A Gmde and Reference for Ereatmg WoW Addons

James Whitehead Il
Rick Roe

World of Warcraft°
Programming

World of Warcraft®
Programming_

A Guide and Reference for Creating
WoW Addons

Second Edition

James Whitehead 11
Rick Roe

WILEY
Wiley Publishing, Inc.

World of Warcraft® Programming: A Guide and Reference for Creating WoW Addons, Second Edition

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2010 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-0-470-48128-8

Manufactured in the United States of America

10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008,
oronlineathttp://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work
is sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2009933378

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its
affiliates, in the United States and other countries, and may not be used without written permission. All other trademarks
are the property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor mentioned
in this book.

www.wiley.com
www.wiley.com/go/permissions

About the Authors

James Whitehead II is the author of a number of popular addons for World
of Warcraft, including LightHeaded, TomTom, Clique, PerfectRaid, and many
other small but useful addons. He has been an active member of both the WoW
Ul and Lua communities since the World of Warcraft Beta began and has been
writing addons ever since. When he actually has time to play the game, you
can find him playing one of his many characters on the Emerald Dream (EU)
server.

Jim currently resides in Oxford, England where he is pursuing his DPhil
(PhD) in Computer Science at the Computing Laboratory. In his spare time he
enjoys all things rowing, hacking on his Android phone, knitting, crocheting,
and spending time with his friends.

Rick Roe—known in the WoW UI community as the zany goblin tinker
Gazmik Fizzwidget—is the author of several popular addons including
Feed-O-Matic and FactionFriend, as well as TrackMenu and a couple of
others so useful that Blizzard made them obsolete by rolling their functionality
into the default UL. When not slaving away for their goblin master, Rick’s alter
egos can often be found adventuring on Cenarius US.

Rick currently resides in Vancouver, Washington, with his wife and cats.
His time outside of Azeroth is split between working to finish a computer
science degree at Washington State University and building Mac and iPhone
applications as an independent software developer.

vi

About the Technical Editors

Daniel Stephens—more widely known in the WoW addon community as
Iriel—was the Blizzard WoW UI Forum’s first MVP. He has been helping
others develop addons for several years, creating a few of his own along the
way. His addons include DevTools (recently rolled into the base WoW UI)
and he has made significant contributions to secure handlers and a number of
other utilities. As somewhat of an altaholic, he has characters spread all over
the realms, but considers Silver Hand (US) his original WoW home.

Daniel lives in the San Francisco bay area with his wife, cats, and camera. He
spends his “not free”” time doing systems design, architecture, and occasionally
development work.

Esteban Santana Santana, known online as MentalPower, is both Lead Devel-
oper for the Auctioneer AddOns Package and one of the Administrators
of Norganna’s AddOns. He’s been part of the WoW UI community since
mid-2005 and has helped many people via the IRC channels and the various
game and Ul-related forums. When he logs into World of Warcraft, you can
find him on the US-Alleria realm trying to level his various characters on the
Emerald Dream guild.

Esteban currently resides in Carolina, Puerto Rico, and is a jack-of-all-trades
IT person for Liberty Cablevision. In his spare time, he enjoys thrashing his
buddies in a good game of Rock Band on the XBox 360.

Acquisitions Editor
Scott Meyers

Contributing Author
Nevin Flanagan

Project Editor
Maryann Steinhart

Technical Editors
Daniel Stephens

Rick Roe

Esteban Santana Santana

Production Editor
Rebecca Anderson

Copy Editor
Kim Cofer

Editorial Director
Robyn B. Siesky

Editorial Manager
Mary Beth Wakefield

Associate Director of Marketing
David Mayhew

Production Manager
Tim Tate

Credits

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreaders
Josh Chase and Nelson Kim, Word
One

Indexer
] & J Indexing

Cover Image
Scott Johnson, FrogPants Studios
LLC

Cover Designer
Michael E. Trent

vii

Acknowledgments

James and Lee Whitehead, thank you for walking alongside your children as
we journey down the winding road of life; we're blessed to have the two of
you in our lives. Michelle Hastings, thank you for being such a role model
of strength and determination for your little brother.

Robert Whitehead, thank you for always being yourself and making sure
I don’t stray far from who I am. Gregory Whitehead, thank you for being there
for me whenever I need to ““geek” out, I don’t know many people that can get
as excited as I do about silly things. Tom Harper, thank you for what you give
me every single day. Everything about you makes me feel like the luckiest
person alive.

Jamie Anderson, Edward Wilman, Amelia Earl, Rhianedd Jewell, Erika
Nitsch, Daniel Jordan, and all my other friends at Oxford, thank you for
keeping me busy, for helping me make excuses, and for being such a bad
influence.

To Karen Hobson and everyone at WowInterface who have put up with me
for five years now, thank you for all of your efforts in organizing all three
books. To Mike, Kevin, Tom, Jacob, Sam, and everyone at Blizzard, thank you
for creating such an amazing game and supporting us in our documentation
efforts. To everyone at Wiley who helped bring these books into existence,
thank you for your efforts to provide resources for the WoW user interface
community. To Rick, thank you for stepping in when we needed you the most;
your work has been instrumental in making this book what it is today. To
Daniel, Nevin, and Esteban, thank you for all of your help in shaping the edges
of this edition.

Finally, thank you to the World of Warcraft user interface community for
everything you do.

— Jim

ix

Acknowledgments

I'd first like to thank my coauthor, Jim, for offering me the opportunity to
“graduate” from tech editing on the first edition to authoring on this second
version. Crazy as the schedules and deadlines may have been, I'm still happier
having been able to write my part instead of worrying about mucking with
someone else’s work in order to satisfy my nitpicky tendencies. Thanks also
for all your infrastructure work—without your website and database I'd have
been a scribe without paper.

To Daniel and Esteban fell the unenviable task of performing the role I did
on the first edition—catching all the silly code errors and obtuse explanations
we dumb authors make—and with it my sympathy and gratitude. I can but
hope I haven’t made your work too hard.

Thanks to Karen for playing den mother to the rowdy WoW UI community
and giving us all a place to hook up; if it weren’t for your efforts I'd never
have found my way into this project. Thanks as well to Scott, Maryann, and
everyone at Wiley for making the project happen!

Thanks (again) to Daniel and Jim not just for your work on the book but for
providing development tools without which my tasks would’ve been a whole
lot harder. And of course, thanks to my family, Karen, Doug, and Brad, for
putting up with me for a couple decades and making me the person I am,
and to my wonderful wife Anne: I can’t imagine life without you, much less
without the loving support you give for whatever crazy ideas I set myself to.

Finally, a very special thank you to Mike, Jacob, Sam, and Tom at Blizzard,
without whose patience and willingness to answer oblique questions outside
a normal work schedule we wouldn’t have been able to figure out several
important chunks of the API we're documenting. Next time I'm in SoCal, your
drinks are on my tab.

— Rick

Introduction

Part |
Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Part I

Chapter 8

Chapter 9

Chapter 10
Chapter 11

Chapter 12

Contents at a Glance

Learning to Program

Programming for World of Warcraft
Exploring Lua Basics

Basic Functions and Control Structures
Working with Tables

Advanced Functions and Control Structures
Lua Standard Libraries

Learning XML

Programming in World of Warcraft
Anatomy of an Addon

Working with Frames, Widgets, and Other Graphical
Elements

Saving Time with Frame Templates
Exploring the World of Warcraft API

Interacting with Widgets

XXXVii

1
3

13

39

53

77

91

111

123
125

143

171

187

207

xi

xii

Contents at a Glance

Chapter 13
Chapter 14

Part 11l
Chapter 15

Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23
Chapter 24
Chapter 25
Chapter 26
Part IV

Chapter 27
Chapter 28
Chapter 29
Chapter 30

Part V

Appendix A
Appendix B
Appendix C
Appendix D

Index

Responding to Game Events

Tracking Damage with CombatTracker

Advanced Addon Techniques

Taking Action with Secure Templates

Binding Keys and Clicks to Addon Code

Creating Slash Commands

Responding to Graphic Updates with OnUpdate
Altering Existing Behavior with Function Hooking
Creating Custom Graphics

Responding to the Combat Log and Threat Information
Creating Scroll Frames

Creating Dropdown Menus

Scanning and Constructing Tooltips

Taking Protected Action in Combat

Creating Unit Frames with Group Templates
Reference

API Reference

API Categories

Widget Reference

Events Reference

Appendixes

Best Practices

Utilizing Addon Libraries

Tracking History Using Version Control Systems

Addon Author Resources

243

267

283

285

309

337

351

359

373

387

413

431

451

463

501

537

539

1025

1121

1277

1303
1305
1329
1339
1349

1357

Contents

Introduction

Part | Learning to Program

Chapter 1 Programming for World of Warcraft
Customizing the User Interface
What Is an Addon?
What Can Addons Do?
Exploring Your AddOns Directory
Blizzard Addons
Custom Addons
Creating Your First Addon: HeyThere
Creating Files and Directories
Loading and Testing the Addon
Summary

Chapter 2 Exploring Lua Basics
Downloading and Installing Lua
Downloading and Installing WowLua
Using Lua on the Web
Downloading and Installing a Lua Interpreter
Microsoft Windows
Mac OS X
Using the Lua Interpreter
Running Commands
Understanding Error Messages

XXXVii

—

N o W W

10
10
11
12

13
14
14
15
16
16
16
17
18
18

xiv Contents

Chapter 3

Using History to Make Changes
Quitting the Interpreter
Microsoft Windows
Mac OS X
Working with Numbers
Basic Arithmetic Operations
Scientific Notation
Hexadecimal Notation
Understanding Floating Point
Understanding Values and Variables
Exploring Values and Their Types

Primitive Types

Using the type() Function
Using Variables

Valid Variable Names

Assigning Variables

Assigning Multiple Variables

Comparing Values

Working with Strings
Comparing Strings
Concatenating Multiple Strings
Converting Numbers to Strings
Converting Strings to Numbers
Quoting Strings

Single Quote (')

Double Quote (")

Bracket Quote ([[]])
Escaping Special Characters
Getting a String’s Length

Boolean Values and Operators
Using the and Operator
Using the or Operator
Negation Using the not Operator
Understanding the nil Value

Exploring Scope
Blocks
Chunks

Summary

Basic Functions and Control Structures
Using Functions

Creating a Function

Local Functions

19
19
19
19
20
20
21
21
22
23
23
23
23
24
25
25
26
26
27
27
28
28
29
29
29
30
30
31
32
33
33
34
34
35
35
36
37
37

39
39
39
40

Contents

XV

Chapter 4

Function Arguments and Returns
Converting Celsius to Fahrenheit
Empty Arguments
No Return Values

Functions as Lua Values

Making Decisions with the if Statement

Simple Conditionals

Complex Expressions

Extended Conditionals

Displaying a Personalized Greeting

Repeating Actions with the while Statement

Computing Factorials

Differences Between while and repeat

Looping with the Numeric for Statement

Computing Factorials

Evaluation of Loop Conditions

Variable Scope in for Loops

Summary

Working with Tables
Storing Data Using Tables
Creating and Indexing Tables
Clearing an Element from a Table
Shortcuts for String Keys
Creating Populated Tables
Using Tables as Arrays
Creating an Array
Getting the Length of an Array
Adding Elements to an Array
Removing Elements from an Array
Sorting the Elements of an Array
Using Tables as Namespaces
Creating a Namespace of Utility Functions
Adding Functions to a Namespace
Storing an Existing Function
Defining a New Function
Object-Oriented Programming with Tables
Creating a Non-Object-Oriented Counter
Using Tables as Simple Objects
Using : to Call Object Methods
Defining Functions Using :
Making a Better Counter

41
41
42
42
42
43
43
44
44
45
46
46
47
48
50
50
50
51

53

53
54
54
55
55
56
57
57
58
60
61
61
62
62
62
63
63
63
64
65
66
67

xvi Contents

Extending Tables with Metatables 68
Adding a Metatable 63
Defining Metamethods 69

Defining Basic Arithmetic Using ___add, __ sub, mul,
and __ div 70
Defining Negation Using ___unm 71
Creating Meaningful Output with ___tostring 71
Concatenating Tables Using ___concat 72
Exploring Fallback Tables with ___index 72
Catching Creation of Keys with ___newindex 74
Bypassing Metatables 75
value = rawget(tbl, key) 75
rawset(tbl, key, value) 76
Summary 76
Chapter 5 Advanced Functions and Control Structures 77
Multiple Return Values 77
Converting Hex to RGB 77
Assigning Multiple Values 78
Missing Return Values? 79
Multiple Return Values in World of Warcraft 79
Using a Dummy Variable 80
Using the select() Function 81
Accepting a Variable Number of Arguments 81
Declaring a Vararg Function 82
Using select() with . .. 83
Generic for Loops and Iterators 84
Syntax of Generic for 84
Traversing the Array Part of a Table 85
Traversing an Entire Table 86
Clearing a Table 86
Using Other Iterators 87
Sorting an Array of Table Data 87
Define Example Data 88
Default Sort Order 88
Creating a Comparison Function 88
Creating a More Complex Sort Function 89
Summary 90
Chapter 6 Lua Standard Libraries 91
Table Library 92
str = table.concat (table [, sep [, i [, jIII) 92
table.insert (table, [pos,] value) 92
max = table.maxn (table) 93

Contents xvii
value = table.remove (table [, pos]) 93
table.sort (table [, comp]) 93
String Utility Functions 94
Formatting New Strings 95
Pattern Matching 98
Character Classes 98
Pattern Items 100
Pattern Captures 101
Pattern Anchors 102
Pattern Examples 102
Pattern Matching Functions 102
string.gmatch(s, pattern) 103
string.gsub(s, pattern, repl [, n]) 103
string.match(s, pattern [, init]) 104
string.find(s, pattern [, init [, plain]]) 104
Math Library 105
World of Warcraft Additions to Lua 108
Function Aliases 109
Summary 110
Chapter 7 Learning XML 111
XML as a Markup Language 111
XML’s Relationship to HTML 112
Components of XML 112
XML Tags 113
XML Elements 113
XML Attributes 113
XML Entities 114
Creating Well-Formed XML 114
Validating an XML Document 115
Example Schema Definition 115
Example XML Document 116
Exploring the Schema 116
XML in World of Warcraft 117
Using a GradientType 118
Exploring Blizzard’s XML User Interface Customization Tool ~ 119
Summary 121
Part Il Programming in World of Warcraft 123
Chapter 8 Anatomy of an Addon 125
Exploring an Addon’s Files and Folders 125
Table of Contents (.toc) File 125
Interface: 126

xviii Contents

Title: 127

Notes: 128

Dependencies:, ## RequiredDeps: 128

OptionalDeps: 129

LoadOnDemand: 129

LoadsWith: 129

DefaultState: 130

LoadManager: 130

SavedVariables: 130

SavedVariablesPerCharacter: 131
X-Label Directives 131
Addon Categories 131
XML Files 132
Lua Script Files 133
Media Files 133
Music 133
Graphics 133
Localizing Your Addons 134
Valid Locales 135
Reasons for Providing Localization 135
Encouraging Users to Contribute 136
Implementing Localization 136
Add a File for Each Locale 136
Create a Global Table Containing the Base Strings 136
Using the Localization Table 137
Adding New Locales 137
Handling Partial Translations 138
Introducing Frames, Widget Scripts, and Events 138
Frames, FontStrings, and Textures 138
Displaying Text with FontStrings 139
Showing Graphics and Colors with Textures 139
Anchoring Objects On-Screen 139
Responding to Interaction with Widget Scripts 139
Responding to Game Events 139
Loading of an Addon 141
Summary 142

Chapter 9 Working with Frames, Widgets, and Other Graphical

Elements 143
Introducing BagBuddy 143
Creating an Addon Skeleton 144
Creating a Frame 144
Parenting 145

Contents

XIX

Chapter 10

Giving Objects Sizes
Absolute Dimensions
Relative Dimensions
Anchoring Objects
Sticky Anchors
SetAllPoints
Anchor Examples
Using Lua to Create Frames
Adding Layers of Textures and Font Strings
Layering Frames and Graphics
Frame Strata
Frame Levels
Graphical Layers
BagBuddy Frame Design
Finding Graphics
TexBrowser AddOn
ArtBrowser on Wowprogramming.com
Adding Textures
Defining BagBuddy’s Background Textures
Coloring Textures
Using Solid Colors
Creating a Gradient
Adding the Portrait Texture
Creating Textures in Lua
Creating Text using FontStrings
Further Customization
Using Font Definitions
Creating FontStrings in Lua
Understanding Object Visibility
Finding Existing Frames
Summary
The Code

Saving Time with Frame Templates
Understanding Templates
Advantages of Using Templates
Naming Elements Using $parent
Setting Keys Using the parentKey Attribute
Creating a Template for BagBuddy’s Item Buttons
Setting Button Textures
Creating New Frames with Your Template
Exploring Font Definitions
Altering a Font Definition

146
146
146
147
148
148
148
149
150
150
150
151
152
153
155
155
155
155
157
158
158
159
160
162
164
165
165
166
166
167
167
168

171
171
173
173
174
174
175
176
177
178

XX

Contents

Chapter 11

Chapter 12

Investigating UIPanelTemplates
UIPanelButtonTemplate
UlPanelCloseButton
UIPanelScrollBarTemplate
InputBoxTemplate
UICheckButtonTemplate
TabButtonTemplate
UlRadioButtonTemplate

Summary

The Code

Exploring the World of Warcraft API
Understanding the WoW API
Normal APIs
Library-like APIs
FrameXML Functions
Protected Functions
Unit Functions Up Close
Querying Item Information for BagBuddy
Scanning Bags with the Container API
Querying Detailed Item Information
Item Identifiers
Using the Item API
Writing a Bag Scanner
Sorting the Player’s Inventory
Displaying the Inventory
Testing the Update Function
Finding the Right API Functions
Exploring the API Categories
Examining the FrameXML Code
Looking at Another Addon
Asking for Help!
Summary
The Code

Interacting with Widgets
Making BagBuddy’s Buttons Interactive

Setting Frame Scripts via XML

Using the function Attribute

Setting Frame Scripts Using Lua

Showing Item Tooltips Using OnEnter and OnLeave
Adding Clickable Buttons to BagBuddy

Introducing the OnClick Handler

179
180
180
181
181
182
183
183
183
184

187
187
188
188
189
189
190
193
193
194
195
197
198
199
199
200
201
201
202
203
203
203
204

207
207
208
209
209
210
212
212

Contents

Chapter 13

Creating a Close Button Using Templates
Creating Clickable Filter Buttons
Creating the Filter Buttons Dynamically
Adding Custom Tooltips
Making the Filter Buttons Clickable
Updating the Results
Navigating Multiple Pages
Adding XML Definitions for Buttons and Status Text
Writing OnClick Handlers for Navigation Buttons
Altering the Update Function for Pages
Enabling and Disabling Navigation Buttons
Creating and Updating Status Text
Final Changes to Support Navigation
Adding a Name Filter to BagBuddy
Creating an EditBox
Filtering by Name
Exploring Widget Types
Button
CheckButton
ColorSelect
EditBox
GameTooltip
MessageFrame
Minimap
Model
ScrollingMessageFrame
ScrollFrame
SimpleHTML
Slider
StatusBar
Summary
The Code

Responding to Game Events
Understanding Events
Registering for Events
Responding to Events with OnEvent
Query Events
Tracking Changes to Inventory for BagBuddy
Examining the BAG_UPDATE Event
Tracking New Inventory Items
Writing a New Sorting Function
Altering BagBuddy_Update

213
214
216
217
217
218
219
220
221
221
222
223
224
224
225
226
227
227
228
228
229
229
229
229
230
231
231
231
232
232
233
233

243
243
244
244
246
246
246
246
248
248

Contents

XX

Chapter 14

Part Il
Chapter 15

Adding an OnEvent Handler
Cleaning Up
Adding a Slash Command
Storing Data with SavedVariables
Registering a New Saved Variable
Saved Variables and ADDON_LOADED
Using Items from BagBuddy
Finding the Right Event Using /eventtrace
Summary
The Code

Tracking Damage with CombatTracker
Defining Specifications
CombatTracker User Experience
Finding the Right Game Events
PLAYER_REGEN_DISABLED
PLAYER_REGEN_ENABLED
UNIT_COMBAT
Creating the Addon’s Skeleton
Defining CombatTracker’s XML Frame
Defining a Backdrop
Adding a Font String
Testing CombatTrackerFrame
Adding Script Handlers to CombatTrackerFrame
Adding Functions to CombatTracker.lua
CombatTracker_OnLoad(frame)
CombatTracker_OnEvent
PLAYER_REGEN_ENABLED
PLAYER_REGEN_DISABLED
UNIT_COMBAT
CombatTracker_UpdateText()
CombatTracker_ReportDPS()
Testing CombatTracker
Frame Dragging
Right-Click Reporting: Part I
Testing Combat Tracking
Right-Click Reporting: Part II
Summary
Advanced Addon Techniques

Taking Action with Secure Templates
Why Are Secure Templates Necessary?
Protected Frames

Controlling Secure Frames Using Attributes

249
250
251
251
252
252
253
254
255
255

267
267
267
268
268
268
269
269
270
271
272
272
273
275
275
276
276
277
277
277
278
278
279
279
280
280
281

283

285
285
286
288

Contents xxiii

Using Secure Templates 288
Defining Behaviors for Action Buttons 289
Casting a Spell 289
Looking Under the Hood 290
Specifying Units to Affect 291
Other Types and Their Uses 291
Making Simple Choices 296
Working with Modified Attributes 296
Delegating Attribute Responsibility 298
Choosing an Action by Hostility 298
Applying Action Buttons in Practice 299
Modifying an Existing Frame 299
A Complex Action Button 300
Understanding Taint and Working Safely Around Secure
Code 302
Enabling Taint Logging 303
Execution Taint 304
Variable Taint 305
Creeping Taint 307
Summary 308
Chapter 16 Binding Keys and Clicks to Addon Code 309
Defining Bindings in XML 310
Creating Your Own Binding Actions 312
Binding Keys to Actions 314
Building a Simple Binding UI 315
Defining Basic Behaviors 318
Using SetBinding() 321
Working with Existing Bindings 324
Displaying an Action’s Bindings 325
Understanding Binding Storage 326
Binding Keys to Secure Actions 327
Working with Click Bindings 328
Creating Secure Bindings in XML 329
Summary 329
The Code 330
BindingTest 330
ClickBindingTest 334
Chapter 17 Creating Slash Commands 337
Creating Basic Slash Commands 337
Tokenizing Strings 339
Tokenizing with Patterns 341

Setting Up the Patterns 341

xxiv Contents

Chapter 18

Chapter 19

Chapter 20

Preparing for the Tokenization
Parsing the Formula
Using a Command Table
Summary
The Code
SlashCalc

