt)

 if CoinPicked then

 CoinPicked = false
 --remove coin object from screen
 for i = #CoinTable, 1, -1 do
 ---for members of the CoinTable, check if the value of
 picked is set to true, if true then remove coin from
 screen

 if (CoinTable[i].picked == true) then

 bump.remove(CoinTable[i])

 table.remove(CoinTable, i)

 end
 end
 end
--update coin glitter animation
 CoinGlit:update(dt)
end

---function to set coin to true whenever it is called

function CoinPick(v)
 v.picked = true
 CoinPicked = true
end

Diamonds
Just as we did with the coins, we'll write very similar code for the diamonds;
we'll create the table that holds the information of the diamonds, animate them,
and also cause the diamonds to disappear when the player collides with them
using the following code:

DiamondTable = {
 l=x,
 t=y,
 w=16,
 h=16
}

local DiamondPicked = false
local DiamondImage = love.graphics.newImage("maps/diamonds.png")

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[69]

local a8 = anim8.newGrid(16, 16, DiamondImage:getWidth(),
 DiamondImage:getHeight())
local DiamondGlit = anim8.newAnimation('loop', a8('1-4',1), 0.1)
function DiamondSpawn(x,y)
 ----for multiple diamonds to display
 local id = #DiamondTable+1

 DiamondTable[id] = {
 name="diamond",
 l=x,
 t=math.floor(y/16)*16+2,
 w=16,
 h=16,
 picked = false

 }

 bump.addStatic(DiamondTable[id])
end

function DiamondDraw()

 for i,v in ipairs(DiamondTable) do
 DiamondGlit:draw(DiamondImage, v.l, v.t)
 end
end
function collideDiamondWithPlatform(dx,dy,v,obj)

 if obj == player then
 DiamondPick(v)
 end

end
function DiamondUpdate(dt)

 if DiamondPicked then

 DiamondPicked = false

 for i = #DiamondTable, 1, -1 do

 if (DiamondTable[i].picked == true) then

 bump.remove(DiamondTable[i])

 table.remove(DiamondTable, i)

 end

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[70]

 end
 end
 DiamondGlit:update(dt)
end

function DiamondPick(v)
 v.picked = true
 DiamondPicked = true
end

Life
Every object to be picked in the game world has the same code with few edits;
the chunks for the life are no different from the diamonds' and coins' chunks.
But in this case we are not using a sprite for the life stash, so we wouldn't
need to declare quads.

LifeTable = {
 l=x,
 t=y,
 w=16,
 h=16
}

local LifePicked = false
local LifeImage = love.graphics.newImage("maps/life.png")

function LifeSpawn(x,y)

 local id = #LifeTable+1

 LifeTable[id] = {
 name="life",
 l=x,
 t=math.floor(y/16)*16+2,
 w=16,
 h=16,
 picked = false

 }

 bump.addStatic(LifeTable[id])

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[71]

end

function LifeDraw()

 for i,v in ipairs(LifeTable) do
 love.graphics.drawq(LifeImage, v.l, v.t)
 end
end
function collideLifeWithPlatform(dx,dy,v,obj)

 if obj == player then
 LifePick(v)
 end

end
function LifeUpdate(dt)

 if LifePicked then

 LifePicked = false

 for i = #LifeTable, 1, -1 do

 if (LifeTable[i].picked == true) then

 bump.remove(LifeTable[i])

 table.remove(LifeTable, i)

 end
 end
 end
end

function LifePick(v)
 v.picked = true
 LifePicked = true
end

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[72]

We can now get LÖVE to draw the items, update them, and add them to the bump
configuration as shown in the following code:

--Update them
function love.update(dt)
 bump.collide()
 PlayerMovement(dt)
 EnemyUpdate(dt)
 CoinUpdate(dt)
 DiamondUpdate(dt)
 LifeUpdate(dt)
end

--Draw them

function love.draw()

 map:draw()

 DrawPlayer()

 DrawEnemy()
 CoinDraw()
 DiamondDraw()
 LifeDraw()
end

--Bump configuration

function bump.collision(obj1, obj2, dx, dy)
 --Bump configuration for player

 if obj1 == player then
 collidePlayerWithPlatform(dx,dy,obj2)
 elseif obj2 == player then
 collidePlayerWithPlatform(-dx,-dy,obj1)
 end
 --Bump configuration for enemy

 for i,v in ipairs(enemyTable) do

 if obj1 == v then
 collideEnemyWithPlatform(dx,dy,v,obj2)
 elseif obj2 == v then
 collideEnemyWithPlatform(-dx,-dy,v,obj1)
 end
 end

 --Bump configuration for Coin

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[73]

 for i,v in ipairs(CoinTable) do
 if obj1 == v then
 collideCoinWithPlatform(dx,dy,v,obj2)
 elseif obj2 == v then
 collideCoinWithPlatform(-dx,-dy,v,obj1)
 end
 end

 --Bump configuration for Diamond

 for i,v in ipairs(DiamondTable) do
 if obj1 == v then
 collideDiamondWithPlatform(dx,dy,v,obj2)
 elseif obj2 == v then
 collideDiamondWithPlatform(-dx,-dy,v,obj1)
 end
 end
 --Bump configuration Life
 for i,v in ipairs(LifeTable) do
 if obj1 == v then
 collideLifeWithPlatform(dx,dy,v,obj2)
 elseif obj2 == v then
 collideLifeWithPlatform(-dx,-dy,v,obj1)
 end
 end
end

Finally, we are done with characters and pickups; we can now go on and add audio
to our game. To do this, we are going to leverage LÖVE's inbuilt audio system.

Audio system
LÖVE leverages OpenAL for audio playback; it provides the love.audio module
that uses only one type of object, a source file. It's simple to use, and wherever the
callback love.audio.play() is put in a function, it plays the sound.

---fetch the audio file from source

BgSound = love.audio.newSource("bgsound.mp3", "stream")
--set the volume of the sound
BgSound:setVolume(0.5)
--set the pitch level
BgSound:setPitch(0.25)
--play the sound, you can also use shorthand BgSound:play()
love.audio.play(BgSound)

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[74]

What we have done so far is to fetch the audio file to be played from source, set the
volume and pitch, and then play it. In this case, the sound will stream from the disk
compressed, unless it's specified as static. Static is good for short sound in which
the sound is loaded into the memory; but for our background music, the sound will
probably be long. So, we'll not use static but use stream, which means the sound will
stream from disk without loading into memory first.

Enemy collision sounds
We are going to play a sound whenever the enemy hits the player or vice-versa,
so we set a hit sound and its volume and pitch properties in the code below:

--here we make the sound static
HitSound = love.audio.newSource("hit.mp3", "static")
--set volume and pitch
HitSound:setVolume(0.75)

HitSound:setPitch(0.5)

To play the hit sound when enemy collides with player or vice-
 versa, we'll call HitSound:play() in the
 CollideEnemyWithPlatform() function:
function collideEnemyWithPlatform(dx,dy,v,obj)

 if obj == player then
 --if the player lands on the top of the enemy character, kill
 enemy
 if (player.t + player.h < v.t + 2) then
 EnemyDie(v)
 HitSound:play()
 else
 --else if the above condition is not met, kill player
 Die()
 HitSound:play()
 end
 end
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[75]

Item pick sounds
Now we can now place PickupSound:play() by updating the
CollideCoinWithPlatform(), CollideLifeWithPlatform()
and CollideDiamondWithPlatform() functions as we did with
the enemy-player collide function.

PickupSound = love.audio.newSource("pickup.mp3", "static")
PickupSound:setVolume(0.5)
PickupSound:setPitch(0.25)

Coin sound
When a player collides with a coin, the coin will disappear and PickupSound:play()
will play the sound, as shown in the following code:

function collideCoinWithPlatform(dx,dy,v,obj)
 if obj == player then
 CoinPick(v)
 ---play sound
 PickupSound:play()
 end
end
Life sound

Diamond sound
When a player collides with a diamond, the coin will disappear and
PickupSound:play() will play the sound, as shown in the following code:

function collideDiamondWithPlatform(dx,dy,v,obj)

 if obj == player then
 DiamondPick(v)
 ---play sound
 PickupSound:play()
 end
end

That's it about audio, PickupSound:play(). Make sure the audio files exist in the
source folder of your game project, in order to be assured that the sounds will play
when required.

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[76]

Head-Up Display (HUD)
The HUD can be described as the graphical interface for displaying the game
information such as life stat, player score, and so on.

Menu HUD
Here we'll simply create a "Start Game" and "Quit Game" button with text, but before
we do that we have to set up game states— a type of state machine that tells the
various modes of a game whether the game is at the menu mode or is currently
playing (game-play mode).