Responding to Graphic Updates with OnUpdate
Understanding Graphic Updates

Delaying Code Using OnUpdate

Grouping Events to Avoid Over-Processing
Grouping Multiple Events

Repeating Code with OnUpdate

Considering Performance with OnUpdate Scripts
Summary

Altering Existing Behavior with Function Hooking

What Is Function Hooking?
Modifying Return Values
Using a Variable Argument Function
Using Utility Functions capture() and release()
Hooking Widget Scripts
Hooking a Function Securely
Hooking Scripts Securely
Deciding When to Hook
Understanding the Hook Chain
You Can’t Rely on Order
There Is No “Unhook”
Hooking Hits Performance
Finding Alternatives
Designing an Addon: MapZoomOut
Creating a Timer Frame
Initial Setup
Create the Function Hook
Writing the Timer Code
Final Setup
Testing MapZoomOut
Summary
The Code
MapZoomOut

Creating Custom Graphics

Common Rules for Creating Graphics
The GIMP

342
343
345
347
347
347

351
351
352
354
355
356
357
357

359

359
360
361
361
362
364
365
365
365
366
366
366
367
367
368
368
369
369
370
370
370
371
371

373
373
374

Contents

Create a New Image
Adding Graphical Components
Saving Textures
Adobe Photoshop
Create a New Image
Adding Graphical Components
Creating an Alpha Channel
Saving an Image
Paint Shop Pro
Creating a New Image
Adding Graphical Components
Creating an Alpha Channel
Saving an Image
Testing Your Texture
No Button Appears
A Green Box Appears
XML Texture Definition
Lua Texture Definition
Summary

Chapter 21 Responding to the Combat Log and Threat Information

Understanding the Combat Log
Event Arguments
Combat Sub-Events
Combat Event Prefix
Bit Fields and Spell Schools
Combat Event Suffix
Spell-Only Suffixes
Special Combat Events
Unit GUIDs
Format of GUIDs
Unit Flags
COMBATLOG_OBJECT_TYPE_MASK
COMBATLOG_OBJECT_CONTROL_MASK
COMBATLOG_OBJECT_REACTION_MASK
COMBATLOG_OBJECT_AFFILIATION_MASK
COMBATLOG_OBJECT_SPECIAL_MASK
Using CombatLog_Object_IsA
Writing CombatStatus
Creating the Basic Addon Structure
Initializing CombatStatus
Updating Pet Mappings
Storing Damage and Healing Information
Taking “Snapshots’” of Damage and Healing

374
375
376
376
376
377
377
378
379
380
380
381
382
383
384
384
384
385
385

387

387
387
388
389
389
390
393
395
396
397
398
398
398
399
399
399
400
401
401
402
405
405
407

xxvi Contents

Chapter 22

Chapter 23

Writing an OnUpdate Function

Responding to Events
COMBAT_LOG_EVENT_UNFILTERED
PARTY_MEMBERS_CHANGED
UNIT_PET
PLAYER_REGEN_DISABLED
PLAYER_REGEN_ENABLED

Creating the Frame Display

Updating the Frame Display

Future Additions

Summary

Creating Scroll Frames

Using Scroll Frames
Adding a Scroll Child
Manipulating a ScrollFrame
Adding Scroll Bars

Creating Faux Scroll Frames
Adding Scroll Bars
Scrolling with the Mouse Wheel
Problems with Slider Precision

Summary

The Code
ScrollFrameTest
MacrolconTest

Creating Dropdown Menus
Creating a Basic Dropdown
Adding a Toggle Button
Creating a Dropdown Frame
Initializing the Dropdown
Adding Buttons to the Dropdown
Calling UIDropDownMenu_Initialize()
Toggling the Dropdown Menu
Testing the Dropdown
Creating Multilevel Dropdowns
Adding Functionality to Dropdowns
Customizing Text Elements
Function Menu Items
CheckButton Menu Items
ColorPicker Menu Items
Using Dropdowns for Selection
Automating Menu Creation with EasyMenu
Creating Dynamic Menus
Summary

408
408
409
409
409
409
410
410
410
412
412

413
414
415
416
417
419
422
423
423
424
424
424
426

431
431
432
433
433
433
434
434
435
436
437
438
440
440
441
443
445
447
449

Contents xxvii

Chapter 24 Scanning and Constructing Tooltips 451
Understanding the Tooltip System 451
Different Types of Tooltips 452
Contextual Tooltips 452
Static Tooltips 453
Tooltip Contents 453
Custom Text in a Tooltip 453
Game Element Tooltips 455
Adding Information to the Tooltip 458
Loading the Tooltip with Item Information 458
Getting Information from Tooltips 460
Accessing Individual Tooltip Lines 460
Checking Soulbound Status 461
Using Global Strings for Localization 461
Replacing a Script Instead of Hooking a Script 461
Summary 462
Chapter 25 Taking Protected Action in Combat 463
Snippets: The Basis of Secure Action 463
How Can Addon Code Be Secure? 463
Writing a Snippet 464
Secure Handler Frames 464
Handler Template Reference 466
Integrating a Click Handler with a Secure Action Button 468
Preserving State and Controlling Information 473
Private Global Environments 474
Secure API Functions 475
The control Object 476
Frame Handles 477
Allowed Actions 479
Additional or Changed Actions 479
Wrapping Frame Scripts 482
A Simple Click Wrapper 483
Using a Post-Hook 484
Script Wrapper Reference 485
Triggered Changes 486
State Drivers 486
State Responders 487
Responding to Show /Hide 487
Responding to Attribute and State Changes 488

State Conditionals 490
Target Specifiers and Unit Conditions 491

State Variables 492

Unit Conditions 492

General Conditions 493

xxviii Contents

Summary 496
The Code 496
BlessedMenus 496
Chapter 26 Creating Unit Frames with Group Templates 501
Configuring a SecureGroupHeader 501
Configuration Options 502
Initial Configuration Function 505
Creating SquareUnitFrames 506
Constructing the Template 506
Creating a Header Template 508
Setting Name and Status Bars 509
Nudging Frame Levels 511
Responding to Events and Clicks 511
Targeting the Unit on Left-Click 511
Moving the Header 512
Health Update Events 513
Power Update Events 514
Responding to Name Changes 516
Enhancing SquareUnitFrames 516
Highlighting Units on Mouseover 516
Showing the Targeted Unit 517
Displaying Threat Levels 518
Showing Dead Players 519
Displaying Unit Names 521
Adding Pets to SquareUnitFrames 523
Creating a SecureGroupPetHeaderTemplate 526
Summary 526
The Code 526
SquareUnitFrames 526
Part IV Reference 537
Chapter 27 API Reference 539
API Reference Conventions 539
Function Signatures 539
Optional Arguments 540
Argument Choices 540
Argument and Return Listings 540
Common API Flags 541
API Meta-Types 542
1nil 542
actionID 542

ah-list-type 543

Contents xxix

anchorPoint 543
arenaTeamID 543
auraFilter 543
backdrop 544
bitfield 544
binding 545
chatMsgType 545
colorString 545
containerID 546
containerSlotID 546
frameStrata 546
glyphIndex 547
GUID (Globally Unique IDentifier) 547
Players 547
NPCs 547
Pets 548
Vehicles 548
GUID Example 548
Hyperlink 549
player 549
playerGM 549
glyph 549
spell 550
enchant 550
quest 550
talent 550
achievement 551
trade 551
item 552
inventoryID 552
itemID 553
itemLocation 553
itemQuality 553
itemString 554
justifyH 554
justifyV 554
layer 554
macrolD 554
powerType 554
rollID 555
spellbookID 555
spellID 555
standingID 555
unitlD 555

API Reference 556

xxx Contents

Chapter 28 API Categories 1025
Achievement Functions 1025
Action Functions 1027
ActionBar Functions 1028
Addon-related Functions 1028
Arena Functions 1029
Auction Functions 1030
Bank Functions 1031
Barbershop Functions 1032
Battlefield Functions 1032
Blizzard Internal Functions 1035
Buff Functions 1035
CVar Functions 1035
Calendar Functions 1036
Camera Functions 1040
Channel Functions 1041
Chat Functions 1043
Class Resource Functions 1045
Client Control and Information Functions 1045
Combat Functions 1046
CombatLog Functions 1046
Companion Functions 1047
Complaint Functions 1047
Container Functions 1047
Currency Functions 1048
Cursor Functions 1049
Debugging and Profiling Functions 1051
Duel Functions 1052
Equipment Manager Functions 1052
Faction Functions 1053
GM Survey Functions 1054
GM Ticket Functions 1054
Glyph Functions 1054
Guild Bank Functions 1055
Guild Functions 1056
Hyperlink Functions 1059
In-game Movie Playback Functions 1060
Inspect Functions 1060
Instance Functions 1061
Inventory Functions 1061
Item Text Functions 1063

Item Functions 1063

Contents xxxi

Keybind Functions
Keyboard Functions
Knowledge-base Functions
Limited Play Time Functions
Locale-specific Functions
Looking For Group Functions
Loot Functions

Lua Library Functions

Mac Client Functions

Macro Functions

Mail Functions

Map Functions

Merchant Functions
Modified Click Functions
Money Functions

Movement Functions
Multi-cast Action

NPC “Gossip”” Dialog Functions
Objectives Tracking Functions
Party Functions

Pet Stable Functions

Pet Functions

Petition Functions

Player Information Functions
PvP Functions

Quest Functions

Raid Functions
Recruit-a-friend Functions
Secure Execution Utility Functions
Skill Functions

Social Functions

Socketing Functions

Sound Functions

Spell Functions
Stance/Shapeshift Functions
Stat Information Functions
Summoning Functions
Talent Functions

Targeting Functions
Taxi/Flight Functions
Threat Functions

Tracking Functions

Trade Functions

1065
1065
1066
1067
1067
1068
1069
1070
1072
1073
1074
1075
1076
1078
1078
1079
1080
1080
1081
1082
1083
1083
1085
1085
1088
1089
1094
1095
1095
1096
1096
1097
1098
1099
1101
1101
1103
1103
1104
1105
1105
1106
1106

xxxii Contents

Trade Skill Functions
Trainer Functions
Tutorial Functions
Ul /Visual Functions
Unit Functions
Utility Functions
Vehicle Functions
Video Functions
Voice Functions

Zone Information Functions

Chapter 29 Widget Reference

Widget Types

UlObject
ParentedObject
ScriptObject
Region
VisibleRegion
LayeredRegion
FontInstance
FontString
Texture

Frame

Button
CheckButton
ColorSelect
Cooldown
GameTooltip
Minimap
Model
PlayerModel
DressUpModel
TabardModel
MovieFrame
ScrollFrame
SimpleHTML
Slider
StatusBar

Font
MessageFrame
ScrollingMessageFrame
EditBox
AnimationGroup

1107
1108
1110
1110
1110
1113
1115
1116
1117
1119

1121
1121
1121
1122
1122
1124
1129
1130
1131
1135
1138
1145
1164
1170
1172
1175
1176
1192
1195
1201
1202
1202
1204
1206
1208
1215
1219
1221
1222
1225
1231
1238

Contents xxxiii

Animation 1243
Path 1248
ControlPoint 1250
Rotation 1251
Scale 1252
Translation 1253
Alpha 1254
Widget Scripts 1255
Chapter 30 Events Reference 1277
Part V Appendixes 1303
Appendix A Best Practices 1305
General Programming 1305
Use Meaningful Variable Names 1306
Variable Naming Exceptions 1307
Use Named Constants Instead of Literals 1307
Organize for Easier Maintenance 1308
Rework Repetitive Code 1308
Break Apart Long Functions 1309

Use Consistent Programming Style 1309
Lua Tips 1310
Use Local Variables 1310
Minimize Unnecessary Garbage 1311
How to Reduce Garbage 1312
Recyclable Objects 1317
Recycle Tables 1318
Other Fine-tuning Optimizations 1319
Check Expected Conditions First 1319
Exploit Shortcut Evaluation 1320

Use Tables as a Logic Structure 1321
Cache Frequently Accessed Values 1322

The WoW Environment 1323
Use What You're Given 1323
Localize with Global Strings 1323
Avoid Deprecated Systems 1324
Global Widget Handler Arguments 1324

bag and slot Attributes on item Type Action Buttons 1325
Avoiding Common Mistakes 1325
Adding Files While WoW Is Running 1325
Entering | into the Chat Edit Box 1326
“Missing’”” Frames 1326
Ignoring Logs\FrameXML.log 1326

Not Checking API Returns 1326

xxxiv Contents

Requesting Data Before PLAYER_LOGIN
Conflicting or Existing Anchor Points

Appendix B Utilizing Addon Libraries
What Is an Addon Library?
How Do Libraries Work?
Standalone Libraries
Advantages
Disadvantages
Embedded Libraries
Embedded Library Load Process
Manually Versioning an Embedded Library
Versioning Using LibStub
Using a Library
Ace3
Portfolio
Dongle
PeriodicTable
BossIDs
LibHealComm
LibSharedMedia
Other Library Resources

Appendix C Tracking History Using Version Control Systems
Subversion
Terminology
Layout of a Repository
Obtaining Subversion
Command Primer
svn checkout <url> [path]
svn update [path]
svn add <path>
svn commit [path]
svn status
svn log [path]
svn diff [path]
Creating a Local Repository
Git and Mercurial
Terminology
Obtaining Git
Obtaining Mercurial (hg)
Typical Usage
Git
Mercurial

1327
1327

1329
1329
1330
1330
1331
1331
1332
1332
1333
1334
1335
1335
1336
1336
1336
1336
1336
1336
1337

1339
1339
1340
1340
1341
1341
1341
1342
1342
1342
1342
1343
1343
1343
1344
1344
1345
1345
1345
1345
1347

Contents xxxv

Appendix D Addon Author Resources
Community Websites
World of Warcraft Forums
WowProgramming Forums
WoWInterface Forums
WowAce Forums
Curse Forums
Elitist Jerks
IncGamers UI Customization Forums
Internet Relay Chat (IRC)
#wowuidev on irc.freenode.net
#wowace on irc.freenode.net
#wowprogramming on irc.freenode.net
Distributing and Supporting Your Addon
WoW-Specific Hosting
WoWInterface
CurseForge and WowAce
IncGamers
Other Hosting Solutions
Google Code
Sourceforge
Personal Web Hosting

Index

1349
1349
1349
1350
1350
1350
1350
1350
1351
1351
1351
1351
1351
1352
1352
1352
1353
1353
1353
1353
1354
1355

1357

Introduction

Since World of Warcraft (WoW) was released on November 23, 2004, it has
been one of the most popular video games ever created. The game currently
boasts more than eleven million subscribers; it seems that everyone knows
someone who plays. World of Warcraft is an extremely immersive environment
that allows you to customize your character, explore new worlds, and group
with friends without requiring an enormous time commitment. Some players
spend four to six hours a night raiding with their guilds trying to defeat the
latest and greatest monster. Others prefer player-to-player combat, spending
time in the Arena or Battlegrounds trying to improve their standing. Some
players just enjoy playing the game with a group of friends when they have
spare time. World of Warcraft has something to offer each of these players,
and that’s probably one of the primary reasons for its success.

One aspect of the game that reaches each of these play styles is user
interface customization in the form of addons. For those players who are
technically inclined or simply can’t accept things being anything less than
perfect, Blizzard has opened up its user interface to allow players to customize
and change its overall functionality. Addons can be as simple as changing the
colors of health bars or adding a new slash command to do random emotes, or
as complicated as providing complex statistical analysis of a server’s economy.
Beyond opening up this world of customization, Blizzard continues to provide
enhancements and support for the user interface community in a way that no
other game developer has done.

The user interface community has grown immensely over the past few
years, and shows no signs of stopping. This book was written to give the
reader the tools necessary to create custom modifications to the World of War-
craft user interface, including an introduction to the languages, terminology,
and structure of addon creation. There are thousands of addons out there

xxxviii Introduction

waiting to be written, and this book provides you with the skills necessary to
realize them.

Who This Book Is For

This book is designed to be useful to novice addon users who want to learn
how to tweak existing addons, to budding addon authors looking to add more
exciting features to their repertoire, and to advanced addon developers as a
reference to the extremely complex WoW UI system. The only assumptions
made throughout the book are that you are familiar with World of Warcraft
and have an interest in programming. Readers who have had exposure to
programming languages in any form will find many of the concepts presented
to be familiar.

The reader with little to no prior programming experience should initially
focus on the first section of the book, which teaches Lua, the programming
language that is used to write addons. Although readers with no programming
experience will learn enough to create and modify addons, they may want to
pursue more general programming lessons from another source to supplement
the material presented.

For readers with prior programming experience, the first few chapters
will be very easy. The examples can be used to pick up the basic rules of
the Lua programming language rather quickly. If you are already familiar
with high-level scripting languages such as Python or JavaScript, you can
easily skim the first few chapters and move right into the second section,
which covers the basics of addon creation itself. These chapters detail how
the WoW addon system works for the author, and lead you through writing
your first addon.

Addon authors may want to skip directly to the third section of the book. Its
chapters introduce specific concepts and walk through the creation of working
example addons that use the concepts. Some of the more obscure difficult
systems (such as secure snippets, dropdown menus, and state headers) are
explored in depth.

In addition, the fourth section of the book contains an extremely compre-
hensive reference to the WoW AP], including events and widgets.

How This Book Is Organized

This book is divided into four parts that introduce increasingly complex topics.
Part I is an introduction to Lua and XML, bringing you up to speed with the
languages needed to create addons.

Introduction xxxix

Part II discusses the way addons are built and the basics behind the frame
system in World of Warcraft. In this part you create your first addon and
become familiar with the WoW API.

Part III of the book guides you through some of the more advanced topics
by creating a number of addons from start to finish.

Finally, Part IV is a comprehensive reference to the entire API, including
functions, widgets, events, and secure templates.

What's on the Website

Every few months, Blizzard releases a new patch for World of Warcraft that
may introduce new content, fix existing bugs, or even drastically change game
mechanics. As a result, the material covered in this book will change from time
to time. To help combat this problem, the authors have created a companion
website for the book at http: //wowprogramming.com. While we do not expect
sweeping changes to the core concepts, the details of any specific changes will
be listed on the website, including information about how those changes affect
the material in this book. Besides serving as a glorified errata repository, the
website also has online versions of all the references included in the book.

From Here

The World of Warcraft user interface community is a very exciting place
with endless possibilities for customization and realization of ideas. World of
Warcraft is a fun game in its own right; the capability to use it as a development
platform for addons that can help users and enhance their game experience is
an extra bonus that each of us can enjoy. So Enjoy!

Learning to Program

In This Part

Chapter 1: Programming for World of Warcraft
Chapter 2: Exploring Lua Basics

Chapter 3: Basic Functions and Control Structures
Chapter 4: Working with Tables

Chapter 5: Advanced Functions and Control Structures
Chapter 6: Using the Lua Standard Libraries

Chapter 7: Learning XML

CHAPTER

1

Programming for World
of Warcraft

World of Warcraft (WoW) was released Nov. 23,2004, and very quickly became
the model for Massively Multiplayer Online Role Playing Games (MMORPG).
Providing an intuitive user interface and a low barrier to success the game
is currently played by more than 11 million users, including their friends,
co-workers, and families. WoW has something enjoyable for those players
who spend six hours a night raiding with their guilds, the cubicle warriors
who play for half an hour a day on their lunch breaks, and a large range of
individuals in between.

Beyond killing monsters and questing for glory, there is another side to
World of Warcraft, a game within a game. Blizzard has provided an extremely
powerful system for creating third-party addons and writing macros, and
users have been taking advantage of the open system since the beta test for
the game. This book is designed to introduce you to the world of customizing
World of Warcraft and show you how to create custom addons.

Customizing the User Interface

The World of Warcraft game client consists of two major parts: the game world
and the user interface. The game world is the three-dimensional space in which
your character resides. This includes the buildings and terrain, other players
and enemies, and interactive objects such as herbs, mining veins, mailboxes,
and signposts. The game world also includes some non-three-dimensional
objects, namely the character names and titles, and the numbers that show the
damage your character has done. These elements are not accessible through
the scripting interface and cannot be modified.

Partl = Learning to Program

The user interface comprises the other elements in the client, including
the action buttons, unit frames, maps, and options windows. Addons can be
written to add or modify existing elements to add functionality or to show
information in a different way.

What Is an Addon?

An addon is a collection of files inside a named directory within the World of
Warcraft directory. These files are loaded by the game’s scripting system and
executed within the client to make some modification to the user interface.
This definition of addons does not include any third-party executables that
are run outside the game (those sorts of programs are normally prohibited by
WoW's terms of service).

The average addon consists of individual components that work together to
create a final product, possibly including;:

m A table of contents file that identifies the addon and the files to be loaded
m Media files, such as graphics and sounds

m [ua scripts that define the behavior of the addon

m XML files that define the visual elements of the addon

The first part of this book is designed to introduce you to the Lua program-
ming language and the XML markup that is specific to World of Warcraft.
These skills are an important part of writing addons effectively. If you are
already proficient in Lua and XML, you can skip ahead to Part II of the
book, which covers the use of the World of Warcraft API in creating addons;
however, you will likely find the material in Part I worthwhile.

What Can Addons Do?
Addons typically fall into one or more of the following categories:

m Displaying additional information, such as the sale price of quest rewards
(Figure 1-1), or approximately how many more of a given spell you can
cast without running out of power (Figure 1-2).

m Changing the display of interface elements, such as the combat text
information (Figure 1-3), or making the auction house interface easier to
navigate (Figure 1-4).

m Providing new ways for the player to take action (targeting units, casting
spells) within the game, such as replacement unit frames (Figure 1-5) or
alternate action buttons (Figure 1-6).

Chapter 1 = Programming for World of Warcraft 5

n ke Ramparts

i picked u

Figure 1-2: Dr. Damage displaying number of possible casts

[3 Hirs]
[4 Hirs)
[4 Hirs]
[4 Hirs, 1 Crir]
Far 135

[2 Hirs]
[2 Hirs]

Figure 1-3: MikScrollingBattleText displaying combat information

Partl = Learning to Program

Figure 1-4: Auctioneer displaying auction listings in a compact form

Figure 1-5: Grid unit frames showing the status of a raid

e P e N i X ' W F,
Figure 1-6: Bartender4 with ButtonFacade_Serenity providing alternate action buttons

Prior to the release of the Burning Crusade expansion pack to World of
Warcraft, there were several addons that Blizzard deemed against the spirit
and intention of the game. These addons were later disabled and changes were

Chapter 1 = Programming for World of Warcraft

made to the scripting system to prevent their use. As a result the following
actions are unavailable to addons:

m Automatic character movement
= Automatic target selection
= Automatic selection and use of spells or items

m Real-time communication with external programs

In the past, Blizzard has been asked about the limits of the scripting/macro
system. Its response has been that it is interested in “‘smart players,” not ““smart
buttons.” In other words, addons and macros can work to display information
to the users or allow them to access functionality in an easier way, but should
not be used to make automatic decisions.

Inaddition, addons are forbidden from doing anything that would otherwise
be against the World of Warcraft “Terms of Use,” which you can find at
http://worldofwarcraft.com/legal/termsofuse.html.

Exploring Your AddOns Directory

As mentioned previously, all addons must exist within a subdirectory under
your World of Warcraft directory. Depending on what operating system you
are using and how you have installed the game, this directory may exist in
one of a few places (see Table 1-1). If you happen to be running Windows
Vista, the location of your installation will depend on how the computer has
been configured and where the game was installed. During the installation of
Wrath of the Lich King or patch 3.0.2 you should have been asked to move the
game to option #3. If you agreed to this change, you may have two versions of
World of Warcraft, with the old one not being used any more.