In the love.load() function, set a game state as menu, so whenever the game loads
its first state is the menu.

function love.load()
gamestate = "menu"
love.graphics.setBackgroundColor(225, 153, 0)
-- load the level and bind the variable map
 LoadTileMap("tilemap.tmx")
end

Next, we are setting another gamestate condition; game should update and draw
only when game state is "playing":

--Update them
function love.update(dt)
 if gamestate == "playing" then
 bump.collide()
 PlayerMovement(dt)
 EnemyUpdate(dt)
 CoinUpdate(dt)
 DiamondUpdate(dt)
 LifeUpdate(dt)
 end
end

--Draw them

function love.draw()

 if gamestate == "playing" then

 map:draw()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[77]

 DrawPlayer()

 DrawEnemy()
 CoinDraw()
 DiamondDraw()
 LifeDraw()
 end
end

The game will only draw and update when game state is set as "playing". So in the
"menu" game state, we'll setup our menu texts and functions, so menu functions will
only work in the "menu" game state.

Let's create a table to hold our button properties, the x position, y position, the text to
be displayed, and the identity of the text.

button = {}
function ButtonSpawn(x, y, text, id)
 table.insert(button, {x=x, y=y, text=text, mouseover=false})
end

We can go on and insert the ButtonSpawn() function inside the love.load function,
so we can load the particular text that will represent our button.

function love.load()
gamestate = "menu"
love.graphics.setBackgroundColor(225, 153, 0)
-- load the level and bind the variable map
 LoadTileMap("tilemap.tmx")
-- load the buttons
 ButtonSpawn(300, 200, "START GAME", "start")
 ButtonSpawn(300, 300, "QUIT GAME", "quit")
end

Before the button will be displayed on the screen, it is a tradition that we have
to draw it. ButtonDraw() must be called in the love.draw function.

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[78]

Put medium = love.graphics.newFont(45) inside love.load, to load the
font size then, as shown in the following code:

function ButtonDraw()
 for i, v in ipairs(button) do
 ---if mouse is not on button, the color should be black
 if v.mousover == false then
 love.graphics.setColor(0,0,0)
 end

 ---if mouse is on button

 if v.mousover == true then
 love.graphics.setColor(0,252,252)
 end

 love.graphics.setFont(medium)
 love.graphics.print(v.text, v.x, v.y)
end

On clicking a button
We need the button to react to the mouse click; when you click a button it should do
something. That is what we will achieve with the ButtonClick() function:

function ButtonClick(x, y)
 for i, v in ipairs(button) do
 ---if the mouse is within the button
 if x > v.x and x < v.x + medium:getWidth(v.text) and y > v.y
 and y < v.y+medium:getHeight(v.text) then
 ---if the id of the button clicked is quit, then exit game

 if v.id == "quit" then
 love.event.push("quit")
 end
 ---if the id of the button clicked is Start, set gamestate =
 "playing"
 if v.id == "start" then
 gamestate = "playing"
 end
 end
 end
end

----if the mouse is clicked at certain coordinates x,y

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[79]

function love.mouspressed(x,y)
 ---be sure we are in the menu game state

 if gamestate == "menu" then

 ButtonClick(x,y)

 end

end

Let's check if the mouse is on the button or not, so we'll set mouseover as
true or false.

function MouseCheck()
 for i, v in ipairs(button) do
 ---if the mouse is within the button
 if mousex > v.x and mousex < v.x + medium:getWidth(v.text)
 and mousey > v.y and mousey < v.y+medium:getHeight(v.text)
 then
 v.mouseover = true
 else
 v.mouseover = false
 end
 end
end

Now update the function love.update to hold MouseCheck(), whenever the game
state is "menu".

--Update them
function love.update(dt)
 if gamestate == "menu" then
 MenuCheck()
 end
 if gamestate == "playing" then
 bump.collide()
 PlayerMovement(dt)
 EnemyUpdate(dt)
 CoinUpdate(dt)
 DiamondUpdate(dt)
 LifeUpdate(dt)
 end
end

That's it about buttons!