Table 1-1: Default World of Warcraft Installation Directory

OPERATING SYSTEM DEFAULT INSTALLATION DIRECTORY

Microsoft Windows 98, 2000, C:\Program Files\World of Warcraft
or XP

Microsoft Windows Vista C:\Program Files\World of Warcraft
(option #1)

Microsoft Windows Vista C:\Users\<username>\AppData\Local\
(option #2) VirtualStore\Program Files\World of
Warcraft
Microsoft Windows Vista C:\Users\Public\Games\World of

(option #3) Warcraft

Mac 0OS X /Applications/World of Warcraft

Partl = Learning to Program

If you have launched World of Warcraft previously, there should be an
Interface directory within and an addons directory below that. This is where
all addons are stored.

Blizzard Addons

Much of the functionality in the default user interface is implemented via mod-
ular addons that are loaded only when needed by the user. When the player
visits an auctioneer, for instance, the game loads the Blizzard_auctionur
addon.

Having the addons in separate load-on-demand modules allows addon
authors to easily override the default functionality (such as replacing the
auction house interface rather than just changing it). Inaddition, the modularity
speeds up load times when starting the game. Table 1-2 describes the existing
Blizzard addons.

Table 1-2: Blizzard Load-on-Demand Addons

ADDON NAME PURPOSE

Blizzard_ AchievementUI Explore the achievements your character can
complete and those he has already
completed.

Blizzard_ ArenaUI Display unit frames for enemy units in arena
PVP.

Blizzard_ AuctionUI Search for items available for sale, as well as

posting new items up for auction.

Blizzard_BarbershopUI Customize the facial features and hair
style/color for your character.

Blizzard_BattlefieldMinimap Display a smaller version of the world map,
including the PVP objectives.

Blizzard BindingUI Customize the keyboard bindings made
available by the default and custom
interfaces.

Blizzard_Calendar Display a calendar that shows the various

scheduled game events and allows players
to create their own events.

Blizzard_CombatLog Present combat information in a linear
combat log that can be filtered and colored
via options.

Continued

Chapter 1 = Programming for World of Warcraft

Table 1-2: (continued)

ADDON NAME PURPOSE

Blizzard_ CombatText

Show various combat events in moving text
in the user interface, customizable via the
options screens.

Blizzard_DebugTools

Provide slash commands and utility functions
that are useful to addon developers.

Blizzard_GMChatUI

Provide a chat window for communication
with game masters.

Blizzard GMSurveyUI

Allow the user to fill out a survey that has
been sent by Blizzard following a GM
interaction.

Blizzard_GlyphUI

Inscribe glyphs into your spellbook in order
to customize your spells.

Blizzard_GuildBankUI

Add and remove items and gold from your
guild’s bank.

Blizzard_InspectUI

Inspect another player to view his
equipment, combat stats, and talents.

Blizzard_ItemSocketingUI

Socket gems into an item.

Blizzard_MacroUI

Edit global and character-specific macros.

Blizzard_ RaidUI

Display unit frames for the members in your
raid.

Blizzard _TalentUI

Assign talent points and explore the various
talent trees.

Blizzard_TimeManager

Show a clock on the minimap and provide a
simple in-game timer.

Blizzard_TokenUI

View the various currency tokens that your
character has earned.

Blizzard TradeSkillUI

Explore the various recipes that are
associated with a given tradeskill.

Blizzard_TrainerUI

Purchase skills available from a trainer.

Each of these directories contains a single file that has the addon’s name

and a .pub extension. As far as we can tell, this is some sort of signature
used by the game to verify the authenticity of the addon. Addons that are
written by Blizzard are given a special “secure” flag that allows them to take

Partl = Learning to Program

protected actions, something that is covered in Chapter 8. The code for the
addons is actually stored in the data files for the game and can’t be directly
replaced.

Custom Addons

If you have downloaded any custom addons they will sit alongside the
Blizzard addons in your Interface\aAddons directory inside subdirectories.
Unlike the official addons, these addon directories actually contain the files
that are necessary to load and run the addon. The organization and contents
of these files varies depending on the addon. Each author has his or her own
preferences and style and these differences are reflected in the way the addon
is packaged and the way the code is written. Although we provide some
recommendations for writing and packaging your addons, you are free to
develop a style that works best for you.

Creating Your First Addon: HeyThere

Before you delve into Lua and XML, take a look at a very simple addon
example so you'll have an idea of how the system works. To complete the
example you need to know how to create a new directory on your computer.
You also need to be familiar with a text editor that saves files without special
formatting. On Windows, for example, you could use Notepad to edit files; on
Mac OS X, the built-in Text Editor program is sufficient.

Creating Files and Directories

First create a new directory that will contain the addon. Navigate to your
Interface\Addons directory and create a new directory inside called HeyThere.
Open your text editor and type the following into the file:
Interface: 30300
Title: Hey There!

Notes: Provides slash commands to greet other players

HeyThere. lua

Save this file in the new directory as HeyThere.toc. Open a new file in the
editor and add the following;:

SLASH_HEYTHERE1l = "/hey"
SLASH_HEYTHERE2 = "/heythere"
SlashCmdList ["HEYTHERE"] = function(self, txt)

if UnitExists("target") then

Chapter 1 = Programming for World of Warcraft

11

SendChatMessage ("Hello " .. UnitName ("target"), "SAY")
else
SendChatMessage ("Hey there everybody!")
end
end

Save this file as HeyThere . 1ua in the same directory and close the text editor.
Don’t worry right now about what any of this code does; it’s just an example
addon to get you familiar with creating files and directories. You'll learn what
the code does later in the book.

Loading and Testing the Addon

If you have World of Warcraft open, you must close it so it can recognize the
new addon. Once you've re-opened the game client, log in to your account and
stop at the character selection screen. In the bottom left of the screen should
be a button named AddOns. Click it and a window similar to one shown in
Figure 1-7 opens. The window shows that WoW recognizes your addon and
will try to load it if it is enabled.

m You may find it useful to create a character on a server that is different from
your main server for addon development. This allows you to easily change which
addons are enabled and disabled without affecting the characters with which you
normally play.

Figure 1-7: Addon selection screen showing your new addon

Ensure that the addon is enabled by checking the box to the left of the
addon name. Click Okay to exit the addon selection screen and enter the game.

12

Partl = Learning to Program

This addon adds two new slash commands that allow you to greet people in
the world. You can type either /heythere or simply /hey and depending on
whether you have something targeted your character will display one of two
messages (see Figure 1-8).

Hello Brother Wilhelm | Hey there everybody!

Figure 1-8: HeyThere greeting with (left) and without (right) a target

If for some reason you do not see the addon in the addon selection list,
ensure that you've created the files and directories correctly. The layout should
be as follows:

B Tnterface\AddOns\HeyThere

® Tnterface\AddOns\HeyThere\HeyThere. toc

B Tnterface\AddOns\HeyThere\HeyThere. lua

If you get an error or have any other issues, double-check that you've typed
everything correctly in each of the files. Alternatively, download the addon

from this chapter’s section of the website at http://wowprogramming.com/
chapters/01 and compare it to the version you have created.

Summary

This chapter introduced you to the addon system for World of Warcraft. The
specific limitations and capabilities of the system were listed, along with a
description of the addons that Blizzard has included with the game. You
created your first addon and tested in-game to ensure it worked correctly.

Chapter 2 introduces you to the basics of the Lua programming language,
used extensively when creating addons.

CHAPTER

2

Exploring Lua Basics

Lua is a powerful, lightweight, embedded scripting language that is used
in several large software projects, including WoW. Lua is a fairly small
programming language, and you may find some similarities to other languages
you already know. Lua is most often compared to Python because both are
relatively easy for a non-programmer to use when compared to languages
such as C or Java.

This chapter serves as a general introduction to the Lua programming
language. If you have prior experience with Lua or have extensive experience
using other programming languages, you may want to skim this chapter
and run through some of the interactive exercises. Although these examples
should be easy to understand without you needing to run them, we strongly
encourage you to download a Lua interpreter so you can run through the
examples on your own. In addition, an interpreter allows you to easily explore
the language to increase your overall understanding of concepts.

You can read more about the Lua programming language at www. lua.org.
The website contains a large amount of reference material, including an online
version of Programming in Lua, a book entirely about the Lua programming
language.

13

14

Partl = Learning to Program

Downloading and Installing Lua

You have three easy ways to obtain a Lua interpreter:

1. Download WowLua, an addon the authors have written that gives you
an interactive Lua interpreter within World of Warcraft.

2. Visit the book’s website at http://wowprogramming.com/utils/weblua
to use an interactive Lua interpreter in your web browser.

3. Download a Lua interpreter to your computer, so it can be run locally
without access to the Internet or WoW.

The first option enables you to run a Lua interpreter directly within World of
Warcraft. This is useful if you want to spend your time in the game watching
things. The second allows you to run Lua without needing to download
anything, so it will work even on computers where you can’t install software.
The third option allows you to work with Lua when you're not connected to
the Internet, which also can be useful.

Any of these options will work for the examples in the first part of this book,
so feel free to choose the ones that work best for you.

Downloading and Installing WowLua

We have created a version of the Lua interpreter that runs as an addon within
World of Warcraft. This is the simplest way to install a Lua interpreter for
anyone with experience using addons. It also has the advantage of letting you
work within the game, allowing you to test your work on-the-fly, experiment
with the default UI and other addons, and still be able to chat with your friends
and guild.

Navigate t0 http://wowprogramming.com/utils/wowlua-addon and click
the download link to get the latest version of the WowLua addon. This
downloads a .zip file to your computer. Once you save the file, you can
extract it using your favorite compression utility or by double-clicking it on
a standard Windows XP or Mac OS X machine. A single folder called wowLua
will be extracted. Place the folder in the Interface\addons folder underneath
your World of Warcraft installation.

You can verify that the addon is installed properly by clicking the Addons
button in the bottom-left corner of your character selection screen. You should
see the addon listed in a fashion similar to that shown in Figure 2-1.

Chapter 2 = Exploring Lua Basics

15

Figure 2-1: WowLua in the addon listing

Select a character and log in to the game. Type either /lua or /wowlua into
the chat box to open the WowLua window (see Figure 2-2). You can close the
window by clicking the X button in the top-right corner, or by pressing the
Esc key.

= print{"Hello Warld")

= |

Figure 2-2: WowLua interactive interpreter

Using Lua on the Web

For those people who don’t want to run these examples within WoW and
have access to an Internet connection, we’ve created a simple webpage that
serves as a Lua interpreter over the Web, called WebLua. Simply browse to
http://wowprogramming.com/utils/weblua to begin.

The webpage requires JavaScript to function, so ensure you have it enabled
in your web browser.

16

Partl = Learning to Program

Downloading and Installing a Lua Interpreter

If you prefer to download an interpreter so you can work offline, packages are
available for both Microsoft Windows and Mac OS X.

Microsoft Windows

You can download the interpreter for Microsoft Windows at http://
wowprogramming . com/utils/lua/windows. The package doesn’t require any
installation; you can simply place it anywhere that is convenient for you.
Extract the ZIP file to a new folder and place it where you can easily find
it again.

To launch the Lua interpreter, go to the files you've extracted and
double-click the icon for the interpreter. This opens a window that looks
something like that shown in Figure 2-3. You can also create a shortcut to this
file from which you can launch the interpreter.

& Cioolsih e -0l =]
apyright <03 1994-28RY Lua.org,. PUC-Rin |

Figure 2-3: Lua running on Microsoft Windows

Mac 0OS X

You can find a package that can be used to install a Lua interpreter for Mac
OS X at http://wowprogramming.com/utils/lua/macosx. The download is
a standard disk image that can be mounted on your system. To mount it,
navigate to the disk image and double-click it. The disk image contains a
package (selected in Figure 2-4) that you can run to install Lua on your system.
Double-click the package to install Lua on your system.

To launch the Lua interpreter, you need to open Terminal. This is an appli-
cation normally located under Applications > Utilities. A window appears,
so you can type lua and press Enter to actually open the Lua interpreter.
Figure 2-5 shows a terminal window with Lua running.

Chapter 2 = Exploring Lua Basics 17

,] . fva 4
2 1 of 4 selected, 948 KB available
Lua-5.1.4-WoW Waorld of Warcraft

Programming

RTF RTE

Readme.rtf License.rtf

Lua 5.1.4 packaged for :
http://wowprogramming.com

Figure 2-4: Lua for Mac OS X disk image

bazh-3.2% lua r
Lua 5.1.4 Copyright {C} 1994-28@3 Lug.org, PUC-Rio
|

N =)

Figure 2-5: Lua running on Mac OS X

Using the Lua Interpreter

When you launch your interpreter for the first time, you are greeted with
something similar to the following:

Lua 5.1.4 Copyright © 1994-2007 Lua.org, PUC-Rio
>

The first line contains the version string of the particular Lua interpreter
you are using. As long as you are using a version that begins with 5.1 you

Partl = Learning to Program

should be okay. The second line of output is the prompt, where you can type
commands to be run.

Running Commands

The Lua interpreter is interactive, enabling you to input commands and
receive a response, like a conversation between two friends. You will receive
instant feedback with any errors in your code, allowing you to tinker with the
language to see how it works.

Type the following command at the prompt (you only need to type the part
after the >, shown in bold):

> print ("Hello Azeroth!")
You should see the following output:

Hello Azeroth!
>

This simple command takes the text string Hello Azeroth! and sends it to
the function print (), which outputs the string to your window. You examine
the nitty-gritty details of what this actually means later in this chapter.

.]m] For the purposes of this chapter, consider a function to be a process that
you can give information, and have it complete some task. In this case, you feed a
string to the function, which prints it to the output window.

Understanding Error Messages

Inevitably, you will make a typo and get an error from Lua when running a
command. The error messages are usually human-readable and will tell you
where the problem occurred. Type the following command at the prompt
(note that you're intentionally misspelling the word print):

> prnit ("Hello Azeroth!")
The response, a typical error message in Lua, is similar to this:

stdin:1: attempt to call global 'prnit' (a nil value)
stack traceback:

stdin:1: in main chunk

[C]: ?
>

The first line gives you the error message and the line number on which
the error occurred. In this case, Lua says that you tried to call a global prnit,

which is a nil value. In layman’s terms, it means you tried to call a function
that doesn’t exist.

Chapter 2 = Exploring Lua Basics

19

The rest of the error message is called a stack traceback, which tells you
where the error occurred. This will be useful when you begin calling functions
from other functions.

Using History to Make Changes

Depending on the Lua interpreter you are using, you may be able to view
the recent command-line history (the last few commands you've given the
interpreter) by pressing the Up and Down arrow keys. Test this now by
pressing the Up arrow key on your keyboard while in your Lua interpreter.
(This always works in WowLua, but may not work correctly if you are using
a standalone version of Lua.)

If it worked correctly, you should see the last line you typed (prnit ("Hello
Azeroth!")) and your cursor should be at the end of the line. If it didn’t work,
you may instead see something similar to the following:

> " [[A

That simply means your specific interpreter doesn’t handle history.
Although you may find this inconvenient at times, it certainly shouldn’t
hamper your capability to run through the examples correctly.

Quitting the Interpreter

When you are done running code in the interpreter, in most cases, you can
simply close the window. However, if you started the interpreter from a
command line and want to return to it, you can use one of the following
methods, depending on your operating system.

Microsoft Windows

On a Microsoft Windows system, Lua can be closed by pressing Ctrl+Z. This
inserts the following into your interpreter:

> "7

In Windows this inserts a special character that means end-of-file, and it
causes the interpreter to quit. You can also press Ctrl+C to outright kill your
session.

Mac OS X

Mac OS X is a UNIX-based system, so the end-of-file character is different
from that of the Windows systems. At your prompt, press Ctrl+D to insert
the end-of-file character and end the session immediately. You can also use
Ctrl+C to kill the session.

20

Partl = Learning to Program

Working with Numbers

Almost every language has a way to calculate numeric values, and Lua is no
different. Type the following into your interpreter:

> print (2 + 2)

As expected, you will see 4 as the response followed by another prompt.
Although it may not be the most convenient calculator, the interpreter does
enable you to perform calculations in your programs.

Basic Arithmetic Operations

Table 2-1 shows Lua’s basic arithmetic operators. You can use any of them to
compute a value.

Table 2-1: Lua Arithmetic Operators

OPERATION IN LUA EXAMPLE RESULT
Addition + > print (4 + 4) 8
Subtraction - > print (6 - 10) -4
Multiplication * > print (13 * 13) 169
Division / > print (10 / 2) 5
Exponentiation " > print (13 " 2) 169
Modulo % > print (8 % 3) 2

Unary Negation - > print(- (4 + 4)) -8

In addition to these operators, you can use parentheses to group expressions
together to make more complex expressions. Consider the following example:

> print(2 * (1 + 2 + 3) " 3)
432

If you run this command with no parentheses in the expression itself, you
get an entirely different answer:

> print(2 * 1 + 2 + 3 "~ 3)
31

Parentheses are used to make an expression explicit and ensure that it
is evaluated properly. In the second case, the exponentiation operator is

Chapter 2 = Exploring Lua Basics

21

processed first, followed by the multiplication operator and then the addition
operator, giving you the equivalent formula:

> print(2 + 2 + 27)

When in doubt, make your math explicit so it is easier to read when review
is needed in the future.

Scientific Notation

Occasionally, you’ll encounter an extremely large number such as
10,000,000,000,000,000 (10 ~15). Rather than type it out each time with zeros
or use parentheses to make sure it’s being calculated correctly inside another
formula, you can use scientific notation. Lua may automatically display large
numbers using scientific notation if printing them would be unwieldy. Run
the following commands:

> print (10 "~ 15)
le+015
> print (10
le-015

-15)

As you can see, Lua converts the numbers to scientific notation for the
purpose of printing them. Conveniently, you can also write numbers in
this fashion, which takes the first number and multiplies it by 10 raised to
the second number (the e in between can be capitalized or lowercase). For
example:

> print(1.23456e5)

123456

> print(1.23456 * (10 "~ 5))
123456

> print (1234e-4)

0.1234

> print (1234 * (10 ~ -4))
0.1234

You may not encounter numbers in scientific notation often, but under-
standing the output when Lua sends it back to you is important.

Hexadecimal Notation

Lua can natively convert a number in hexadecimal notation to the decimal
value. You can use this as a quick hex-to-decimal conversion, or you may
actually have a need to use hexadecimal notation in your systems. Lua expects
a zero, followed by the letter %, followed by a string of valid hex digits (0-9,
A-F, a-f).

22 Partl = Learning to Program

> print (0x1)

1

> print (0xF)

15

> print (0x10)
16

> print (0x10a4)
4260

When writing code, you can refer to numbers in this format and Lua will
convert them properly. As you can see from these examples, however, Lua
only responds in decimal or scientific notation, regardless of how the numbers
were input.

> print (2 * 0xF)
30

> print (0x10 ~ 2)
256

Understanding Floating Point

Every number in a standard Lua system is represented internally as a
floating-point number. For average use this won’'t make a difference, but
it can have some odd implications. Here’s a simple (but confusing) example,
which uses some concepts that you won’t examine until later in this section of
the book:

> pointTwo = 1.2 - 1.0
> print (pointTwo < 0.2)
true

> print (pointTwo)

0.2

Thenumber 0. 2 cannot be accurately represented as a floating-point number,
so the programming language must do a bit of rounding when calculating
the value, and then again when printing it. The floating-point numbers
in Lua can accurately represent any integer from 10" -37 through 10" 37,
so you shouldn’t encounter many of these problems. This rounding can,
however, serve as a source of calculation error when working with the real
numbers.

Much information regarding floating-point numbers and the implications
of the format exists out there on the Web. The following resources are all
extremely helpful if you're interested in exploring the topic further:

(continued)

Chapter 2 = Exploring Lua Basics

23

ON THE WEB (continued)

http://wikipedia.org/wiki/Floating point
http://docs.sun.com/source/806-3568/ncg _goldberg.html

http://lua-users.org/wiki/FloatingPoint

Understanding Values and Variables

Like most other languages, Lua makes a distinction between values (such
as the string "Hello" and the number 14) and variables (or references).
Understanding the underlying types of values and the distinction between a
value and a variable can be helpful while programming.

Exploring Values and Their Types

A value is the actual thing that is used, such as the number 17, or the string
"Hello". The number 14 is a different value from the number 27, but they are
both number values. The string "Hello" is a value, but it is a different type of
value than the two numbers. (There’s nothing tricky or complex that you need
to understand about values, I promise!)

There are eight primitive types in the Lua programming language and
every value you encounter will have one of them. You've already seen two
different types, number and string. The line between a string and number can
occasionally get blurry, such as drawing the distinction between the string "4
and the number 4, but they remain discrete types.

Primitive Types

Table 2-2 describes Lua’s primitive types. Every value ends up being one of
these types, regardless of where it’s encountered in the language.

You will encounter each of these types through the course of your work, so
you should be aware of them.

Using the type() Function

Within Lua you can use the type () function to determine the type of a given
value, which gives you flexibility when it comes to validation and verification
in your programs. Type the following into your Lua interpreter:

> print (type(5))
number

24 Partl = Learning to Program

Table 2-2: Lua’s Primitive Types

TYPE DESCRIPTION

number All numbers (including hexadecimal numbers and those using
scientific notation) have this type. Examples: 1, 7313, 1e5,
0xFFFla

string A sequence of characters. Examples: "Hello", "Test String".

boolean The values true and false are of the boolean type.

function A function is a collection of statements that can be called, and is

introduced in Chapter 3.

table A table is a mix between a traditional hash table (dictionary) and
an array.

nil The value ni1 is of the special type nil.

thread A value of the thread type is a coroutine (limited lightweight

thread) that can be used for asynchronous computation.

userdata Userdata is traditionally a wrapper around some data structure
defined in the host language (usually C).

What you’ve done here is call the type () function with a value of 5, and
call the print () function with that result (you explore functions further in
Chapter 3). The output shows that the type of the value 5 is number, as you'd
expect. Here are some other examples:

> print (type("Hello Azeroth!"))

string

> print(type(2 * (1 + 2 + 3) ~ 3))

number

> print (prnit)

nil

In the third example note the misspelling of the variable prnit. As you saw
earlier in this chapter, that is a ni1 value, so the type () function returns ni1 as
expected. You can always use the type () function to find out which type your
value is.

Using Variables

A variable can be seen as a temporary name for a specific Lua value, with the
caveat that the same value may have multiple names. An example here will
be more telling than words, so type the following into your interpreter (it may
not have output after each line, so just move on to the next line):

= 4
=2

Chapter 2 = Exploring Lua Basics

25

> print(x + y)
6

In this example, you take the name x and bind it to the value 4; and bind the
name y to the value 2. You then call the print function, and instead of using
the numbers 4 and 2, you use the names x and y.

Valid Variable Names

A variable’s name or identifier has to start with a letter or an underscore
character. The name cannot contain anything other than letters, numbers, or
the underscore character. In addition, it can’t be any of the keywords that are
reserved,by’Lua:and,break,do,else,elseif,false,for,function,if,in,
local, nil, not, or, repeat, return, then, true, until, and while. A variable
name is also case-sensitive, so the character a is different from the character 3,
meaning that the following are all different identifiers:

m MyVariable
= myVariable

= myvariable

Assigning Variables

Use the assignment operator = to bind a value to a variable name, with the
variable name on the left and the value on the right. Try the following examples
in your Lua interpreter:

> foo = 14

> print (foo)

14

> foo = "Hello!"
> print (foo)
Hello!

The first example binds the value 14 to the identifier foo, and you can print
and use that variable instead of the value itself. The second binds the value
"Hello" to the identifier, changing what the variable refers to.

Variables can be used on the right-hand side of an assignment operator
as well, and what happens in those situations is different depending on the
context. Try the following in your interpreter:

> x = 4
>y = x

> print(y)
4

> x =3

> print(y)
4

26

Partl = Learning to Program

The first line simply binds the value 4 to the identifier x. The second line,
however, assigns the value bound to the identifier x to identifier y. This means
quite literally that both x and v are names for the same value (the number 4).
As a result, when you run x = 3, you simply change that binding, leaving
v intact.

m The distinction between values and variables can be confusing, especially
when working through more advanced topics. Use the Lua interpreter as a tool to
explore the rules and better understand what's happening.

Assigning Multiple Variables

On some occasions you will assign more than one variable at a time, and a
convenient short form makes this easier. Run the following example:

>x, y=3,5
> print(x * y)
15

The assignment operator allows a list of variables on the left side and a list
of values on the right side. That'll be a bit more useful when you get into
functions and return values. If there are more variables on the left side than
there are values on the right side, the remaining variables will be set to nil.
If there are more values on the right side, they will just be thrown away.

Comparing Values
In many cases, you will need to compare different values to see how they are

related. Several comparison operators (listed in Table 2-3) can be used.

Table 2-3: Comparison Operators

COMPARISON OPERATOR EQUIVALENT LUA OPERATOR

equality ==
less than <
greater than >
less than, or equal <=
greater than, or equal >=
not equal ~=

These operate exactly as you’d expect, but you can play in the Lua interpreter
to better understand them. When you print the result of a comparison, it will
be of the boolean type (that is, true or false).

Chapter 2 = Exploring Lua Basics

27

> print (1l == 1)
true

> print (1l < 3)
true

> print (1 > 3)
false

> print (2 <= 2)
true

> print (1 >= 3)
false

> print(l ~= 3)
true

The equality operators (== and ~=) can be used to compare any two values,
but the <, >, <=, and >= operators can only be used with values of the same type,
such as when comparing number to number or string to string; otherwise you
will get an error as follows:

> print (1l < "Hello")
stdin:1: attempt to compare number with string
stack traceback:

stdin:1: in main chunk

[Cl: »?

In other words, whereas the == and ~= operators work for all values, the less
than/greater than (< and >) family of operators is only defined for numbers
and string values.

Working with Strings

You've already been introduced to the string type, and you've used it to print
"Hello Azeroth!" in the interpreter. In this section you examine strings in a
bit more detail.

Comparing Strings

The less than (<) and greater than (>) operators can be used on strings, but the
result depends on the way your system internally sorts the different characters.
For single character comparisons, the operator compares the two characters’
order in the character set; for multiple character strings, it compares the order
of the first two differing characters. For example:

> print("a" < nbu)
true
> print("d" >= ncu)

28

Partl = Learning to Program

true

> print ("abcd" < "abce")
true

> print("a" < "A")

false

> print ("abcd" < "abcde")
true

> print ("rests" < "test")
true

You may be surprised by the output from the fourth example. In the
standard Lua character set, uppercase English letters precede lowercase letters,
so the string "a" is actually greater than the string "a". In the fifth example, the
strings are identical until the first string runs out of characters. At this point,
Lua sees that the second string still has the letter "e" and returns that the
second is greater. However, in the final example, even though the first string
is longer than the second one, the letter "r" is less than the letter "t", so the
whole string "rests" is less than "test".

Concatenating Multiple Strings

Strings in Lua are immutable, which means they cannot be changed without
creating an entirely new string. To add to a string, you use the special
concatenation operator (. .), which enables you to take two strings and fuse
them together to make a new, larger string. Here are a couple of examples:

> x = "Hello"

> y = "Azeroth"

> print(x .. y)

HelloAzeroth

> foo = "a" .. "b" .. "¢c" .. "d" .. "e"
> print (foo)

abcde

Converting Numbers to Strings

As you can imagine, sometimes you will need to convert from numbers to
strings and, in most cases, Lua handles this for you. Try the following:

> print ("Number: " .. 4)
Number: 4

Lua automatically converts the number 4 to a string, and it’s added to the
string "Number: . If you need to explicitly convert a number to a string, you
can use the tostring () function, as in the following example:

> x = 17

> foo = tostring(x)
> print (type (foo))
string

Chapter 2 = Exploring Lua Basics

29

The tostring () function takes whatever it is given (in this case a number)
and turns it into a string value.

Converting Strings to Numbers

Conversely, you may have a string of digits that you’d like to convert to a
number. Lua’s built-in tonumber () function takes a value and turns it into
a number. If the digits can’t be converted (such as when the string doesn’t
contain a number), the function returns the value ni1l. Here are some examples:

> x = tonumber ("1234")
> print (type(x))
number

> print (x)

1234

> x = tonumber ("le3")
> print (type(x))
number

> print (x)

1000

Here the strings are converted into numbers, and the results are printed to
the screen. The tonumber () function has a few more tricks up its sleeve that
you can explore in Chapter 7.

Quoting Strings

So far, you've used double quotes to create strings, but there are several ways
to construct a string for use in Lua. When programming, it is considered proper
style to use the same type of quote character (as described in the following
sections) unless you have a specific reason for needing to use a different type.
This helps other people read your code without confusion.

Single Quote (")

You can use the single quote mark (')—also called a tick or tick mark—to
create a string, and this is standard convention. Nothing really special happens
here unless you need to include a tick mark within your string. Look at the
following examples:

> x = 'Hello'
> print (type(x))

string
> x = 'Isn't it nice?’
stdin:1: "=’ expected near ‘it~

The first example works correctly and creates a new string with the text
Hello inside.

30

Partl = Learning to Program

The second example throws an error that you should explore a bit more.
What Lua sees here is an identifier (x), the assignment operator (=), and a
string ('Isn'). Because Lua doesn’t require any whitespace between most
operations, it immediately starts the next part of the expression, which begins
with the identifier t. The next thing the interpreter sees is another identifier
called it, and doesn’t know what to do with it. In this case, the interpreter
infers that you meant to use the assignment operator and errors out with this
suggestion.

You can get around this by escaping the tick mark that is inside the string to
tell Lua that it’s part of the string instead of the end of it. Here’s an example:

> x = 'Isn\'t it nice?'
> print (type(x))
string

You tackle the details of string escaping shortly.

Double Quote (")

The double quote (") can be used the same way as the single quote, with the
same caveat of needing to escape embedded quote characters. Here are some
examples:

> x = "Hello"
> print (type(x))
string

> x = "Isn't it nice?"

> print (type(x))

string
> x = "I play the game "World of Warcraft""
stdin:1: '=' expected near 'of'

The second works because the tick mark isn’t being used to delimit the
quote, but the inner quote in the third example needs to be escaped with a
backslash:

> x = "I play the game, \"World of Warcraft\""
> print (type(x))
string

Bracket Quote ([[]])

Lua has the concept of a long quote that enables you to include multiple
lines and internal quote characters. These quotes begin with the open bracket
character (1), have any number of equal signs (=), including 0, and then

Chapter 2 = Exploring Lua Basics

31

another open bracket (1). The string closes only when it finds the opposite
combination (close brace, equal signs, close brace). Although this may seem
overly complex, it enables you to tailor-make your quote start/end for the
contents inside. Consider the following example:

> x = [[This is a long string, and I can include ' and "]]
> print (x)
This is a long string, and I can include ' and "

This includes no equal signs, which is the typical case. You could instead
include any number of them, if you needed to use the string " 11" somewhere
in your larger string, as in this example:

> x = [==[This is a long string, and I can include 11, ', and "]==]
> print (x)
This is a long string, and I can include]], ', and "

You may not find yourself using the [[Some String]] syntax often, butitcan
be useful when the string spans multiple lines, or includes quote characters.

Escaping Special Characters

Beyond the “ and “ characters, there are other characters that aren’t necessarily
type-able but need to be included in a string. Try to make a multiline string
and see what happens:

> x = "First line
>> Second line"
stdin:1: unfinished string near '"First line'

Two things happen here: First, the prompt changes to two >> signs instead of
the normal one. This means you have an unfinished block and the interpreter
is waiting for you to finish the expression. Second, you get an error about an
unfinished string. This is a peculiarity in the Lua interpreter, because nothing
you can type on the second line will allow you to complete the expression.

You get around this by using \n, an escaped character that means newline.
Type the following:

> x = "First line\nSecond line"
> print (x)
First line

Second line

When constructing a string, you can include any of the escape sequences
listed in Table 2-4. Not all entries will have an effect when printed inside
World of Warcraft, but you should be aware of what valid sequences exist
because you may find them in preexisting strings.

32

Partl = Learning to Program

Table 2-4: String Escape Sequences

SEQUENCE DESCRIPTION

\a audible bell
\b backspace

\f form feed

\n newline

\r carriage return
\t horizontal tab
\v vertical tab

\\ backslash

\" double quote
\' single quote
\xxx ASCII character ddd

In World of Warcraft, you typically only encounter \n, \\, \", \', and \xxx,
because the output widgets in World of Warcraft don’t support the others.

.m More often than not, you will find escape codes used in localization
strings for addons. Some locales contain characters that aren’t type-able on all
keyboards, so they are inserted using the \xxx syntax. In the deDE localization for
World of Warcraft, the word Hunter is "g\195\164ger”, which is typically
displayed as Jager. Localization is discussed further in Chapter 8.

Getting a String’s Length

There are two ways to obtain the length of a specific string: using the # operator
or using the string.len() function. The length of a string is often used when
validating or parsing strings.

Using the # operator before a string value returns the length as a number, as
shown in the following examples:

> print (#"Hello")
5

> foo = "This is a test string"
> print (#foo)
21

You can use the built-in function string.len () to accomplish the same feat.
The period in between string and len means that this specific function is a

Chapter 2 = Exploring Lua Basics

33

part of the string namespace (which you learn more about in Chapter 4). Type
the following into your interpreter:

> foo = "This is a test string"
> print (string.len(foo))

21

It returns the same value as the # operator because they both use the same
underlying method to calculate the length.

Boolean Values and Operators

The boolean type is relatively simple and only has two possible values—true
or false—but as with many things in programming, there’s more than meets
the eye. Three logical operators can be applied to Boolean values: and, or,
and not.

Using the and Operator

The and operator is true when both of its arguments are true, and false when
either of them is false or doesn’t have a value. Examples help make this clearer:

> print (true and true)
true

> print (true and false)
false

> print (false and false)
false

> print (false and true)
false

This operator has one peculiarity that you might run into, illustrated by the
following example:

> print (false and "Goodbye")
false

> print (true and "Hello")
Hello

> print (true and 4)

4

In the first example, Lua evaluates only as much of the expression as
necessary. The and operator is being used, and it encounters a false value, so
it simply returns false without evaluating the rest of the expression (referred
to as short-circuit evaluation). In the last two examples, Lua does something
similar: it encounters a true value, so it returns the second value as its result.
That’s because the expression true and value evaluates to true if and only if
value itself would evaluate to true.

34

Partl = Learning to Program

Using the or Operator

The or operator is true any time either of its arguments is true. Again, a simple
set of examples should make this clear, because there are only two possible
truth values:

> print (true or true)
true

> print (true or false)
true

> print (false or false)
false

> print (false or true)
true

This operator has a lower precedence than the and operator, so make sure you
are using it correctly, and include parentheses when necessary. For example:

> print (false and false or true)
true
> print (true and false or false)
false

In the first example, even though false and false turns out to be false,
it is part of a larger or statement, so the whole expression evaluates to true.
This isn’t Lua being confusing; it’s the underlying Boolean logic at play.

m You can use the behavior of the and and or operators to shorten some of
your expressions if you remember how they are evaluated. These operators allow
you to make the equivalent of the a ? b : ¢ statement in C, using Lua. You will
encounter more useful examples of this later, but here’s a small example:

> print(true and "Hello")

Hello

> print (false and "Hello" or "Azeroth!")
Azeroth!

Negation Using the not Operator

Simply enough, if you need to turn one Boolean value into the other, toggling
it, you can use the not operator:

> print (not true)
false

> print (not false)
true

> print (not 4)

Chapter 2 = Exploring Lua Basics

35

false
> print (not "Hello")
false

Again, because any value in Lua that is not false or nil evaluates to true,
you can even negate those values.

Understanding the nil Value
Earlier in this chapter, you encountered the following error message:

stdin:1: attempt to call global 'prnit' (a nil value)

nil is a special thing that means lack of value in Lua. This is most often seen
when working with variables and tables (which you learn about in Chapter 4).
Type the following into your interpreter:

> print (SomeEmptyVariable)

nil

> print (type (SomeEmptyVariable))
nil

Because you have not bound the variable someEmptyvariable to anything
yet, it holds the special value nil, which is of type nil. You can use this
knowledge to check if a variable is currently unset, as in the following
example:

> print (SomeEmptyVariable == nil)

true

> print (type (SomeEmptyVariable) == "nil"))
true

You can check to see if a value is equivalent to nil, using the == operator.
You can also check the type of the value, to see if that is nil. Be sure to note
the difference between the value nil and the string "ni1", because the type ()
function always returns a string.

Exploring Scope

So far, each and every variable you have declared has been a global variable,
meaning it is accessible to all other parts of your program. There is another
type of variable, which is called local, in that its visibility to the rest of the
program is limited in some way. To fully understand the difference between
global and local variables you need to understand the scope (or visibility rules)
of blocks and chunks.

36

Partl = Learning to Program

Blocks

The best way to illustrate a block is with an example, so type the following
into your Lua interpreter:

> do

n
~

>> local i
>> do

>> local i = 10

>> print("Inside: " .. i)
>> end

>> print("Outside: " .. i)
>> end

Inside: 10

Outside: 7

Apart from the new keywords do, end, and local, you're doing something
fairly simple here. You assign the value 7 to the variable i, assign the value 10
to a new variable i, and then print each of them out as a string. In this case, the
do keyword tells the interpreter to begin a block, and the end keyword shows
where the block ends. It might make more sense when viewed indented:

local 1 = 7

local 1 = 10
print ("Inside: " .. 1)
end

print ("Outside: " .. 1i)
end

By declaring the variable i as local, you've limited its scope to the current
block, in this case, the code between within the same do and end keywords.
You can access this variable as much as you like within those boundaries, but
outside that it’s as if the variable doesn’t exist.

In addition to manually creating blocks using do and end, certain Lua
constructs such as for loops, while loops, and function definitions implicitly
begin a new block. You learn more about these constructs in Chapter 3.

.m In World of Warcraft, your addons will be competing with any number of
other addons that may use global variables. As a result, it is considered good
practice to use local variables in many cases.

Chapter 2 = Exploring Lua Basics

37

Chunks

Earlier in this chapter, you received a stack traceback with an error, and it
may have referenced the main chunk. In Lua, a chunk is either the file being
executed, or the string that is being run. Variables are also limited in scope to
their specific chunk. This means a local variable declared at the top of one file
won't be accessible in another file (they are different chunks).

In the Lua interpreter, each individual line you type is its own chunk, unless
you wrap it in a block (such as the preceding do ... end block). For this reason,
the following code will not work:

> local i = 10
> print (i)

nil

This is just a peculiarity of the way the Lua interpreter works. To get around

this, you can use do ... end to wrap multiple lines of code:
> do
>> local 1 = 10

>> print (1)
> end
10

Scope and visibility will be more important when you start working with
functions in Chapter 3, but it is important to understand the implication that
almost all variables are global, unless specified otherwise.

Summary

This chapter gave you a very broad introduction to fundamental concepts
central to the Lua programming language, including variables, values, types,
operators, and scope. Chapters 3 through 6 give you a more in-depth introduc-
tion to specific aspects of the language, as it relates to World of Warcraft. The
Lua programming language is used extensively outside WoW and a number
of good reference books are available on the language as a whole.

CHAPTER

3

Basic Functions and Control
Structures

Chapter 2 showed you the basics of the Lua programming language using the
print () and type () functions, without fully explaining what a function is. In
addition, basic control structures such as loops and conditionals haven’t been
introduced yet.

The first part of this chapter explains the concept of functions and guides
you through creating several of your own. The second half introduces the
basic looping and conditional statements.

Using Functions

A function is a portion of a program that can be used to simplify repeated tasks
or perform complex calculations. When a function is called it may be passed
several arquments, that is, data that the function can use for the duration of its
execution. When a function completes, it can return any number of values to
the calling portion of the program.

Creating a Function

The function keyword is used to create a new function, which can then be
stored in a variable or called directly. A basic function declaration looks like
this (type this into your Lua interpreter):

> hello = function()
>> print ("Hello World!")
>> end

39

40

Partl = Learning to Program

The function constructor begins where you type function () and continues
to the matching end keyword, with the code between these delimiters making
up the body of the function. The Lua interpreter recognizes the new block
of code and indents the prompt to show you're continuing the same section
of code (until you type the final end). In this case, a function is created that
takes no arguments (more on this in the next section) and prints the string
Hello world before ending. The resulting function value is then assigned to
the variable hello. Test this function by running the following;:

> hello()
Hello World!

Now, instead of typing print ("Hello World") every time you want to print
that string, you can simply type hello() to call the new function. This is an
extremely simple example, but you use the full power of functions as you
move through the examples in this chapter.

Local Functions

The function constructor returns a new Lua value, so it can be assigned to a
local variable the same as any other value. This can be useful when defining
functions that are called within your addons, but need not be exposed for other
addons to call. Local variables are difficult to explore in the Lua interpreter
because each line of code is in its own scope, but you may find the technique
of using local functions useful when working through the rest of this book.

SYNTACTIC SUGAR

Lua provides a different way to define functions that is more conventional and
may be easier to read. Examine the following function definition:

function hello()
print ("Hello World!™")
end

When the Lua interpreter encounters this definition, it is converted into the
definition used in the previous section:

hello = function()
print ("Hello World!")
end

That is to say, the two definitions end up running the same code in the
interpreter. Functions defined in this manner can be made local by adding the
keyword 1ocal before the function constructor, such as:

local function hello ()
print ("Hello World")
end
(continued)

Chapter 3 = Basic Functions and Control Structures

11

SYNTACTIC SUGAR (continued)

When the 1ocal keyword is used, it is converted to roughly the following
version:

local hello

hello = function()
print ("Hello World")

end

Function Arguments and Returns

When a function is called, it can be passed any number of arguments to be used
throughout the body of the function. In addition, a function may return any
number of values when it completes. This allows for the creation of dynamic
functions that can operate on values that are passed into the function, rather
than some static formula or process.

Simple and repetitive tasks such as converting degrees Celsius to degrees
Fahrenheit can easily be made into functions that use arguments and return
values.

Converting Celsius to Fahrenheit

The conversion formula given for temperature conversion is “Multiply the
temperature in degrees Celsius by 1.8 and add 32 to the result.” Instead of
performing this conversion with arithmetic each time, a function can be written
that takes a number as an argument and returns the converted value as the
answer. Type the following into your Lua interpreter:

convert_c2f = function(celsius)
local converted = (celsius * 1.8) + 32
return converted

end

Here, a function is created with a single argument, which is named celsius.
The first line of the new function calculates the converted value and the second
line returns it. To see how this works, type the following;:

> print (convert_c2£f(0))
32

> print (convert_c2f(-40))
-40

When the new function is called, the first argument passed to it (the
number 0) is assigned to a local variable named celsius (corresponding to
the name given in the function). This allows you to define the formula for
conversion without needing to know the specific number you are converting.

42

Partl = Learning to Program

Empty Arguments
Try the following in your interpreter:

> print (convert_c2£())
stdin:2: attempt to perform arithmetic on local 'celsius' (a nil value)
stack traceback:

stdin:2: in function 'convert_c2f'

stdin:1: in main chunk

[C]: 2

When no value is passed as an argument, the argument gets the value of
nil. The first line of the convert_c2f function tries to multiply celsius by 1.8
and errors out because nil can’t be part of an arithmetic expression. A similar
error will occur if you pass other non-number values into this function.

No Return Values

Not every function you encounter will have a return statement because not
all functions need to return anything. The hello () function defined earlier
in this chapter is one such example. In these cases any assignments or other
expressions involving a call to the function will evaluate to nil. Here’s an
example:

> function hello() print("Hello World!") end
> test = hello()

Hello World!

> print (type(test))

nil

Functions as Lua Values

Each function in Lua is just a plain Lua value of the type function. These
values can be compared (using == and ~=), bound to variable names, passed
to functions, returned from functions, and used as keys in tables (tables are
explored in Chapter 4). A Lua value that is treated this way is called a first-class
object, and a language that supports functions in this way is said to have
first-class functions.

Run the following in your interpreter:

> hello = function() print("Hello World!") end

This creates a new function called hello. This value can now be compared
in the same way you’d compare any other Lua value.

> print (hello == hello)
true

> hello2 = hello

> print (hello2 == hello)

Chapter 3 = Basic Functions and Control Structures 43

true

> hello2()

Hello World!

> hello2 = function() print("Hello World!") end
> print (hello2 == hello)

false

In the final lines of the preceding example, a new function is created and
bound to hello2. Even though the new function has the exact same definition
and body as hello, it is actually a distinct function.

Making Decisions with the if Statement

The if statement is the basis for decision making in Lua, and it supports
simple conditionals as well as more complex statements. The syntax of the
most basic if statement looks like this:

if <boolean expression> then
-- do something
end

Simple Conditionals

An if statement can be used to execute a block of code conditionally when
the Boolean expression evaluates to true. To better see this, type the following
into your interpreter:

function conditional_test (num)

print ("You input: " .. num)
if (num == 7) then
print ("You found the magic number!")
end
end

This example function prints whatever number it gets passed, but if the
number 7 is passed, it will print an additional special message. Input this
function into your interpreter, and then test it with the following;:

> conditional_test(3)

You input: 3

> conditional_test(7)

You input: 7

You found the magic number!
> conditional_test (13)

You input: 13

44

Partl = Learning to Program

As with other arithmetic and Boolean expressions, the parentheses around
the conditional are not strictly necessary, but they can certainly make code
easier to read.

Complex Expressions

In addition to simple Boolean conditions, Lua supports more complex expres-
sions so long as the expression evaluates to a Boolean value. That allows you
to combine multiple conditions using the logical operators (and, or) into a
single complex condition. The following are all valid conditions (where name
and anonymous_flag are variables):

B name
B type (name) == "string"
B (not anonymous_flag) and (type(name) == "string")

The first example simply checks to see that the variable name is anything other
thannil or false. The second example checks to verify that the variable name is
a string, and the final example checks to see that the variable anonymous_flag
is either false or nil, and the name variable is a string.