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[80]

Life HUD
The life HUD will display the number of lives the player has left. We'll just do simple
math to add life when a player collides with the life item, and subtract it when a
player dies.

local life = 3

When a player hits the life item, the calculations are as follows:

life = life + 1

When s player dies, the calculations are as follows:

life = life – 1

Print the life count on screen using the following code:

love.graphics.print("Life: " life, 32, 32)
love.graphics.setFont(medium)

Now let's insert this into our main chunk:

life = 3
---when player picks life item
function LifePick(v)
 v.picked = true
 LifePicked = true

 lifebar = lifebar + 1

end
Now when player dies, update the Die() function:
---for now make the player re-spawn to position 32,32 on the tilemap
when it dies.

function Die()

 life = life - 1

 player.l = 32

 player.t = 32
end

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[81]

Score HUD
Whenever a player hits a coin, kills a player, or picks a diamond, we would need to
increase their score by 50, 100, and 150 respectively.

local score = 100
---when player picks coin
function CoinPick(v)
 v.picked = true
 CoinPicked = true

 score = score + 50

end
---when player picks coin
function DiamondPick(v)
 v.picked = true
 DiamondPicked = true

 score = score + 150

end
---when player kills enemy score 100, else remove 100
function collideEnemyWithPlatform(dx,dy,v,obj)
 if obj == player then
 if (player.t + player.h < v.t + 2) then
 EnemyDie(v)
 Score = score + 100
 else
 Die()
 Score = score - 100
 end
 end

end
We can now update the love.draw function to print the Life and Score
on the screen:

function love.draw()

 if gamestate == "playing" then

 love.graphics.print("Life:"..life, 32, 32)

www.it-ebooks.info

http://www.it-ebooks.info/

Pickups and Head-Up Display and Sounds

[82]

 love.graphics.print("Score:"..score, 320, 32)

 love.graphics.setFont(medium)

 map:draw()

 DrawPlayer()

 DrawEnemy()
 CoinDraw()
 DiamondDraw()
 LifeDraw()
 end
end

Summary
Finally! We are done with all the game logic, we have a full game level already,
and from here you can create as many levels as you want using the same
method you used to create the first one! In the next chapter we'll learn how to
package/compile our games in distributable formats for PC, Linux, and Mac.

www.it-ebooks.info

http://www.it-ebooks.info/

Packaging and
Distributing Your Game

We've developed our game and are ready to distribute it. Traditionally, the contents
of the root folder (make sure the main.lua file is in the root folder.) of the game
should be zipped and renamed with a .love extension. With that, our game will
play because LÖVE is already installed on our development computer. But when
we distribute our game, we do not expect the users or gamers to already have
LÖVE installed on their computers. For PC and Mac users, we'll have to distribute
the game in .exe and .app formats respectively.

Windows executable
The process of creating an executable format of our game is very easy by following
the given steps:

1. Download the source folder of LÖVE by visiting love2d.org and click on
Zipped 32-bit.

2. Extract the folder, copy the love.exe file in there together with our game's
.love file, and put both of them in another folder (for example, My game)

3. Press Window key + R. In the panel displayed, type cmd and click on Run,
a console will display on the screen.

4. Now enter the following command: cd [directory to our game].
For example, on my computer, the My game folder is stored
in My Documents folder. My command line will look like the
following command:
cd c:/users/DarmieAkinlaja/My Documents/My game

www.it-ebooks.info

http://www.it-ebooks.info/

Packaging and Distributing Your Game

[84]

5. Then you can now append your game .love file with the love.exe file,
and create your desired executable file by entering the following
command line:
copy /b love.exe+mygame.love mygame.exe

6. Immediately after you press the Enter button, an .exe version of your
game will be created in the same folder (My game) where you placed
the love.exe and mygame.love files.

7. Copy the resulting mygame.exe file and all the .dll files you find in
the downloaded LÖVE source zip, and package them in another folder
(the folder you wish to distribute your executable game with must have
these .dll files to work)

8. You are good to go!

Mac apps
Once you have your game prepared as .love file, you can make your game
available for Mac OS X users by using the official LÖVE Zipped Universal Build
from love2d.org. This is a straightforward approach just as with the windows
executable. Follow the given steps:

1. Unzip the Zipped Universal Build.
2. Rename the love.app as mygame.app.
3. Copy the .love file of your packed game (mygame.love) into mygame.app/

Contents/Resources.
4. Modify mygame.app/Contents/info.plist by changing org.love2d.love

to com.mycompany.mygame under CFBundleIdentifier, and change Löve to
mygame under CFBundleName. Then remove the following section:
<key>UTExportedTypeDeclarations</key>
<array>
 ...
</array>

5. Now zip your mygame.app folder (for example, mygame.osx.zip),
and distribute it.

6. You are good to go!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[85]

mygame should be replaced with whatever name you give your
game, and should be written without spaces. And mycompany
should be replaced with whatever name you choose for your
company, to be written without spaces.