Extended Conditionals

An extended form of the if statement allows you to chain multiple conditions
together, as well as provide a default for when no condition is matched. The
full syntax for the if statement is:

if <boolean expression> then
-- if part

elseif <boolean expression> then
-- elseif part

elseif <boolean expression> then
-- another elseif part

else
-- else part

end

When the interpreter runs this expression, it checks each condition in order,
stopping at the first expression that evaluates to true and running that portion
of the code. If none of the expressions are true, the code in the else section is
run. Not every if statement will include elseif or else options, but they are
always available if you need them.

Using this form of i £/elseif/elseensures that only one action in the entire
if statement will be taken. If you were to write it using a series of simple if
statements, more than one may be called, as in the following example.

Chapter 3 = Basic Functions and Control Structures

45

if <first condition> then
-- do something
end

if <second condition> then
-- do something
end

Both types of constructs are useful but you should ensure you are using the
correct one, so your program behaves correctly depending on whether you
need to take one action based on a condition, or evaluate multiple conditions
independently.

Displaying a Personalized Greeting

Conditionals can be used to verify the arguments to a function. For example,
consider a function that takes a name (or nil) and prints out a personalized
greeting. Define this function in your Lua interpreter:

function greeting(name)

if (type(name) == "string") then
print ("Hello " .. name)
elseif (type(name) == "nil") then

print ("Hello friend")
else
error("Invalid name was entered")
end
end

The first condition checks to see if the name argument is a string, in
which case it generates and prints a custom greeting. If the name argument is
nil, meaning nothing was passed into the function, it will print the generic
string Hello friend. Finally, if neither of the previous conditions match, the
function triggers a custom error message using the error () function. Test this
new function in your interpreter:

> greeting("Frank")

Hello Frank

> greeting()

Hello friend

> greeting(13)

stdin:7: Invalid name was entered

stack traceback:
[C]: in function 'error'
stdin:7: in function 'greeting'
stdin:1: in main chunk
[C]l: »?

46

Partl = Learning to Program

When the error() function is called, Lua provides the error message
supplied along with a stack traceback. In this case, you can see that the error
was triggered from the greeting () function, which was called from the main
chunk.

The preceding greeting () function could have been written without using
the elseif statement, by using nested if statements, as follows:

function greeting (name)

if (type(name) == "string") then
print ("Hello " .. name)

else
if (type(name) == "nil") then

print ("Hello friend")
else
error ("Invalid name was entered")
end
end
end

The nested style is useful in certain situations when you have multiple
conditions but also need to have an else portion for each of them. In general,
use whatever style you consider to be more readable and appropriate for the
given situation.

Repeating Actions with the while Statement

Computers are often used to repeat tasks or simplify complex calculations that
would otherwise require manual repetition. Lua provides the while statement,
which will repeat a block of code as long as a specified condition is met. The
while statement’s syntax is:

while <boolean expression> do
-- body
end

The Boolean expression is evaluated on each and every repetition of the
loop, and the loop will continue as long as the condition evaluates to true.

Computing Factorials

The process of computing a number’s factorial is a good example of something
thatis easily automated. The factorial of a number x is computed by multiplying
all of the numbers from 1 to x together. Thus, 3 factorial is 1 * 2 * 3.1If a
function factorial() is defined, you can simply type print (factorial(9))

Chapter 3 = Basic Functions and Control Structures

47

instead of print (9 * 8 * 7 * 6 * 5 * 4 * 3 x 2 * 1), Define this function
now by typing the following definition into your interpreter:

function factorial (num)
local total =1
while (num > 1) do
print("total: ".. total .. " num: " .. num)
total = total * num
num = num - 1
end
return total
end

This function includes a print () statement that will show you what the
function does on each iteration of the loop. Before using this code in an addon,
remove that line from the function, or simply comment it out. For now, test
this in your Lua interpreter:

> print (factorial(5))
total: 1 num: 5
total: 5 num: 4
total: 20 num: 3
total: 60 num: 2

120

You can see each step of the loop and how the value is being calculated.
Using debug statements like this can be really handy when writing code, but
you have to remember to remove them before you release the code.

.m The condition of a while statement is checked prior to running the loop,
and again on each subsequent run of the loop. This means if the condition is never
met, the body of the while loop is never executed, and Lua just skips past it.

Differences Between while and repeat

The repeat/until loop is a variant of the while loop that has the following
form:

repeat
-- body
until <boolean expression>

The primary difference between the while/doloop and a repeat /until loop
is that the condition of a repeat loop is checked at the end of the computation,
so the loop of the body is always executed at least once. In other words,
the condition in a while statement is checked in order to continue the loop,

48 Partl = Learning to Program

whereas the condition in a repeat loop is checked in order to exit the loop.
Here’s how you’d define a new factorial function using this construct:

function factorial2 (num)
local total =1
repeat
total = total * num
num = num - 1
until (num < 1)
return total
end

You can verify the results of this function by testing it with a few different
values:

print (factorial2 (1))
print (factorial2(2))

>
1
>
2
> print (factorial2(3))
6

>

print (factorial2(5))
120

If you happened to test these two functions with some unexpected value,
such as -3, you should see a difference between the results:

> print (factorial(-3))
1
> print (factorial2(-3))
-3

When running factorial(), the num variable is already less than 1, so
the while body never runs; it simply returns the default value of 1. When
factorial2 () is called, the body of the loop happens once, which causes the
different return value of -3.

Looping with the Numeric for Statement

As the preceding factorial function demonstrated, many loops begin at a simple
integer value and then either increment or decrement to some predefined limit.
In the case of factorial (9), the loop starts at 9 and continues until it reaches 1.
Rather than managing this sort of loop yourself, the for statement provides
an easy way to write these loops:

for variablename = start_value, end_value, step_value do
-- body
end

Chapter 3 » Basic Functions and Control Structures

49

Table 3-1 explains the different arguments that must be supplied to the for
statement.

Table 3-1: Arguments for Numeric for Loop

ARGUMENT DESCRIPTION

variablename A valid variable identifier, the counter variable

start_value A number, the initial value of variablename

end_value A number, the end value of the loop

step_value The number by which to increment the counter after each loop

The following are examples of simple for loops:

> for i =1, 3, 1 do
>> print (i)

>> end

1

2

3

> for i = 3, 1, -1 do
>> print (i)

>> end

3

2

1

These two loops translate (roughly) to the following code blocks using while
loops:

do
local i =1
while (i <= 3) do
print (i)
i=1+1
end
end

and

do
local i = 3
while (i >= 1) do
print (i)
i=1i-1
end
end

Partl = Learning to Program

When the step value in a for loop is not provided, Lua assumes a value of 1
for the loop. The earlier 1, 2, 3 example can thus be written as follows:

for i = 1, 3 do
print (i)
end

Computing Factorials

The for loop can be used to make the factorial () function even more clear.
Type the following definition into your interpreter:

function factorial3 (num)
local total =1

for i = 1, num do
total = total * i
end

return total
end

Rather than manually writing the terminal condition for the while or repeat
loop, you can just provide the for statement with a start value, and an upper
bound. This example uses the variable num, which is evaluated to a number
when the function is run.

Evaluation of Loop Conditions

In a for loop, the end_value and step_value are both calculated once, at the
start of the loop. As a result, variables and expressions can be used for these
values. These values cannot be changed mid-loop; they will have already been
calculated. Consider the following example:

> upper = 3

> for i = 1, upper do
>> print (i)

>> upper = upper + 1
>> end

1

2

3

This example doesn’t loop forever because loop conditions are only evalu-
ated at the start of the loop.

Variable Scope in for Loops

When writing a for loop, remember that the counter variable name you supply
will automatically be made local to that block and won’t be accessible outside
that level:

> i = 15
> for i = 1, 3 do print(i) end

Chapter 3 = Basic Functions and Control Structures

51

1
2
3
> print (i)
15

In addition, changes made to the counter variable inside the loop do not
affect the iteration. For example, the assignment to i in the following loop
doesn’t actually advance the loop counter:

> for i = 1, 10 do

>> print("Loop iteration: " .. i)
> i =1i+ 1
>> end

Loop iteration:
Loop iteration:
Loop iteration:
Loop iteration:
Loop iteration:
Loop iteration:
Loop iteration:
Loop iteration:
Loop iteration:

P W 00 J o Ul b WD

Loop iteration: 10

If, for some reason, you need to save the control variable’s value, you can
declare a local variable just prior to the for loop, where you can save the
number you need, as in the following example:

upper = 10
do
local max
for i = 1, upper do
max = 1
end
print (max)
end

When the loop terminates, max will be 10, which was the last value of the
control variable.

Summary

This chapter introduced you to functions and showed you two different
methods to create functions, using two different syntaxes. Conditionals and
control structures were introduced, enabling you to easily perform repeated
computations. The next chapter explores advanced techniques using functions
and control structures.

CHAPTER

4

Working with Tables

Keeping data in variables is handy when working on simple programs, but
larger projects require an easier way to store data. Consider a simple address
book program that enables you to electronically store contact information.
Using variables, that might look something like this:

alice_name = "Alice Applebaum"
alice_phone = "+1-212-555-1434"
alice_addressl = "114 Auburn Street"
alice_address2 = "Apt 14"
alice_city = "Atlanta"

alice_state = "GA"

As you can see, using this method for more than a few simple entries
would be unwieldy. Adding a new entry requires you to create a new variable
name and enter each of the details in a new variable. Computers are all about
automating processes, so there has to be a better way to deal with this.

Storing Data Using Tables

You may be familiar with tables or some analogous object from other pro-
gramming languages (arrays, records, dictionaries, hash tables). In Lua, tables
are objects that can be used to store other (usually related) values.

To understand how to use tables, it’s important to grasp the concept of an
associative table; which is how tables in Lua are implemented. An associative
table is a collection of values that are each associated with a key. Code can then
request a given key from a table and receive the value that is paired with that
key, if such a pair exists.

53

54

Partl = Learning to Program

Creating and Indexing Tables
Create a new table for Alice by running this code:
> alice = {}

In Lua, the table constructor {} creates a new table, in this case an empty
one. Here, the new table has been assigned to the variable alice. You can
index this table using square brackets and a key. Run the following;:

> alice["name"] = "Alice Applebaum"

> alice["phone"] = "+1-212-555-1434"

> alice["addressl"] = "114 Auburn Street"
> alice["address2"] = "Apt 14"

> alice["city"] = "Atlanta"

> alice["state"] = "Georgia"

Each line here tells Lua to look in the table alice using the provided key,
and set that value to whatever is on the right side of the assignment operator.
These elements can then be accessed later:

> print (alice["name"])
Alice Applebaum

> print (alice["address2"])
Apt 14

In each case, a key is matched up with a specific value and stored within the
table. Each of these examples uses a string as the key, but Lua actually allows
any value (except nil) to be used as a key. See this in the following example:

> alice[l] = "Test value"
> alice[2] = 14

> print(alice[l])

Test value

> print(alicel[2])

14

Clearing an Element from a Table

When a table is indexed with a key that has not been set, the table will return
the special value ni1. Run the following;:

> print(alice["fax"])

nil

This means, quite literally, that there is nothing stored in the table for the
given key. In order to clear a key/value pair from a table, you just assign that
key the value nil. Do this now to clear the two test values set previously:

> alice[1] nil

> alice[2]

nil

Chapter 4 = Working with Tables

Shortcuts for String Keys

Lua provides an easier way to index a table by string keys when those strings
are a single identifier. This is extremely useful when working with data tables.
Instead of typing this:

alice["addressl"] = "114 Auburn Street"
you can type the following;:
alice.addressl = "114 Auburn Street"

This shortcut method only works when the key begins with a letter or
underscore character and consists of only letters, digits, and underscore
characters. In addition, the key cannot be a reserved Lua keyword (such as
end). All of the following identifiers are considered valid:

B pyTable.someKey
B nyTable.someKeyl2
B yTable.some_Key
= nyTable._someKey

B pyTable.start
But these will cause an error:

B qpyTable.l2someKey
B pyTable.some-key
B pyTable.end

| nyTable.or

This method of indexing a table is only provided as a convenience, and
only works when your keys are in a specific format. You can still access the
“invalid”” keys using the full bracket notation.

Creating Populated Tables

In addition to using {} to create new empty tables, you can also use it to
create an already populated table. This is accomplished by providing a set of
key/value pairs within the constructor itself, using the following syntax:

myTable = {
[keyl] = valuel,
[key2] = value2,

56

Partl = Learning to Program

Running the following can thus create an equivalent record for Alice:

alice = {
["name"] = "Alice Applebaum",
["phone"] = "+1-212-555-1434",
["addressl"] = "114 Auburn Street",
["address2"] = "Apt 14",
["city"] = "Atlanta",
["state"] = "Georgia",

}

You can take advantage of shortcuts for string keys in the constructor too, by
typing somekey instead of ["somekey"]. This shortcut follows the same rules
as dot notation for table indexing. This shortens the example record to:

alice = {
name = "Alice Applebaum",
phone = "+1-212-555-1434",
addressl = "114 Auburn Street",
address2 = "Apt 14",
city = "Atlanta",
state = "Georgia",

}

TRAILING COMMAS IN TABLE CONSTRUCTORS

The last line of each of these table examples has a trailing comma before the
closing brace. The syntax of Lua allows this within tables so it is easier to add
new key/value pairs to the end of the definition. If Lua didn't allow this and
you forget to add a comma before adding a new line, you would get a compi-
lation error.

When creating new tables in this format, having the trailing comma makes
adding new entries easier, so it is a common practice to include them on every
row.

Using Tables as Arrays

Lua tables have another unique property when they are used with consecutive
integer keys starting at 1. These tables can be used as lists of values and include
library functions for inserting values, removing values, and sorting the list.
Tables used in this manner are typically referred to as arrays, due to some
similarities they share with arrays in other programming languages. More
specifically, the part of a table that has integer keys starting at 1 is referred to
as the array part of the table.

Chapter 4 = Working with Tables 57

Creating an Array

You can create a new array using the table constructor in one of the two
following ways (they are equivalent):

tbl = {
valuel,
value?2,
value3,

}

tbhl =
[1] = valuel,
[2] = value2,
[31]

= value3,

}

In the first case you can omit the key names entirely, and just provide a
comma-separated list of values. As you can see, arrays are just a special case
of tables. Each of the functions covered in this section is only reliable when
dealing with consecutive integer keys starting at 1. Although nil can be used
as a value in a table, it indicates that a value is missing, so care must be taken
to ensure that nil values don’t appear in the array part of a table.

The two types of table constructors can be mixed, so you can define a table
with an array part and key/value pairs at the same time. For example, the
following is a valid table definition that combines the use of all three definition
methods:

class_list = {
"Alice",
"Bob",
"Carol",
class_name = "Foundations of Engineering and Computer Science",
["class_code"] = "ECS101",

Getting the Length of an Array

The same length operator (#) that was introduced in Chapter 2 for use on
strings is also used to get the length of the array part of a table. Test this now
with these quick examples:

> tbl = {"alpha", "beta", "gamma", "delta"}
> print (#tbl)
4

58 Partl = Learning to Program

> tbl = {}

> print (#tbl)
0

> tbl = {

>> "alpha",

>> "beta",

>> ["one"] = "uno",
>> ["two"] = "dos",
>> "gamma',

>> '}

> print (#tbl)

3

You can see that # only counts the elements in the array part. This operator
can be used to print the table’s elements without your needing to hardcode
the upper limit. For example:

> for i = 1, #tbl do
>> print (tbl[i])

>> end

alpha

beta

gamma

Adding Elements to an Array

Adding an element to an array is as simple as associating the value to the next
integer key in sequence. More generally:

> tbl[#tbl + 1] = "new element"

This is a really tedious and error-prone way to do something relatively
simple. Lua provides a table.insert () library function that makes adding
elements a bit easier. The syntax for table.insert () is:

table.insert (tbl, [pos,] value)

The arguments are as follows:

m b1—The table to alter

= pos (optional)—The position at which to add the new element

m yalue—The value to insert

The second parameter being enclosed in brackets indicates that it is optional

and does not need to be included. If the position isn’t included, the new value
will be added to the end of the table.

Chapter 4 = Working with Tables

59

Run the following in your interpreter to create a sample table and a function
that will allow you to easily print the contents of the array part of a table that

is passed in as an argument:

tmp = {"alpha", "beta", "gamma"}
function print_array(tbl)
for i = 1, #tbl do
print (i, tbl[i])
end
end

To print the current list, use the following command:

> print_array (tmp)

1
2
3

alpha
beta
gamma

To add a new element to the end of the list, call table.insert () with the
table you'd like to alter and the value you’d like to add:

> table.insert (tmp, "delta")

> table.insert (tmp, "epsilon")

> print_array(tmp)

1

[C2 = OV I\

alpha
beta
gamma
delta
epsilon

To insert a new value at a given position, call table.insert () with the
optional second parameter pos, a number that indicates at what position you’'d
like to add the element. When you insert a value in this way, all elements after
the given position will be renumbered and moved up.

> table.insert (tmp, 3, "zeta")

> print_array (tmp)

1

o Ul oW N

alpha
beta
zeta
gamma
delta

epsilon

When using the position argument, it's important to make sure you're
supplying a valid number. The position should always be between 1, which
inserts the value at the front of the list, and #tmp + 1, which inserts it after the

Partl = Learning to Program

current last element. If you supply a value outside this range, the results are
unpredictable.

Removing Elements from an Array

Lua includes a function to remove elements from a table, and the syntax is
similar to its companion table.insert ():

value = table.remove(tbl [, pos])

This function takes up to two parameters:
m b1—The table to alter
= pos (optional)—The element to remove from the table

The function signature is written as if it was an assignment. This is shorthand
notation to show that the function also returns something:

m yzlue—The value removed from the table

Again, the brackets around pos show that it is an optional parameter. When
a position isn’t included, Lua will remove the last element in the table (that is,
the element at the #tbl position).

To remove the last element of a table, use the following command:

> removed = table.remove (tmp)
> print_array (tmp)

1 alpha
2 beta
3 zeta
4 gamma
5 delta

> print (removed)
epsilon

By simply calling table.remove() with only a table argument, the last
element has been removed and we’re left with the rest of the table.
Here’s how to remove a specific element in a table:

> removed = table.remove(tmp, 3)
> print_array(tmp)

1 alpha
2 beta

3 gamma
4 delta

> print (removed)
zeta

When an element is removed from the middle of the table (including the first
element), all other elements are renumbered and shifted down. This ensures

Chapter 4 = Working with Tables

61

that the elements of the array are always numbered properly so the array part
functions all work properly.

Just because a function has return values doesn’t mean you have to do
anything with them. You could just as easily call table.remove (), ignoring
the return value entirely.

Sorting the Elements of an Array

When an array contains basic elements such as strings and numbers that can
be easily compared, there is a standard library function to sort the list. The
syntax of the table.sort () function follows:

table.sort (tbl [, compl)

The second argument to table.sort () is covered in detail in Chapter 5, but
the first argument is the table that you would like to sort. You can call this
function and pass it a table to be sorted as the first argument:

> print_array (tmp)
1 alpha

2 beta

3 gamma

4 delta

> table.sort (tmp)
> print_array (tmp)

1 alpha
2 beta

3 delta
4 gamma

Because the values in this table are strings, they are sorted alphabetically,
in ascending order (this is the default). If the table contained numbers, they
would be sorted in the same way.

A simple sort like this won’t be effective for more complex values (such as
tables), or when the values in an array are mixed (such as strings and numbers).
Chapter 5 will show you how to use the second argument to table.sort ()to
custom tailor the sort function for these situations.

Using Tables as Namespaces

You've already been introduced to a few functions that are grouped together:

B tagble.insert()
B tgble.remove ()

B tgble.sort ()

62

Partl = Learning to Program

When functions are grouped together in this manner, they are said to be
part of a namespace, in this case, the table namespace. Namespaces provide a
logical grouping of functions that are related, collected in a Lua table. Because
tables can hold function values, the preceding functions are also accessible
using:

M table["insert"] ()

| table["remove"] ()

m table["sort"] ()

Creating a new namespace is a matter of writing your new functions,
creating a new table, and setting the appropriate key/value pairs in your table.

Creating a Namespace of Utility Functions

You've already written a few utility functions that might be handy to keep
around, such as convert_c2f (). You can create a new namespace to start
storing these functions by defining a new table:

> util = {}

Adding Functions to a Namespace

You have two different ways to add functions to a namespace: by indexing the
table and storing the value of an existing function, or by defining the function
directly as part of the namespace.

Storing an Existing Function

If you've closed your previous Lua session, redefine your Celsius to Fahrenheit
conversion function:

function convert_c2f (celsius)
return (celsius * 1.8) + 32
end

Now that you have a function to which you can refer, run the following
code to store it in the util table:

> util.celsius2fahrenheit = convert_c2f
This function can then be accessed directly from the uti1 table:

> print(util.celsius2fahrenheit(0))
32

> print(util.celsius2fahrenheit (-40))
-40

Chapter 4 = Working with Tables

63

Defining a New Function

Rather than define a function with a name and then set it as part of the
namespace, you can define the function directly as part of the namespace. Run
the following code:

function util.factorial (num)
local total =1

for i = 1, num do
total = total * i
end

return total
end

You may recall from Chapter 3 that this method of function definition is
syntactic sugar and is translated by Lua into the following;:

util.factorial = function (num)
local total =1
for i = 1, num do
total = total * i
end
return total
end

Using the first form is often the most convenient way to define functions,
and it makes the code easier to read compared to the alternative methods.
More often than not, when you read a namespace definition, you will see it in
this form; however, as always, feel free to develop your own style.

Object-Oriented Programming with Tables

Tables can also be used for a different type of programming called object-oriented
programming. In this type of programming, data is described as objects, which
contain methods, special functions that act directly on or through that object. Lua
provides some simple mechanisms to enable object-oriented programming,
but does not strictly enforce any particular style of programming.

Creating a Non-Object-Oriented Counter

To illustrate some of the benefits this type of programming provides, run the
following in your interpreter:

-- Create a new scope for local variables
do

64 Partl = Learning to Program

-- Create a counter that cannot be accessed outside this scope
local counter = 0

-- Global functions to interact with counter
function counter_get ()

return counter
end

function counter_inc()
counter = counter + 1
end
end

This block of code makes a simple, one-way counter that can’t be decre-
mented, but can be retrieved and incremented via the counter_get () and
counter_inc () functions. Explore this by running the following in your
interpreter:

print (counter_get())
counter_inc()

>
0
>
> counter_inc()
> print (counter_get())
2
>

counter = counter - 1
stdin:1: attempt to perform arithmetic on global 'counter' (a nil value)
stack traceback:
stdin:1: in main chunk
[C]: ?

You can see that the counter variable is not accessible outside of the created
scope and thus can’t be altered without calling the provided functions. This
code implements a single counter when, in fact, you might need more than
one. Because these functions are tied to a specific counter variable, they are
very limited.

Using Tables as Simple Objects

The following is a different implementation for the simple counter, making the
counter an object with two methods, get and inc. Unlike the first example, the
counter can be altered directly without calling the functions. Run the following
code in your interpreter:

counter

Il
O~

count

function counter.get (self)

Chapter 4 = Working with Tables

65

return self.count
end

function counter.inc (self)
self.count = self.count + 1
end

This program allows you to do the following:

> print (counter.get (counter))
0

> counter.inc(counter)

> print (counter.get (counter))
1

In this implementation, the actual counter variable is stored in a table (which
serves as the object). Each of the functions that interact with this value has an
argument named self, which is expected to be a counter object. You could
make a new counter by running the following;:

> counter2 = {

>> count = 15,

>> get = counter.get,

>> inc = counter.inc,

>> }

> print (counter2.get (counter2))
15

Because the functions are just Lua values and they are designed to work on
an argument rather than some magical hidden variable, you can copy them
into your counter. As a matter of fact, the functions will work correctly even if
you call counter.get () but pass it the counter2 object:

> print (counter.get (counter2))

15

> print (counter.get == counter2.get)
true

This should be no surprise because you're just moving and copying refer-
ences to the same functions around. Although this implementation is definitely
more convenient than the first attempt, it can be made even easier. Right now,
you have to call the function and pass in the counter object, causing you
to type the object’s name twice. Lua provides a bit of syntactic sugar that
helps you.

Using : to Call Object Methods

In the preceding example you can refer to get and inc as object methods
because they are written to be called within the context of an object. Lua

Partl = Learning to Program

provides a bit of syntactic sugar that makes calling an objects methods easier.
Instead of typing counter.get (counter), you can call counter:get ().

Lua translates counter:get () into counter.get (counter), saving you a bit
of typing and making code easier to read. This all happens behind the scenes
and prevents from you having to pass the object in every time you make a
method call.

Defining Functions Using :

You can use the : operator to define functions, making this type of program-
ming even more natural. When this happens, Lua includes an implicit first
argument called self. That’s why you used the variable name self in the
previous example.

Redefine the earlier functions by typing the following into your interpreter:

counter = {
count = 0

function counter:get ()
return self.count
end

function counter:inc()
self.count = self.count + 1
end

This code is roughly equivalent to the following definition:

counter = {
count = 0

function counter.get (self)
return self.count
end

function counter.inc(self)
self.count = self.count + 1
end

Test this new version with the following code:

print (counter:get())

counter:inc()

>

0

> counter:inc()

>

> print (counter:get())
2

Chapter 4 » Working with Tables

67

COMMON ERRORS

If you attempt to call a method that expects the self argument with a period
instead of a colon, you might get an error similar to this:

stdin:2: attempt to index local 'self' (a nil value)
Most of the time, when you get this error, it means you are accidentally call-

ing a method without passing a first argument, or you used a period where
you meant to use a colon.

Making a Better Counter

The counter program still has room for improvement because the way new
counters are created is relatively clunky. Run the following to define a more
robust counter system:

-- Create a new scope for local variables
do
local function get (self)
return self.count
end

local function inc(self)
self.count = self.count + 1
end

function new_counter (value)
if type(value) ~= "number" then
value = 0
end

local obj = {

count = value,
get = get,
inc = inc,

return obj
end
end

This example provides a single global function called new_counter, which
takes the initial value of the counter as an argument. It returns a new object
containing two methods and the counter value itself. This type of function is
typically called a factory function because it just returns new objects each time
you call it. Run a few tests to ensure the system works properly:

> counter = new_counter()
> print (counter:get())

Partl = Learning to Program

0

> counter2 = new_counter(15)
> print (counter2:get())

15

> counter:inc()

> print (counter:get())

1

> print (counter2:get())

15

Although the implementation may seem a bit more complex than the
previous attempts, creating and manipulating new counters is extremely easy.
Choose whichever implementation makes the most sense in your code.

Extending Tables with Metatables

Each table in Lua is capable of having a metatable attached to it. A metatable is
a secondary table that gives Lua extra information about how that table should
be treated when it is used. For example, by default, when you try to print a
table you are given a string that looks something like table: 0x30d470, which
isn’t extremely readable. Lua provides a way to change this behavior using
metatables and metamethods.

Adding a Metatable

A metatable is nothing more than a table used to store extra information about
the tables to which it is attached. They can be passed around, attached to
multiple tables, and altered at any time. To begin redefining the behavior of
a table, you must create a metatable and attach it to a table object, using the
setmetatable () function. This function takes two arguments:

m 11 —The table to alter
m t—The table to attach to tbl

In addition, setmetatable () returns a single argument, the table you passed
in as the first argument. This can be helpful when creating new tables to pass
directly to setmetatable (). Run the following code to create some tables to
play with, and attach the same metatable to each of them:

tbll = {"alpha", "beta", "gamma"}
tbl2 = {"delta", "epsilon", "zeta"}
tbl3 = {}

mt = {}

setmetatable (tbll, mt)
setmetatable (tbl2, mt)
setmetatable(tbl3, mt)

Chapter 4 = Working with Tables

69

You can verify the metatable has been set correctly by using the
getmetatable() function. This function simply takes a table as the first
argument and returns the metatable, or nil if no metatable is attached.

> print (getmetatable(tbll) == mt)
true

Now that you have an object with a metatable, you can begin redefining the
behavior of the table.

Defining Metamethods

A metamethod is nothing more than a function stored with a specific key
in a metatable. There are several possible metamethods, and they take a
varying number of arguments. Each metamethod begins with two underscore
characters. You can find a full list in the Lua Reference Manual (available online
at http://www.lua.org), but the most frequently used ones are shown in
Table 4-1.

Table 4-1: Relevant Metamethods

METAMETHOD ARGUMENTS DESCRIPTION

add 2 Defines the behavior when used in addition
operations.

mul 2 Defines the behavior when used in multiplication
operations.

div 2 Defines the behavior when used in division
operations.

sub 2 Defines the behavior when used in subtraction
operations.

unm 1 Defines the behavior when negated (unary minus).

tostring 1 Defines the behavior when the table is an

argument to tostring (). This also affects the
print () function, which calls tostring ()
directly.

concat 2 Defines the behavior when used with the
concatenation operator (. .)

index 2 Defines the behavior when the table is indexed
with a key that doesn't exist in that table.

newindex 3 Defines the behavior when a previously unset key
in the table is being set.

70

Partl = Learning to Program

Defining Basic Arithmetic Using ___add, __sub, _mul, and
__div

Each of the arithmetic metamethods __add, _ sub,_ _mul,and ___ div takes
two arguments and can (in theory) return anything you’d like. However, keep
the following in mind:

m The result of one operation may be part of a larger arithmetic expression.

m [f you return a non-number from your metamethod, you should ensure
it is capable of handling further arithmetic.

m [f you return nil, it will break any arithmetic expression it is a part of, so
it’s best to avoid that.

The following function defines addition between two tables as a new table
with the elements of the first table’s array part, followed by the elements of
the second’s array part. Add the following function to your Lua interpreter:

function mt. add(a,b)
local result = setmetatable({}, mt)

-- Copy table a in first
for i = 1, #a do

table.insert (result, alil])
end

-- Copy table b in second
for i = 1, #b do

table.insert (result, b[il])
end

return result
end

To simplify the function, the arguments have been named a and b. The first
line creates a new results table and makes sure to set the metatable correctly;
without this the result might not work in a larger arithmetic expression. The
rest of the function is straightforward, copying the elements of each table to
the new resulting table. Here is a simple test:

> add_test = tbll + tbl2

> print (#add_test)

6

> for i = 1, #add_test do print (i, add_test[i]) end
alpha

beta

gamma

delta

epsilon

o Ul W N

zeta

Chapter 4 = Working with Tables

n

The metamethod correctly handles the addition and creates a new table
with the results of the addition. The other basic arithmetic operations could
be defined in the same way. Instead of returning a table, these functions could
return some meaningful number that can be used as part of a larger formula.

Defining Negation Using ___unm

The unary minus (negation) operator, __unm, expects exactly one argument,
and should return the result of the argument being negated. In these examples,
this will mean reversing the array part of the given table. Run the following
code:

function mt. unm (a)

local result = setmetatable({}, mt)

-- Reverse through the elements of the array
for i = #a, 1,-1 do

table.insert (result, alil)
end

return result
end

Test table negation with a few examples:

> unm_test = -tbll

> for i = 1, #unm_test do print (i, unm_test[i]) end
1 gamma

2 beta

3 alpha

> unm_test = -tbll + tbl2

> for i = 1, #unm_test do print (i, unm test[i]) end
1 gamma

2 beta

3 alpha

4 delta

5 epsilon

6 zeta

Creating Meaningful Output with __ tostring

In the current example, it would be useful to print the table and have it display
the elements rather than the unique string Lua provides. You can accomplish
that using the ___tostring metamethod, which takes a single argument (the
table) and should return a string.

Run the following code:

function mt. tostring (tbl)
local result = "{"

for i = 1, #tbl do

72

Partl = Learning to Program

if i > 1 then
result = result .. ",

end

result = result .. tostring(tbl[i])
end
result = result .. "}"

return result
end

Because you know the input will be a table, you start the string with the ¢
character. This function then loops through each element of the array. If the
loop is beyond the first element, a comma is added to the string to separate
each value. This is done so you don’t have an extra comma at the end of the
output. Then the value itself is concatenated onto the result string. Finally,
when the loop is complete, you close the brace and return the string:

> print (tbll)

{alpha, beta, gamma}

> print (tbl2)

{delta, epsilon, =zeta}
> print (tbl3)

{}

When working with more complex objects, it can be very useful to provide a
meaningful text representation of your data, so the ___tostring metamethod
can be extremely handy.

Concatenating Tables Using ___concat

For these tables, concatenation will end up being the same thing as addition, so
you can simply use that function for the __ concat metamethod, as well. Both
metamethods take in two arguments and return a single result. In addition,
both are typically chained together, so you’ll need to ensure the resulting
object is also capable of concatenation. Run the following test:

> mt. concat = mt. add
> print(tbll .. tbl2)
{alpha, beta, gamma, delta, epsilon, zeta}

Because the ___tostring metamethod is still active, the resulting table is
converted to string representation, even when printed like this.

Exploring Fallback Tables with ___index

Normally, when a table does not have a value associated with a given key, ni1
is returned. That makes sense for run-of-the-mill tables, but at times it is more

Chapter 4 = Working with Tables

73

appropriate to take other action instead. The ___index metamethod allows
that to happen, following this procedure:

1. Code tries to access an unassociated key in a table.

2. If the table has an ___index metatable entry that is another table, look
up the same key in that table and return it (or nil if it doesn’t exist).
This may possibly trigger the ___index metamethod of the second table,
making a chain.

3. If the table has an ___index metatable entry that is a function, call the
function with the table and the key as arguments, and return the result.

Example Using Tables

Let’s expand on the previous example by creating a table with an ___index
metamethod that allows for the translation of English phrases into German.
Run the following code:

tbl4d = {["Night elf"] = "Nachtelf"}
setmetatable(tbl4, mt)

enUS_defaults = {

["Human"] = "Human",

["Night elf"] = "Night elf",
}
mt . index = enUS_defaults

This example creates a new table that contains the German localization of
the English phrase Night elf.Inaddition, there is a default table that contains
the English phrases Human and Night elf.If the answer isn’t found when tb14
is indexed, Lua will look in the metatable’s ___index entry and return that
result. See this in action yourself:

> print (tbl4 ["Night elf"])
Nachtelf

> print (tbl4 ["Human"])
Human

> print (tbl3["Night elf"])
Night elf

Because the metatable is shared between the four tables being used in this
exercise, if you access the Night elf or Human key in the table, you will get the
English version of the phrase back. The ___index metatable entry here allows
you to provide partial localization for the German language by displaying the
English words by default when a translation isn’t found.

74

Partl = Learning to Program

Example Using Functions

Instead of using a table for the ___index entry, you can specify a function
that takes two arguments: the table itself and the key being requested. This
function enables you to add logic to the indexing of tables. Run the following
code, which allows you to avoid having a long table of defaults where the keys
and the values are the same:

defaults_mt = {
_ index = function(tbl, key)
if type(key) == "string" then
print ("Return default value of '" .. key .. "' for key: " .. key)
return key
else
return nil
end
end,
}
setmetatable (enUS_defaults, defaults_mt)

Then test it with the following examples:

> print (tbl4 ["Night elf"])

Nachtelf

> print (tbl4 ["Human"])

Human

> print (tbl4 ["Gnome"])

Return default value of 'Gnome' for key: Gnome
Gnome

> print(tbl4[1])

nil

Note that the second to last example prints a message in addition to returning
the value. In fact, a metamethod that is a function can do any number of things.

Catching Creation of Keys with ___newindex

Unlike the ___index metamethod, which is designed to handle keys being
requested from a table, the ___newindex metamethod can be used when a new
key has been set in the table. Specifically, it is called whenever an assignment
is made to a non-existing key in a table.

___newindex takes three arguments:

m tp1—The table being indexed
m xey—The key being used to index the table

m value—The value to assign to table[key]

Chapter 4 = Working with Tables

75

When this metamethod is set, it is responsible for actually making the
assignment happen. This can be used to stop a value from ever being set in the
first place. Run the following code in your interpreter:

function mt.__ newindex(tbl, key, value)
if key == "banana" then
error ("Cannot set a protected key")
else
rawset (tbl, key, value)
end
end

The rawset () function here allows you to bypass the metatable (covered
in the next section), to prevent your metamethod from being called again.
As long as this metatable is set, you will be unable to (through conventional
means) set the key ["banana"] in any of the example tables, as shown in the
following;:

> tbll.apple = "red"

> print (tbll.apple)

red

> tbll.banana = "yellow"

stdin:3: Cannot set a protected key
stack traceback:
[C]: in function 'error'
stdin:3: in function <stdin:1>
stdin:1: in main chunk
[C]: ?
> print(tbll.banana)
Return default value of 'banana' for key: banana
banana

Because the metamethod errors instead of setting the new entry, you have a
pseudo-“protected” key in your tables.

Bypassing Metatables

When writing functions for the ___index and __ newindex metamethods, it
may be necessary to bypass the metatable when getting or setting a value. This
is accomplished using the rawget () and rawset () functions.

value = rawget(tbl, key)

The rawget () function takes the table to query and the key to look up, and
returns the value of that key in the table without using the metatable for
lookups. When you are writing a function that serves as a metamethod for a
table, it is typically best to use rawget () to access values in that table.

76

Partl = Learning to Program

rawset(tbl, key, value)

To set a value in a table without hitting the metatable, you can use the
rawset () function. It takes in the table to be altered, the key to use, and the
value to be placed in the table. You will encounter tables with __ newindex
metamethods less frequently than those with ___index metamethods, but it’s
good to understand what tools are available, in case you need them.

Summary

In this chapter you learned how to use Lua tables to store data that can be
easily read and indexed. Arrays were introduced as a special subset of tables
with helper functions to insert/remove and sort array tables. Namespaces
of functions were introduced along with basic object-oriented programming.
Finally, you learned how to extend tables using metatables.

The next chapter introduces you to more advanced features of functions and
control structures.

CHAPTER

5

Advanced Functions and
Control Structures

The functions and control structures introduced in Chapter 3 were relatively
simple but gave you the capability to create nontrivial programs. This chapter
introduces more advanced versions of functions and loops that allow you to
accomplish the following;:

m (Create functions with a variable number of arguments
m Return multiple values from a function
m [oop through the key/value pairs in the hash part of a table

m Sort an array with table data

Multiple Return Values

In Lua, functions are able to return more than one value in a return statement,
which makes accomplishing some tasks more natural. For example, colors
in World of Warcraft are represented as both hexadecimal values (such as
99ccFF) as well as numeric percentages of red, green, and blue (such as 0.6,
0.8,1.0). As a result, it can be useful to convert the hexadecimal values (which
are widely used on the web) to the decimal equivalents.

Converting Hex to RGB

An example of a hexadecimal string is FFcc99, where the first two characters
represent the value of the color red as a number between 0 and 255 in
hexadecimal. The second set of characters is the value of green, followed by
blue. The string.sub() function can be used to split the string into its three

77

78

Partl = Learning to Program

component color strings, whereas the tonumber () function can convert the
string into a number. If the tonumber () function is called with the red part of
the string "Fr*, it won’t return a meaningful result:

> print (tonumber ("FF"))

nil

By default, the tonumber () function expects the number to be a decimal
number (that is, in base-10), so it can’t convert this base-16 number. The
second argument of tonumber () specifies the base of the string that is being
converted. In this case:

> print (tonumber ("FF", 16))
255

Because the output needs to be a number between 0.0 and 1.0, this value
can be divided by 255 to obtain the percentage value. Add a definition for
ConvertHexToRGB () as follows:

function ConvertHexToRGB (hex)
local red = string.sub(hex, 1, 2)
local green = string.sub(hex, 3, 4)
local blue = string.sub(hex, 5, 6)

red = tonumber (red, 16) / 255
green = tonumber (green, 16) / 255
blue = tonumber (blue, 16) / 255

return red, green, blue
end

Test this function with a few sample values:

> print (ConvertHexToRGB ("FFCC99"))
1, 0.8, 0.6

> print (ConvertHexToRGB ("FFFFFF"))
1, 1, 1

> print (ConvertHexToRGB("000000"))
0, 0, 0

Assigning Multiple Values

To get the results of a function with multiple return values such as
ConvertHexToRGB (), you can use the following syntax:

varl, var2, var3, vard = someFunction|()

This calls someFunction() and assigns the first return to vari, the second
return to var2, and so on. If there are more returns than variables, the extra
returns are just discarded. In the case that there are more variables than
returns, the remaining variables are set to nil.

Chapter 5 = Advanced Functions and Control Structures

79

Missing Return Values?

When you are working with multiple return values, a few odd things can
happen. Look at the following example:

> print (ConvertHexToRGB ("FFFFFF"))

1, 1, 1

> print (ConvertHexToRGB ("FFFFFF"), "SomeOtherArgument")
1, SomeOtherArgument

Where did the other returns go? They were eaten by the following rule:

When a function call with multiple return values is the last arqument to another
function, or the last arqument in a multiple assignment expression, all of the
return values are passed or used. Otherwise, only the first return value is used or
assigned.

You can see this behavior with the assignment operator in the following
example:

> a, b, ¢, d = ConvertHexToRGB ("FFFFFF"), "some", "more", "arguments"
> print(a, b, c, d)
1, some, more, arguments

Because the call to convertHexToRGB () is followed by additional values,
Lua only uses the first return from the function call. There are a few technical
reasons for this limitation, but it should not affect you very often. The exception
to the rule can be seen in the following example:

> a, b, ¢, 4 = "first argument", ConvertHexToRGB ("FFFFFF")
> print(a, b, ¢, 4)
first argument, 1, 1, 1

m When working with multiple return values, you can always wrap the function
call in parentheses to limit it to a single return value, as follows:

> print ((ConvertHexToRGB ("FFFFFF")))
1

Multiple Return Values in World of Warcraft

Several World of Warcraft API functions return multiple values. For example,
the function GetRaidrRosterInfo () takes a character’s raid index (a number)
and returns the following information:

m The name of the character
m The character’s rank in the raid (leader, assistant, and so on)

= What subgroup the character is in

Partl = Learning to Program

m The character’s level

m The character’s class (localized)

m The character’s class (capitalized, in English)

= The name of the zone the character is currently in
m Whether the character is online

m Whether the character is dead

m [f the character is a main tank or main assist

m Whether the character is master looter

This function provides a ton of information, but, typically, when you need
one of the items, you need more than one. In this case, it’s more efficient for
the game client to return each of these items every time the function is queried,
rather than having 11 different API functions.

SELECTING SPECIFIC VALUES

Functions with multiple return values provide a unique set of challenges, such
as how to get at values that aren’t at the start of the return list. There are
two easy ways to do this: using dummy variables and using the select ()
statement.

Taking the ConvertHexToRGB () example, how could you extract just the
green value?

Using a Dummy Variable

The function is going to return three results regardless of how you call it, but
you can use dummy variables to throw away the results that aren’t interesting.
For example, you may see something that looks like this:

local _, g = ConvertHexXToRGB ("FFFFFF")

Because the underscore character is a valid identifier, it can be used to store
values, but most sane programs choose more valid variable names. The under-
score identifier has become somewhat of a de facto standard when you need
to throw away the result of a function call simply because it's easy to type,
and most likely not already in use, but its use is still considered bad practice.

Instead of using the underscore as a dummy variable, it’s better to give each
variable a meaningful name, and only use those that are necessary. That way if
you ever need to look at that code in the future, you have a hint of what other
information is available. Some situations can’t be handled using this method,
but Lua provides a utility function to compensate.

(continued)

Chapter 5 = Advanced Functions and Control Structures

SELECTING SPECIFIC VALUES (continued)

Using the select() Function

The select () function was designed to help solve this problem, by allowing
you to choose a specific argument from a given list. This function takes any
number of arguments, the first of which tells the function what to do. When
select () is passed the "#" string as the first argument, it simply returns
the number of arguments in the second part of the function. If select () is
passed a number value, it returns that argument from the list, followed by
anything after it. After this initial argument, select () takes any number of
arguments, comma separated.

Confused yet? Look at a few examples:

> print (select ("#", "alpha", "beta", "gamma"))

3

> print (select (1, "alpha", "beta", "gamma"))

alpha, beta, gamma

> print (select (2, "alpha", "beta", "gamma"))

beta, gamma

> print (select (3, "alpha”, "beta", "gamma"))

gamma

> third = select (3, "alpha", "beta", "gamma")

> print (third)

gamma

If you just need to get a single value from the list, you can assign it directly
to the variable, or wrap the select () call in parentheses so the extra values
are thrown away.

You may find this function useful when working with some of the longer
World of Warcraft API functions, such as GetRaidRosterInfo (). If you only
need a single return, you can isolate it using a call to select ().

Accepting a Variable Number of Arguments

Many functions are designed to take a specific number of arguments, such
as the tonumber () function, which takes a string, and optionally, a number
base for the conversion. Other functions make more sense when they accept
a variable number of arguments. Consider a function that calculates the
arithmetic mean of a set of numbers. A simple version of this function that
works with two arguments might look something like this:

function mean (numl, num2)
return (numl + num2) / 2
end

82

Partl = Learning to Program

Unfortunately, if you need to compute the mean of three numbers, you
would need to do it manually, call the function twice, or write a new function
that takes three arguments instead. As you can imagine, this is highly ineffi-
cient, and Lua provides an easier way to write these types of functions so they
can accept a variable number of arguments.

Declaring a Vararg Function

Functions with a variable number of arguments are called vararg functions for
short, and they use an ellipsis (three periods) in their function declaration to
indicate they take any number of arguments.

In Lua, the ellipsis can only appear as the last argument in a function
declaration. Whenever the ellipsis is then used in the body of the function,
the arguments that were supplied in the vararg slot are substituted. Take the
print () function, which already accepts a variable number of arguments, and
extend it by running the following code:

function test_print(...)
print ("testing", ...)
end

This function takes in any number of arguments and then passes them to
the print () function, adding its own text to the start of the list. The output
from running this function looks like this:

> test_print("alpha", "beta", 13, "gamma")
testing, alpha, beta, 13, gamma

When the function is run and Lua encounters the ... symbol, it replaces it
with the list of arguments that were passed to the function. As a result, it can
be used in the following ways:

-- Pass the arguments to another function
print(...)