Linux
Linux operating systems will run .love directly without having to package it into
special extension. Just compress your game source folder as .zip and rename the
extension as .love; you are good to go! This is because, as of writing, those managing
LÖVE haven't figured out a way of packaging to specific Linux distribution.

LÖVE on browsers
As of writing, this is still an experimental project; it will allow your LÖVE
game to play directly in a WebGL-supported browser without extra plugins.
More information on this can be found at https://love2d.org/forums/
viewtopic.php?f=5&t=8487.

LÖVE on Android mobile phones
This too is an experiment and not yet perfected. Its support is limited as there are
some features of your game that will probably not work. But you can follow up
on this project at https://love2d.org/forums/viewforum.php?f=11.

Summary
Awesome! That's it! We just designed a video game from scratch to finish!
We learned from the first chapter to the last how to produce a video game
with the LÖVE framework. Now you can distribute your games to stores
and make some cash while you entertain your players. Have Fun!

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
2D objects

drawing 15, 16
.tmx format 40

A
Advanced Tiled Loader

about 40, 41
GitHub, URL 40

Advanced TiledMap Loader. See ATL
Android mobile phones

LÖVE on 85
anim8 library

about 48, 49
animation 49
frames 49
gravitation physics 52
player, collision with platform 53, 54
player, death 54
player, drawing 55
player movement 50, 51

anim8.newAnimation() function 49
anim8.newGrid() 49
animation 20,-24
animation, anim8 library

about 49
bounce 49
loop 49
once 49

antagonist
about 32
setting up 57

ATL 43
audio system

about 73, 74
enemy collision sounds 74
item pick sounds 75

B
bad guy

properties 57, 58
bounce mode 49
browser

LÖVE in 85
bump.collision() function 53
bump.lua library

about 43, 44
URL 43

ButtonClick() function 78

C
character

moving down 18
moving left 18
moving right 18
moving up 18

character objects
loading 45-47

coins 32, 65, 66
coin sound, item pick sounds 75
conf.lua

about 12
love.graphics module 12
love.update() function 13
new file 41

www.it-ebooks.info

http://www.it-ebooks.info/

[88]

D
death state, enemy 61
diamonds 32, 65, 68
diamond sound, item pick sounds 75
displacement

URL 25
DrawEnemy() function 62
draw() function 21

E
editor

selecting 9
enemy

animation, updating 58, 59
bump configuration, adding 62
character, drawing to screen 62
collision, configuring 61
death function 61
position, updating 58, 59
state, configuring 61

enemy collision sounds 74
EnemyDie() 61

F
FindSolidTiles() function 44
FindSolidTiles(map) 59
flippedH 49
flippedV 49
frames, anim8 library 49

G
gamestate condition 76
gravitation physics, anim8 library 52

H
HUD

about 76
life HUD 80
menu HUD 76, 77
on clicking button 78, 79
score HUD 81

I
isometric view

URL 25
item pick sounds

about 75
coin sound 75
diamond sound 75

L
life 65, 70, 72, 73
life HUD 80
Linux 85
Linux users

LÖVE, downloading for 8
LoadLevel() function 65
LoadTiledMap(levelFile) 44
LoadTileMap() function 52
loop mode 49
LÖVE

about 7
basic structure 10-12
downloading 7
in browser 85
on Android mobile phones 85
quad 20

love.audio.play() callback 73
LÖVE, downloading

for Linux users 8
for Mac users 9
for Windows users 8

love.draw() 10
love.draw() chunk 55
love.draw() function 62
LÖVE game

running 9, 10
love.graphics module 12, 15
love.graphics.newQuad 21
love.graphics.rotate() function 16
love.keyboard.isDown() function 16
love.keypressed callback function 23
love.load() function 10, 76
love.update(dt) 10
love.update function 79

www.it-ebooks.info

http://www.it-ebooks.info/

[89]

love.update() function 13
Lua

URL 7

M
Mac app 84
Mac users

LÖVE, downloading for 9
LÖVE wiki, URL 9

main.lua
editing 11

menu HUD 77
mygame 85

O
objects

moving 16
rotating 16

once mode 49

P
pickups

about 66
coins 65, 66
diamonds 65, 68
life 65, 70, 72

PickupSound$play() 75
player 32
player, anim8 library

collision, with platform 53, 54
death 54
drawing 55
movement 50, 51

player character 47, 48
player spawn function 47
player.t value 52
player.vY value 52