-- Assign the arguments to variables
local varl, var2, var3 = ...

-- Construct a new table with the arguments
local tbl = {...}

The preceding example could be used to make a new function called
newtable (), which takes in a set of arguments and makes a new table with
those arguments in the array part of the table:

function newtable(...)
return {...}

end

Chapter 5 = Advanced Functions and Control Structures

Test this function now:

> tbl = newtable("alpha", "beta", "gamma")
> for i=1, #tbl do
>> print(i, tbl[il])

>> end

1, alpha
2, beta
3, gamma

Using select() with ...

The select() function makes working with vararg functions very easy,
because it can provide the number of arguments passed, as well as allow you
to easily iterate through them without needing to assign them to variables.
Consider the following function that takes a list of arguments and prints a line
for each argument including the index and the argument itself:

function printargs(...)
local num_args = select("#", ...)
for i=1, num_args do
local arg = select(i, ...)
print (i, arg)
end
end

Sample output:

> printargs("alpha", "beta", 13, "gamma")
1, alpha
2, beta
3, 13

4

, gamma

This method lets you avoid creating a new table every single time, and
allows the value nil to be passed as an argument. Remember that the length
operator and the table library functions are only reliable when the array table
does not contain any “holes” in the form of nil values. Run the following
function definitions in your interpreter:

function testl(...)
local tbl = {...}
for i = 1, #tbl do
print (i, tbl[il])
end
end

function test2(...)
for i = 1, select("#", ...) do

84 Partl = Learning to Program

print (i, (select(i, ...)))
end
end

You can see an example of this issue by running the following;:

> testl("alpha", "beta", "gamma", nil)

1, alpha
2, beta
3, gamma

> test2("alpha", "beta", "gamma", nil)
alpha
beta

gamma

=W N

nil

The first example stuffs the arguments into a table and then tries to get the
length of the table. Because there is a nil value in the middle of the table,
getting the length could return either two or four. This sort of unpredictability
is specifically why you should use the second example.

In addition the first function needs to create a new table on each call, which
will allocate and use more memory in the long run. The version using select ()
has no such hidden cost.

Generic for Loops and Iterators

Chapter 3 introduced the for statement, which allows you to repeat a compu-
tation over a series of numbers by supplying a start value, end value, and a
value by which to increment the counter after each loop. Chapter 4 introduced
storing data in both the array part and the hash part of Lua tables. Until this
point there has been no way to loop through the elements of the hash part
of the table, but Lua provides a more generic form of the for statement that,
when combined with an iterator function, allows just that.

Wikipedia defines an iterator as “an object which allows a programmer
to traverse through all elements of a collection, regardless of its specific
implementation.”” In Lua specifically, you use an iterator function along with
some extra information to loop through a collection.

Syntax of Generic for

The generic for loop syntax is a bit different than the numeric for loop:

for vall, val2, val3, ... in <expression> do
-- body of for loop
end

Chapter 5 = Advanced Functions and Control Structures

A generic for loop can return many variables on each iteration (as many as
defined by the iterator function, actually). Inmediately after the for keyword,
you supply a list of variable names that are used to store the returns on each
iteration of the loop. The generic loop then determines what to traverse by
evaluating <expression>, which should return the following three values:

= An iterator function that can be called on each iteration of the loop

m state, used by the iterator function on each subsequent call

= An initial value for the iterator value

Luckily, unless you plan to write your own iterator functions, you won't

have to deal with any of this directly. A number of prewritten functions will
create your iterators for you.

Traversing the Array Part of a Table

ipairs() is one such function that allows you to traverse the array part of
a table without using the numeric for loop. Some programmers prefer this
syntax to that of the numeric for loop. Run the following example:

> tbl = {"alpha", "beta", "gamma"}
> for idx, value in ipairs(tbl) do
>> print(idx, value)

>> end

1, alpha
2, beta
3, gamma

The ipairs () function takes a table and returns all the information the for
loop requires to traverse the array part of the table, including the iterator
function itself. Each call to the iterator function returns the numeric index of
the element, and the element itself. These variables can be named whatever
you’'d like and, as always, are local to the scope of the for loop (meaning they
cannot be accessed outside of that scope).

You can explore the ipairs () function a bit more by running the following
in your interpreter:

> print (ipairs(tbl))

function: 0x300980, table: 0x3072c0, 0
> print (tbl)

table: 0x3072c0

Itappears the ipairs () function returns an iterator function, the state (in this
case it’s just the table you passed in), and the initial value for the iterator (0).
There’s no real magic going on here, just a useful function allowing you to
loop through array tables.

86

Partl = Learning to Program

Traversing an Entire Table

Another function, called pairs (), allows you to traverse a table in its entirety,
including both the array part and the hash table part. The usage is the same as
ipairs ();just pass it the table and use it as part of a generic for loop:

> tbl = {"alpha", "beta", ["one"] = "uno", ["two"] = "dos"}
> for key, value in pairs(tbl) do
>> print (key, value)

>> end
1, alpha
2, beta

one, uno

two, dos

TRAVERSING USING PAIRS()

In the preceding example, the pairs () function seemed to traverse the
table in the order the elements were added to the table, but this is just a
coincidence. The specific order in which elements will be visited is unspecified
by this function, even for numeric keys. If you specifically need to traverse
the table’s numeric elements in order, you should instead use the ipairs ()
function, which can guarantee this. The lack of order when using pairs () is
due to the way hash tables are implemented, as a collection of associated
key/value pairs with no internal order.

When using the pairs () function, you must ensure you don’t add any ele-
ments to the table. This is because pairs () calls the next () function, which
carries the following warning in the Lua 5.1 Reference Manual:

“The behavior of next is undefined if, during the traversal, you assign any
value to a nonexistent field in the table. You may, however, modify existing
fields. In particular, you may clear existing fields.”

If you add an element to the table during the traversal, the iteration may
simply not work, it may terminate early, or it may throw an error. It's important
to keep this in mind when working with an iteration using pairs ().

In addition, you may encounter an error if you try to clear a key that was not
previously set by assigning ni1 to it. This is due to the way tables are imple-
mented. In general you should ensure you only ever assign to keys that existed
prior to the iteration.

Clearing a Table

As stated in the Lua 5.1 Reference Manual for next (), you can clear the
elements of a table while traversing it using pairs (). The following code will
clear a table of all set elements:

for key, value in pairs(tbl) do

Chapter 5 = Advanced Functions and Control Structures

87

tbl[key] = nil
end

Because pairs () works for all keys of a table, this is a quick way to ensure
you've cleared all elements (in the event you need to re-use a table, for
example). Note that this is different than just running tbl = (}, which would
create a new table entirely, rather than clearing the existing table. You can see
this by printing the value of the table before and after, and verifying that they
are different:

> tbl = {"alpha", "beta", "gamma"}
> print (tbl)

table: 0x131800

> tbl = {}

table: 0x131lacO

Using Other Iterators

A number of other functions in Lua can be used to generate iterators that
are extremely useful. The string.gmatch() function can be used with Lua
pattern matching to create iterators over strings, and specific matches within
that string. You learn more about this function and Lua pattern matching in
Chapter 6, but here are some examples:

> for word in string.gmatch("These are some words", "%S+") do
>> print (word)

>> end

These

are

some

words

> for char in string.gmatch("Hello!", ".") do

>> print (char)

>> end

- 0 H H 0 =

Sorting an Array of Table Data

The built-in table.sort () function only allows you to sort number and string
data by default. Fortunately, table.sort () enables you to pass in a function to
do the actual comparisons between elements, with the library function doing
the overall sort based on the results of your function. This means you can write
your own function to determine which of two tables is bigger when it comes to
sorting.

Partl = Learning to Program

Define Example Data

For the examples in this section you need some sample data to sort. Define the
following in your Lua interpreter:

guild = {}

table.insert (guild, {

name = "Cladhaire",
class = "Rogue",
level = 80,

}

table.insert (guild, {

name = "Draoi",
class = "Druid",
level = 80,

}

table.insert (guild, {

name = "Deathsquid",
class = "Deathknight",
level = 68,

}

Default Sort Order

By default, this list is sorted in the order it was inserted, because it’s using the
array part of the table. Run the following to verify this:

> for idx, value in ipairs(guild) do
>> print (idx, value.name)

>> end
1, Cladhaire
2, Draoi

3, Deathsquid

Rather than print value itself, which would show table: 0x3003a0 instead
of something meaningful, this code indexes the table and prints the value
associated with the key name. This code segment could be altered to print the
class, or the level if so desired.

Creating a Comparison Function

If you try to sort this data using table.sort (), you will get an error because
Lua doesn’t know how to compare table values (to determine what makes one
table less than another).

> table.sort(guild)
attempt to compare two table values

Chapter 5 = Advanced Functions and Control Structures

stack traceback:
[C]: in function 'sort'
stdin:1: in main chunk
[C]l: 2

The table.sort () function takes a second argument specifically for this
purpose, to allow the programmer to define how values should be compared.
This function takes two arguments, and returns true if the first argument is
less than the second argument, and false if the second argument is less than
or equal to the first argument. That means you can sort two tables based on
their member fields, or some other criteria you specify. Write the following
function, which will compare two of the elements based on name:

function sortNameFunction(a, b)
return a.name < b.name
end

Although the function is extremely short, that’s all that is required to sort the
array by name. Pass this function in as the second argument to table.sort ():

> table.sort(guild, sortNameFunction)
> for idx, value in ipairs(guild) do
>> print (idx, value.name)

>> end

1, Cladhaire

2, Deathsquid

3, Draoi

To reverse the sort order, just reverse the order of the comparison (note that
the position of b.name and a.name in the comparison have changed):

function sortNameFunctionDesc (a, b)
return b.name < a.name
end

Sort with this new function:

> table.sort(guild, sortNameFunctionDesc)

> for idx, value in ipairs(guild) do print(idx, value.name) end
1, Draoi

2, Deathsquid

3, Cladhaire

Creating a More Complex Sort Function

Assume you’d like to sort the preceding data by level and then by character
name. You can write a function to sort by level, but there’s no way to tell in

90 Partl = Learning to Program

what order it will put the two level 80 characters. The following comparison
function accomplishes this more complex sort:

function sortLevelNameAsc (a, b)
if a.level == b.level then
return a.name < b.name

end
return a.level < b.level
end

All that is required is a simple check to see if the two levels are the same,
and if they are, to compare the names of the characters. A sort function can
be as complex as you need, as long as it returns true when the first argument
should be sorted less than the second argument:

> table.sort(guild, sortLevelNameAsc)

> for idx,value in ipairs(guild) do print(idx, value.name, value.level) end
1, Deathsquid, 68

2, Cladhaire, 80

3, Draoi, 80

Summary

This chapter introduced the concepts of vararg functions, generic for loops,
iterators, and sorting complex data in arrays. These concepts are relatively
advanced, but come up often when designing and writing a new addon.

CHAPTER

6

Lua Standard Libraries

Throughout the first part of this book, a number of Lua standard library
functions have been introduced and used in code examples. Although this
book does not cover every single Lua function included in the World of
Warcraft implementation of Lua, this chapter introduces you to the some of
the most prevalent functions that you will need when developing addons.

In addition to the Lua standard libraries, this chapter covers some functions
specific to WoW that aren’t really part of the game API itself. These functions
are grouped at the end of the chapter.

IETXI3 The details in this chapter cover the parts of the Lua API that are most
relevant to WoW. You can find a full reference for Lua online at
http://lua.org/manual/5.1. This manual is also available in print: Lua 5.1
Reference Manual by R. lerusalimschy, L. H. de Figueiredo, and W. Celes, Lua.org,
August 2006 (ISBN 85-903798-3-3).

In addition, the chief architect of Lua has written an easy-to-read book about the
Lua programming language that covers these (and more) functions in depth. You
can find a version of this book written for an older version of Lua at
http://lua.org/pil. If reading the older version is confusing, you can find the
second edition at many online bookstores: Programming in Lua (second edition)
by Roberto lerusalimschy, Lua.org, March 2006 (ISBN 85-903798-2-5).

Each function is this chapter is presented with what is called the function’s
signature. A function signature describes what values are returned by the
function, as well as what arguments are taken by the function. For example,
consider the fictional function foo ():

someReturn = foo(argl, arg2)

91

92

Partl = Learning to Program

In this example, the function foo () takes two arguments (argl and arg2)
and returns a single value somereturn. These signatures can also indicate
optional arguments, by enclosing them in square brackets:

somereturn = foo(argl [, arg2])

This notation indicates that the second argument to foo () is optional. When
you see this, you should consult the description of the function and arguments
to determine the behavior of the function because it varies.

Table Library

The table library provides several functions that allow you to easily add
elements, remove elements, and sort array tables. In addition, a utility function
is provided that works outside of the array part of the table, returning the
maximum numeric index used in the table. The former functions all operate
exclusively on the array part of the table, whereas the latter can be used on
any type of table.

str = table.concat (table [, sep [, i [, jII])

The table.concat() function concatenates all entries of the array part of
a table, with an optional separator string sep. Given an array where all
elements are strings or numbers, it returns table[i]..sep..table[i+1]
sep..table[j]. The default value for sep is the empty string, the default for
i is 1, and the default for j is the length of the table. If i is greater than j, it
returns the empty string.

> tbl = {"alpha", "beta", "gamma"}

> print (table.concat(tbl, ":"))
alpha:beta:gamma

> print(table.concat(tbl, nil, 1, 2))
alphabeta

> print (table.concat(tbl, "\n", 2, 3))
beta

gamma

This function is an easy way to print the elements of the array part of a
table. As you can see, sep can be any string (including the newline character)
because it’s just concatenated with the entries in the table.

table.insert (table, [pos,] value)

The table.insert () function inserts a new element into the array, optionally
at position pos, shifting other elements up to make space, if necessary. The
default value for pos is n+1, where n is the length of the table. Therefore, a call
of table.insert (t,x) inserts x at the end of table t.

Chapter 6 = Lua Standard Libraries

93

> tbl = {"alpha", "beta", "gamma"}

> table.insert (tbl, "delta")

> table.insert (tbl, "epsilon")

> print(table.concat(tbl, ", "))

alpha, beta, gamma, delta, epsilon

> table.insert (tbl, 3, "zeta")

> print(table.concat(tbl, ", "))

alpha, beta, zeta, gamma, delta, epsilon

max = table.maxn (table)

The table.maxn () function returns the largest positive numerical index of the
given table, or zero if the table has no positive numerical indices. To do its
job, this function does a linear traversal of the entire table. Unlike most table
functions, table.maxn () considers numerical keys instead of integer keys, so
numerical constants and rational numbers are counted as well.

> tbl = {[1] = "a", [2] = "b", [3] = "c", [26] = "z"}
> print (#tbl)

3

> print(table.maxn(tbl))

26

> tb1[91.32] = true

> print(table.maxn(tbl))
91.32

value = table.remove (table [, pos])

The table.remove () functionremoves an element from the given table, shifting
down other elements to close the space, if necessary. It returns the value of the
removed element. The default value for pos is n, where n is the length of the
table, so a call table.remove (t) removes the last element of table t.

> tbl = {"alpha", "beta", "gamma", "delta"}
> print (table.remove(tbl))

delta

> print(table.concat(tbl, ", "))

alpha, beta, gamma

table.sort (table [, comp])

The table.sort () function sorts the array part of a table by reordering the
elements within the same table. If comp is given, it must be a function that
receives two table elements and returns true when the first is less than the
second (so that not comp(al[i+1],a[i]) will be true after the sort for all 1). If
comp is not given, the standard Lua operator < is used instead.

94

Partl = Learning to Program

This sort algorithm is not stable, which means that elements considered
equal by the given comparison function may have their order changed by
the sort.

> tbl = {"alpha", "beta", "gamma", "delta"}

> table.sort(tbl)

> print(table.concat(tbl, ", "))

alpha, beta, delta, gamma

> sortFunc = function(a,b) return b < a end

> table.sort(tbl, sortFunc)

> print(table.concat(tbl, ", "))

gamma, delta, beta, alpha

String Utility Functions

Lua provides several utility functions for working with and manipulating
strings. Each of these functions is available as object-oriented method calls,
as well as the library calls themselves. For example, the following two calls
accomplish the same thing;:

> str = "This is a string"
> print(string.len(str))

16
> print(str:len())
16

Table 6-1 describes the various utility functions and illustrates their use.

Table 6-1: String Utility Functions

FUNCTION DESCRIPTION EXAMPLE(S)
string.len(s) Receives a string and > print (string.len ("Monkey"))
returns its length. 5
The empty string "
has length 0.
Embedded zeros are
counted, so
"a\000bc\0O0O™"
has length 5.
string.lower (s) Returns the input > test = "Hello World!"
string with all > print(string.lower (test))
uppercase letters hello world!
Changedto > printtest:lower())

lowercase. All other hello world!
characters are left

unchanged. The

definition of what an

uppercase letter is

depends on the

current locale.

Chapter 6 = Lua Standard Libraries

95

FUNCTION DESCRIPTION

string.rep(s, n) Returns a string that is
the concatenation of n
copies of the string s.

EXAMPLE(S)

> print(string.rep("Hello", 3))
HelloHelloHello

> test = "foo"

> print(test:rep(3))

foofoofoo

string.reverse(s) Returns a string that is
the string s reversed.

> print (string.reverse("Test"))
tseT

> test = "Hello World!"

> print (test:reverse())

'dlroW olleH

string.sub(s, i Returns the substring

[, 31 of s that starts at i and
continues until j; i and
j may be negative. If j
is absent, it is assumed
to be equal to -1
(which is the same as
the string length). In
particular, the call
string.sub(s,1,3)
returns a prefix of s
with length j, and
string.sub(s, -1i)
returns a suffix of s
with length i.

> test = "Hello World"

> print (string.sub(test, 1, 3))
Hel

> print(test:sub(1l, -1))

Hello World

> print(test:sub(-3, -1))

rld

string.upper (s) Receives a string and
returns a copy of this
string with all
lowercase letters
changed to uppercase.
All other characters are
left unchanged. The
definition of what a
lowercase letter is
depends on the
current locale.

> test = "Hello World!"

> print(string.upper (test))
HELLO WORLD!

> print (test:upper())

HELLO WORLD!

Formatting New Strings

Throughout the book, you've used the concatenation operator to make new
strings and format longer messages. This code to generate longer strings ends
up being extremely difficult to read, and difficult to maintain. Lua provides a
utility function called string. format (formatstring, ...) that will formata
list of arguments according to a defined format.

96

Partl = Learning to Program

A format string can contain literal characters and special conversion codes
that are used along with the arguments to create the final result. Conversion
codes begin with a percent sign (%) and contain one of the following specifiers
that indicate what type of data the argument should be treated as:

Takes a number argument and formats it as the ASCII character that
corresponds to the number.

[
sC

%d, %i—Takes a number argument and formats it as a signed integer.

[
50

Takes a number argument and formats it as an octal number.

9
su

Takes a number argument and formats it as an unsigned integer.

sx—Takes a number argument and formats it as a hexadecimal number,

using lowercase letters.

sx—Takes a number argument and formats it as a hexadecimal number,
using capital letters.

Q
se

Takes a number argument and formats it as scientific notation, with
a lowercase e.

sE—Takes a number argument and formats it as scientific notation, with
an uppercase E.

£

Takes a number argument and formats it as a floating-point number.

%g and $G—Takes a number and formats it according to either %e (or %E
if 3G is specified) or %£, depending on which is shortest.

sq—Formats a string so it can safely be read back into a Lua interpreter.

Takes a string and formats it according to the supplied options.

[
5S

Several options can be used in a conversion specification between the
percent sign and the type specifier. The following options can be included, in
this specific order:

1.

Sign specification (either a + or a —) that causes a sign to be printed with
any number. By default, the sign is only printed with negative numbers.

A padding character (either a space, or a 0) that will be used when
padding the result to the correct string width. By default, any results will
be padded with spaces to meet the correct width, if specified.

An alignment specification that causes the result to be left-justified or
right-justified. The default is right-justification, whereas a — character
will make the result left-justified.

A width specification that specifies the minimum width of the resulting
string.

A precision specification that dictates how many decimal digits should
be displayed when formatting a floating-point number. When speci-
fied for strings, the resulting string will be cut off at this number of
characters.

Lua Standard Libraries

97

Confused yet? More often than not, you'll only use a very small subset of
these options, but it’s good to understand the abilities and limitations of the
string formatting system. The examples in Table 6-2 should help clarify the
basics of string formatting.

Table 6-2: Example Format Strings
string.format ("%$%c: %c", 83) %$c: S
string. format ("%$+d", 17.0) +17
string. format ("%$05d4d", 17) 00017
string. format ("%o", 17) 21
string.format ("$u", 3.14) 3
string.format ("$x", 13) D
string. format ("%X", 13) D
string.format ("%e", 1000) 1.000000e+03

string. format ("$E", 1000) 1.000000E+03

string.format ("%$6.3f", 13) 13.000

string.format ("$g", [["One", "Two"]l) "\"One\", \"Two\""
string.format ("%$s", "monkey") monkey
string.format ("%$10s", "monkey") monkey
string.format ("%$5.3s", "monkey") mon

IN WORLD OF WARCRAFT

WoW includes an extra option for string. format () that allows you to
choose a specific argument from the argument list, rather than having them
in consecutive order. This option is not included in standard Lua 5.1, so you
will need to use one of the interpreters provided on the book’s website
(http: //wowprogramming.com/utils) to test this. If you are using the
WoWLua addon, it should work correctly.

To select a specific argument, include the number of the argument, followed
by the dollar sign ($), immediately after the percent sign (%). For example:

> print (string.format ("%$2sd, %1$d, %d", 13, 17))

17, 13, 17

The first type identifier is modified to request the second argument, and the
second identifier consumes the second argument to the format string. When
selecting parameters in this way, you can’t skip any and leave them unused.

(continued)

Partl = Learning to Program

IN WORLD OF WARCRAFT (continued)

If you use parameters 1 and 3, you must also use parameter 2. You can mix
parameter selection and normal type identifiers in the same format string
without any issues.

WoW specifically includes this functionality to provide support for multiple
languages. For example, the following string appears in English:

Cladhaire's Shadow Word: Pain is removed.

In German, the phrase used in this same situation is:

'Shadow Word: Pain' von Cladhaire wurde entfernt.

As you can see, the order of the arguments is swapped based on the way
the phrase is constructed for German clients. Without parameter selection,
WoW would have to handle each of these cases specifically, which would get
very messy. Instead, the client uses string.format() along with parameter selec-
tion to craft these messages.

The English format string is "%s's %s is removed. ", and the German for-
mat string is " '$23s' von %$1$s wurde entfernt. ". Rather than maintain
a long list of special messages, format strings are used to make the client
consistent.

Pattern Matching

A common theme you will find when writing addons is the need to match
and parse text supplied by the game against a given pattern. Lua provides a
number of utility functions to accomplish these tasks. These functions can use
patterns to describe what to search for when matching against a given string.