Q
quad 20
Quad$flip 32

R
Role-playing video games. See RPGs
RPGs 26

S
score HUD 81
side-scrolling

URL 25
speed

URL 25
Sprite Maker tool

URL 20
sprites

about 20
by Marc Russell, URL 20
Sprite Maker tool, URL 20

static. Static 74
structure, LÖVE

about 10
conf.lua 12, 13
example 11
love.draw() 10
love.load() 10

T
Tiled 33-39
tile map

exporting 40
Tile set 33

U
update() function 21

V
variable 17
video game

action 26
adventure 26
antagonist 32
assets, preparing 32
basic level design 29, 31
coin 32

www.it-ebooks.info

http://www.it-ebooks.info/

[90]

diamond 32
executable format, creating 83, 84
isometric view, URL 25
planning 25, 26
player 32
role-playing game 26
side-scrolling, URL 25
simulation 26
strategy 26

W
Windows

executable 83, 84
Windows users

LÖVE, downloading for 8

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
LÖVE for Lua Game Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

XNA 4.0 Game Development by
Example: Beginner's Guide –
Visual Basic Edition
ISBN: 978-1-84969-240-3 Paperback: 424 pages

Create your own exciting games with Visual Basic
and Microsoft XNA 4.0

1. Dive headfirst into game creation with Visual
Basic and the XNA Framework

2. Four different styles of games comprising a
puzzler, space shooter, multi-axis shoot 'em up,
and a jump-and-run platformer

3. Packed with many suggestions for expanding
your finished game that will make you think
critically, technically, and creatively.

Corona SDK Mobile Game
Development: Beginner's Guide
ISBN: 978-1-84969-188-8 Paperback: 408 pages

Create monetized games for iOS and Android with
minimum cost and code

1. Build once and deploy your games to both
iOS and Android

2. Create commercially successful games by
applying several monetization techniques
and tools

3. Create three fun games and integrate them with
social networks such as Twitter and Facebook

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

SDL Game Development
ISBN: 978-1-84969-682-1 Paperback: 256 pages

Discover how to leverage the power of SDL 2.0 to
create awesome games in C++

1. Create 2D reusable games using the new
SDL 2.0 and C++ frameworks

2. Become proficient in speeding up
development time

3. Create two fully-featured games with C++
which include a platform game and a 2D
side scrolling shooter

Cocos2d-X by Example
Beginner's Guide
ISBN: 978-1-78216-734-1 Paperback: 246 pages

Make fun games for any platform using C++,
combined with one of the most popular open source
frameworks in the world

1. Learn to build multi-device games in simple,
easy steps, letting the framework do all the
heavy lifting

2. Spice things up in your games with easy
to apply animations, particle effects, and
physics simulation

3. Quickly implement and test your own
gameplay ideas, with an eye for optimization
and portability

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with LÖVE
	Downloading LÖVE
	For Windows users
	For Linux users
	For Mac users
	Choosing your editor
	Running a LÖVE game
	Basic structure of LÖVE
	Examples
	Conf.lua

	Summary

	Chapter 2: LÖving Up!
	Drawing 2D objects
	Moving objects
	Rotating objects
	Moving left, right, up, or down

	Sprites
	Animation
	Summary

	Chapter 3: Before You Build a Game
	Planning your game
	Strategy
	Role-playing games
	Adventure
	Action
	Simulation

	Summary

	Chapter 4: Making Your First Game
	Basic level design
	Getting your assets ready
	Player
	Coin
	Antagonist
	Diamond

	Tile set

	Getting started with Tiled
	Exporting your tile map
	Loading the game level
	Conf.lua
	Summary

	Chapter 5: More About Making the Game
	Bump on it!
	Loading solid tiles into the bump
	Loading the character objects (player and enemy)
	A player character
	The anim8 library
	Frames
	Animation
	Player movement
	Gravitation physics
	Player collision with platform
	Player's death
	Draw player

	Summary

	Chapter 6: Meeting the Bad Guy!
	Bad guy
	Updating the enemy position and animation
	Enemy collision configuration
	Enemy death function
	Drawing the enemy character to the screen
	Summary

	Chapter 7: Pickups and Head-Up
Display and Sounds
	Pickups
	Coins
	Diamonds
	Life

	Audio system
	Enemy collision sounds
	Item pick sounds
	Coin sound
	Diamond sound

	Head-Up Display (HUD)
	Menu HUD
	On clicking a button

	Life HUD
	Score HUD
	Summary

	Chapter 8: Packaging and
Distributing Your Game
	Windows executable
	Mac apps
	Linux
	LÖVE on browsers
	LÖVE on Android mobile phones
	Summary

	Index