Character Classes

Patterns can use any of the character classes described in Table 6-3. Each class
is designed to match a subset of all characters in a specific way. For example,
the character class %s can be used to match any whitespace character, and %a
can be used to represent any letter.

In addition, with any of the character classes that have a percent sign
followed by a letter, the letter can be changed to uppercase to serve as a
shortcut for the complement to the character class. In other words, %s will
match any character that is not a space, and %2 will match any character that
is not a letter.

Take a look at some examples. Given the test string "abc ABC 123 !@# \n
\000 %", Table 6-4 shows what will be matched by a given pattern.

Chapter 6 = Lua Standard Libraries 99

Table 6-3: Character Classes

CLASS MATCHES

x (where x is not one of the The character x itself.
magic characters

" $0%.[]*+-7)

. (period, or full stop) Any character.

%a Any letter.

%c Any control character.
%d Any digit.

o
=

Any lowercase letter.

Any punctuation character.

o
o]

Any space character.

oP
0]

Any uppercase letter.

oP
c

oP
B

Any alphanumeric character.

Any hexadecimal digit.

o
X

The character with representation 0 (for
example,\000).

o
N

$x (where x is any Represents the character x. This is the standard

non-alphanumeric character) way to escape the magic characters. Any
punctuation character (even the non-magic
ones) can be preceded by a $ when used to
represent itself in a pattern. For example, to
include a percent sign in the resulting string you
would include %% in the format string.

[set] Any characters included in set, which can be
specified as a range of characters by listing the
range with a hyphen (such as A-Z). All classes
defined in this table may also be used as a part
of set, including the other characters, which just
represent themselves. For example, [%w_]
matches all alphanumeric characters plus the
underscore character, and [0-9%1%-1 matches
all digits plus the lowercase letters and the -
character.

[" set] The complement of any set (as previously
defined). Therefore, [* $s] matches any
non-space character.

100 Partl = Learning to Program

Table 6-4: Example Patterns

PATTERN STRING MATCHED

"a" a
o a
"ga" a
"%c" \n
"dn 1
1" a

P !

%s space
U A
W a

X a

%z \000

o
o
o

Pattern Items

Each of the character classes previously defined can be used in the pattern
items described in Table 6-5.

Table 6-5: Using Pattern Items

PATTERN MATCHES

A single character class Zero or more repetitions of characters in the class. Unlike *,
followed by a - these repetition items always match the shortest possible
sequence.

A single character class Any single character in the class.

A single character class Zero or more repetitions of a character in the class. These

followed by an * repetition items always match the longest possible
sequence.

A single character class One or more repetitions of characters in the class. These

followed by a + repetition items always match the longest possible
sequence.

A single character class Zero or one occurrence of a character in the class. This will
followed by a » always match one occurrence if it is possible to do so.

Chapter 6 = Lua Standard Libraries

PATTERN MATCHES

%n For n between 1 and 9; matches a substring equal to the
nth captured string (see the section later in this chapter on
captures).

$bxy, where x and v Strings that start with %, end with vy, and where the x and v

are two distinct are balanced. This means that if you read the string from

characters left to right, counting +1 for an x and -1 for a vy, the ending

y is the first y where the count reaches 0. For instance, the
item %b () matches expressions with balanced parentheses.

These pattern items can be very simple to use when you need to match a
specific part of a string in a very general way. Table 6-6 gives a number of
example patterns and the corresponding matches when run against the string
"abc ABC 123 !@# \n \000 %".

Table 6-6: Example Patterns

%a a

sa* abc

sa+ abc

%a- no string matched
%a-%s abc

%a? a

%ba3 abc ABC 123

Pattern Captures

A pattern can contain sub-patterns enclosed in parentheses, called captures.
When a match succeeds, the part of the pattern enclosed in parentheses is
stored (captured) for future use. Captures are numbered according to the
order of their left parenthesis because they can be nested. For instance, in the
pattern " (a* (.)%w(%s*))", the part of the string matching "a* (.)%w(%s*) "
is stored as the first capture (with number 1); the character matching . is
captured as number 2, and the part matching "%s*" has number 3.
Additionally, the empty capture () captures the current string position
(a number). For instance, if you apply the pattern " ()aa()" on the string
"flaaap", there will be two captures, the number 3 and the number 5.

102 Partl = Learning to Program

Pattern Anchors

A pattern is quite literally a sequence of characters to be matched. Using " at
the beginning of a pattern can match the beginning of a string, whereas using
$ at the end of a pattern can match the end of a string. When used anywhere
else in the pattern, these strings will match their literal equivalent. Anchors

can be used to make a pattern more explicit.

Pattern Examples

Table 6-7 illustrates a number of common requirements for pattern matching
and shows what that pattern might look like. These are general examples and

may only work in specific cases.

Table 6-7: Example Patterns

REQUIREMENT PATTERN

Match a non-space token in a string.

gy

Match a string beginning with the text MYADDON:
followed by at least one character, capturing the rest of
the string.

" “MYADDON: (.+)"

Match a number, optionally with a fractional part after a
decimal point, capturing the entire number. The number
can be positive or negative.

Match an assignment in the form xxxx=yyyy, where xxxx
is alphanumeric and yyyy contains no spaces, and
capture each individually.

" (%w+) = (%S+) "

Match a single quoted string, such as ' foo' and 'bar".

no L
%b

Match the last nonspace token in a string.

"%S+$"

Pattern Matching Functions

Lua provides four functions that accept pattern strings:

string.gmatch(s, pattern)
string.gsub(s, pattern, repl [, n])

string.match(s, pattern [, init])

string.find(s, pattern [, init [, plain]])

Chapter 6 = Lua Standard Libraries

103

These functions are also available as object-oriented method calls on the
string itself, as with the utility functions discussed earlier. Each of them
accomplishes a different task for strings, as you'll see.

string.gmatch(s, pattern)

The string.gmatch(s, pattern) function returns an iterator function that,
each timeitis called, returns the next set of captures from pattern over string s.
If pattern specifies no captures, the entire match is produced in each call.

For example, the following loop iterates over all the words from string s,
printing one per line:

> s = "hello world from Lua"

> for word in string.gmatch(s, "%a+") do
>> print (word)

>> end

hello

world

from

Lua

And here’s an example that collects all sets of key=value pairs from the
given string into a table:

>t = {}

> s = "from=world, to=Lua"

> for k, v in string.gmatch(s, " (%w+)=(%w+)") do
>> t[k] = v

>> end

> for k,v in pairs(t) do

>> print(k, v)

>> end

to, Lua

from, world

When working with string.gmatch(), remember that the pattern is
designed to potentially match more than one occurrence, so the pattern
shouldn’t be anchored too heavily (in particular, using the ~ and $ anchors
would make the preceding example work incorrectly).

string.gsub(s, pattern, repl [, n])

The string.gsub(s, pattern, repl [, n]) function returns a copy of s in
which all (or the first n, if given) occurrences of the pattern have been replaced
by a replacement string specified by repl, which may be a string, a table, or a

104

Partl = Learning to Program

function. string.gsub () also returns as its second value the total number of
matches that occurred.

If repl is a string, its value is used for replacement. The character $ works
as an escape character: any sequence in repl of the form %n, with n between
1 and 9, stands for the value of the n*® captured substring (see the following
example). The sequence %0 stands for the whole match. The sequence %% stands
for a single %.

If repl is a table, the table is queried for every match, using the first capture
as the key; if the pattern specifies no captures, the whole match is used as
the key.

If repl is a function, this function is called every time a match occurs, with
all captured substrings passed as arguments, in order. If the pattern specifies
no captures, the whole match is passed as the argument.

If the value returned by the table query or by the function call is a string or
a number, it is used as the replacement string; otherwise, if it is false ornil,
there is no replacement (that is, the original match is kept in the string).

Here are some examples:

> print(string.gsub("hello world", " (%w+)", "%l %1"))
hello hello world world, 2

> print (string.gsub("hello world", "%w+", "%0 %0", 1))
hello hello world, 1

> print (string.gsub("hello Lua", " (%w+)%s* (%w+)", "%2 %1"))
Lua hello, 1

> lookupTable = {["hello"] = "hola", ["world"] = "mundo"}
> function lookupFunc (pattern)

>> return lookupTable[pattern]

>> end

> print (string.gsub("hello world", "(%w+)", lookupTable))
hola mundo, 2

> print (string.gsub("hello world", " (%w+)", lookupFunc))
hola mundo, 2

string.match(s, pattern [, init])

The string.match (s, pattern [, init]) function looks for the first match of
pattern in the string s. If it finds one, the match returns the captures from the
pattern; otherwise, it returns nil. If pattern specifies no captures, the whole
match is returned. A third, optional numerical argument—init—specifies
where to start the search; its default value is 1 and may be negative.

string.find(s, pattern [, init [, plain]])

The string.find(s, pattern [, init [, plain]]) function looks for the
first match of pattern in the string s. If it finds a match, find returns the indices
of s where this occurrence starts and ends; otherwise, it returns nil. A third,

Chapter 6 = Lua Standard Libraries

optional numerical argument—init—specifies where to start the search; its
default value is 1 and may be negative. A value of true as a fourth, optional
argument, plain, turns off the pattern matching facilities, so the function
does a plain “find substring” operation, with no characters in pattern being
considered “magic.” Note that if plain is given, init must also be given.

If the pattern has captures, then in a successful match the captured values
are also returned, after the two indices.

Math Library

The math library provides an interface to several standard math functions and
constants. Table 6-8 describes some of the more common functions in the math
library. (It is not a full listing of the library; for that, please consult a proper
Lua reference, which includes a full set of trigonometric functions such as
math.cos, math.sin, math.tan, and so on.)

Table 6-8: Math Functions

FUNCTION DESCRIPTION EXAMPLE
math.abs (x) Returns the absolute > print (math.abs (13))
value of x. 13
> print (math.abs (-13))
13
math.ceil (x) Returns the smallest > print (math.ceil(1.03))
integer larger than or 2
equal to x. > print (math.cell(13))
13
> print (math.cell(17.99))

18

math.deg (x)

Returns the angle x
(given in radians) in
degrees.

> print (math.

180

> print (math.

deg (math.pi))

deg (math.pi * 2.5))

450
math.exp (x) Returns the value of the > print (math.exp(27))
mathematical constant ~ 532048240601.8
e raised to the x power.
math.floor (x) Returns the largest > print (math.floor (1.03))
integer smaller thanor 1
equal to x. > print (math.floor (13.0))
13
> print (math.floor (17.99)

17

Continued

106 Partl

Learning to Program

Table 6-8: (continued)

FUNCTION DESCRIPTION EXAMPLE

math. fmod (x, y) Returnsthe remainder > print (math.fmod (14, 3))
of the division of x by 2
y, rounding the > (print (math.fmod (14, 2))
quotient toward 0
zero.

math.log (x) Returns the natural > print (math.log(532048240601.8))
logarithm of x. 27

math.logl0 (x) Returns the base-10 > print (math.logl0(10"2))
logarithm of x. 2

math.max (x, v, Returns the maximum > print (math.max(-13, 7, 32))

Zz,

-)

value among its
arguments.

32

math
z,

.min(x, vy,

)

Returns the minimum
value among its

> print (math.min(-13, 7, 32, 17))
-13

arguments.

math.modf (x) Returns two numbers, > print (math.modf (10.23))
the integral part of x 10, 0.23
and the fractional part > print (math.modf (7/22))
of x. 0, 0.31818181818182)

math.pi The value of the > print (math.pi)
mathematical constant 3.1415926535898
pi.

math.pow(x, V) Returns x raised to the > print (math.pow(2, 10))
y power. (You can also 1024
use the expression x "y > print (math.pow(2, -10))
to compute this value.) 0.0009765625

math.rad (x) Returns the angle x > print (math.rad(180))

(given in degrees) in
radians.

3.1415926535898

> print (math.rad(180) == math.pi)
true

> print (math.rad(450)
7.8539816339745

math.random([m

[, n]l)

Generates
pseudo-random
numbers. The numbers
generated may not be
sufficient for statistical
analysis but provide an
easy way to create
pseudo-randomness in

> print (math.random())
7.8263692594256e-06

> print (math.random(100)

14

> print (math.random (10, 20))
18

Chapter 6 = Lua Standard Libraries

107

FUNCTION

DESCRIPTION

a program. For
example, this function
can be used along with
the
SendChatMessage ()
World of Warcraft API
function to allow your
character to make
random sayings based
on certain events.
When called without
arguments, returns a
pseudo-random real
number between 0 and
1 (not including 1).
When called with a
number m, returns a
pseudo-random integer
between and including
1 and m. When called
with two numbers m
and n, returns a
pseudo-random integer
between and including
m and n.

EXAMPLE

math.randomseed
(x)

The pseudo-random
number generator used
by Lua takes an initial
seed and generates a
sequence of numbers
based on that seed. As
a result, the same initial
seed will always
produce the same
sequence. This function
has been removed from
the Lua implementation
in World of Warcraft,
but is listed here for
completeness.

> math.randomseed (1000)

> print (math.random(100))
1

> print (math.random(100))
54

> print (math.random(100))
61

> -- reset the seed

> math.randomseed (1000)

> print (math.random(100))
1

> print (math.random(100))
54

> print (math.random(100))
61

math.sqgrt (x)

Returns the square root
of x. (You can also use
the expression x " 0.5

to compute this value.)

> print (math.sqgrt (169)
13

print (math.sqrt(2))
.4142135623731
print(2 " 0.5)

>
1
>
1.4142135623731

108 Partl = Learning to Program

.m Lua doesn’t include a math.round () function because there are so many
possible variations on what it means to “round” a number. http://lua-users.
org/wiki/SimpleRound shows how to implement the following function, which
rounds a number to a given decimal place:
function round(num, idp)

local mult = 10" (idp or 0)

return math.floor (num * mult + 0.5) / mult
end

World of Warcraft Additions to Lua

Several functions have been added to the Lua implementation in WoW as
utility functions for developers:

B strsplit(sep, str)

B strjoin(sep, ...)

M strconcat(...)

B getglobal (name)

B setglobal (name, value)

B debugstack([start[, countl[, count2]]])

These functions are available in the WowLua addon, on the WebLua
webpage, and in the interpreters that are available for download via the
book’s companion website. They may not be available in Lua distributions
obtained elsewhere.

strsplit(sep, str) takes a given string str and splits it into separate
strings on each occurrence of any character in the separator string sep. This
function returns each individual string (with separator characters removed) to
the caller.

> print (strsplit(":", "foo:bar:blah"))
foo, bar, blah

> print(strsplit(" ", "This is a string"))
This, is, a, string

The strjoin(sep, ...) function takes a list of strings and concatenates
them together with the separator string sep, returning the result.

> print(strjoin("™ ", "This", "is", "a", "test", "string"))
This is a test string

> print(strjoin(", ", "alpha", "beta", "gamma"))

alpha, beta, gamma

The strconcat (...) function takes a list of strings and concatenates them
together into one long string, which is returned.

> print(strconcat ("This", "is", "a", "test"))
Thisisatest

Chapter 6 = Lua Standard Libraries

109

> print (strconcat("alpha:", "beta:", "gamma"))
alpha:beta:gamma

getglobal (name) takes a variable name as a string and returns the so-named
global variable, if it exists. This function is deprecated in World of Warcraft,
meaning it should no longer be used but has not yet been removed. It is
included, along with setglobal, in case you see it in code from older addons.

> greekl, greek2, greek3 = "alpha", "beta", "gamma"
> for i=1,3 do

>> print (getglobal ("greek" .. i))

>> end

alpha

beta

gamma

The setglobal (name, value) function takes a variable name as a string,
along with a corresponding value, and sets the so-named global variable to
the new value.

> print (myVariable)

nil

> setglobal ("myVariable", 17)
> print (myVariable)

17

The debugstack ([start[, countl[, count2]]]) function returns the cur-
rent calling stack according to three inputs, as described in Table 6-9.

Table 6-9: debugstack Inputs
INPUT TYPE DESCRIPTION

start Number The stack depth at which to start the stack trace (defaults to 1,
the function calling debugstack)

countl Number The number of functions to output at the top of the stack
(default 12)

count2 Number The number of functions to output at the bottom of the stack
(default 10)

This function only operates correctly in WoW. The standalone Lua inter-
preter has its own method of providing stack traces.

Function Aliases

In World of Warcraft, many of the library functions have been given shorter
aliases so they are easier to access and type. Table 6-10 contains a full listing of
these aliases.

110 Partl = Learning to Program

Table 6-10: Global Aliases

ORIGINAL FUNCTION ORIGINAL FUNCTION
abs math.abs gsub string.gsub
ceil math.ceil strbyte string.byte
cos math.cos strchar string.char
deg math.deg strfind string.find
exp math.exp strlen string.len
floor math.floor strlower string.lower
frexp math. frexp strmatch string.match
ldexp math.ldexp strrep string.rep
log math.log strrev string.reverse
max math.max strsub string.sub
min math.min strupper string.upper
mod math. fmod foreach table. foreach
rad math.rad foreachi table. foreachi
random math.random getn table.getn
randomseed math.randomseed sort table.sort
sgrt math.sqgrt tinsert table.insert
format string.format tremove table.remove
gmatch string.gmatch

Summary

Lua has three major libraries that contain utility functions. The table library
provides ways to insert, remove, and sort array tables; the string library
has a number of useful utilities for tasks such as turning a string into all
lowercase, uppercase, or even reversing the string. In addition to these utility
functions, this chapter introduced the basics of Lua pattern matching and string
formatting using string. format (), string.match(), and string.find().

CHAPTER

J

Learning XML

As mentioned in Chapter 1, you use two languages to build user interfaces for
World of Warcraft. You have already been introduced to Lua, the programming
language that defines the behavior of the interface, but you haven’t yet tackled
eXtensible Markup Language (XML), used to create the graphical frames that
comprise WoW’s user interface. That’s what this chapter is all about.

XML as a Markup Language

A markup language takes text content and adds extra information to the
document, mixing it in with the text itself. The markup typically describes
something about the text itself, such as the structure of the document or how
the text should be displayed on screen. Following are examples of two notable
markup languages, HTML and LaTeX:

HTML

<html>
<head>
<title>My Document</title>
</head>
<body>
<hl>Heading One</hl>
<p>
This text is bold.
</p>
</body>
</html>

111

112 Partl = Learning to Program

LaTeX

\documentclass{article}
\title{My Document}
\begin{document}

\maketitle
\section{Heading One}

This text is \textbf{bold}.
\end{document}

Each of these examples provides basic information about the structure of the
content by creating new headings and sections, and delimiting the actual body
of the document. In addition, the and \textbf{} tags are intermixed
with the text to indicate that a specific word should be displayed in a bold
face font.

XML's Relationship to HTML

Whereas HTML is a markup language describing presentation with a minimal
amount of structural information, XML is entirely a structural language,
describing the relationship between elements but providing no cues about
how they should be presented. Consider this example XML document:

<addressbook name="Personal">
<entry>
<firstname>Alice</firstname>
<lastname>Applebaum</lastname>
<phone>+1-212-555-1434</phone>
<address>
114 Auburn Street
Apt 14
Atlanta, GA
</address>
</entry>
</addressbook>

Unlike the earlier HTML example, this has no presentation cues, and
most applications wouldn’t know how to display this information. An XML
document typically structures information according to some set of rules (such
as a schema definition, which you will explore later this chapter). In short,
XML is a cousin of the HTML standard that is generalized for multiple uses,
and is stricter in its syntax and structure.

Components of XML

XML is designed to be both human-readable and computer-readable, so it
has a strict required structure. An XML document includes tags, elements,
attributes, and entities, each of which is discussed in the following sections.

Chapter 7 = Learning XML

113

XML Tags

An XML tag is an identifier that begins and ends with angle brackets, such
as <tag>. The tags are case-sensitive, so <Tag> is a different tag name than
<tag>. A closing tag is the same as an opening tag, but has a forward slash
immediately after the open bracket, such as </tag>. The XML standard doesn’t
define any specific tags, only the rules defining how and when tags should

appear.

XML Elements

Elements are the lowest level of structure and content in an XML document,
taking some content and enclosing it in a set of open/close tags. A basic
element from the earlier XML example is the <entry></entry> section, which
defines an XML element with the name entry. An XML element can contain
any type of content, including more markup. Elements are governed by the
following rules:

= A nonempty element must begin with an opening tag and end with a
closing tag.

= An element with no content can either be delimited with start/end tags
or be a self-closing tag. A self-closing tag has a forward slash immediately
before the closing angle bracket, such as <tag /> or <tag/>.

Again, the XML standard doesn’t really define any element types or tags,
but merely describes how the document should be structured so it conforms
to the standard.

XML Attributes

In addition to containing generic content, each XML element can have any
number of attributes, which are named values belonging to that element. An
attribute is declared in the start tag (or the self-closing tag, if used) like this:

<tag attribute="value"></tag>

Attributes can have any name, but the XML standard requires that all values
be quoted using either balanced single quotes or balanced double quotes. This
ensures that any program conforming to the XML standards can parse the
document.

Unlike an element’s content, which describes more of a parent/child rela-
tionship, attributes describe something specific about the element, such as the
name of the element. The addressbook element has the name personal, so it
can be distinguished easily from any other addressbook that has been defined.
The distinction isn’t made through the XML standard but is extremely useful
when parsing and validating an XML document.

114 Partl = Learning to Program

XML Entities

The XML specification forbids the ampersand (&) and the less-than sign (<)
from appearing within an element. In addition it might be confusing to see
single quotes ('), double quotes (") and the greater than sign (>) in a document.
To compensate for this, XML provides a number of escaped entities that can
be included in the place of these characters. Table 7-1 shows a list of the most
common XML entities:

Table 7-1: XML Entities

CHARACTER EQUIVALENT ENTITY

& &
< &1t;

> >

" "
! '

Creating Well-Formed XML

A well-formed XML document is one that is valid and parsable from a
syntactic point of view; that is, it follows all the required rules defined by the
standard. Before jumping into the rules for a well-formed document, look at
the definitions of root and non-root elements:

m Root element: A root element is an element that is not nested within
another element. The first element in an XML file is the only root element.

=m Non-root element: An element that is nested within another element.
For a document to be well formed, it must comply with the following;:

= Any non-empty elements begin with a start tag and end with an end tag.

m Empty elements may either be delimited with start and end tags or be
marked as a self-closing element.

m All attribute values are quoted with balanced single or double quotes.

m Tags may be nested, but must not overlap. In particular, each non-root
element must be contained entirely within another element. This disallows
something like some <i>Text</i>, because the <i> element is not
contained entirely within another element.

Checking the syntax of an XML document can be as simple as opening it
in your favorite web browser, although more specialized tools are available.
Most modern browsers are XML-capable and can tell you which line of the

Chapter 7 = Learning XML

115

document failed. In addition, you can use the XMLValidate utility on the
book’s web page (http://wowprogramming.com/utils/xmlvalidate.) to see
whether your document is well formed.

Validating an XML Document

The XML format itself describes the syntax of the language—that is, the
rules that make an XML document well-formed —but doesn’t delve into the
semantics, such as what attributes can belong to a given element, and what
relationships can exist between given elements.

One method of describing the semantics of a given XML document is a
schema definition. These definitions can come in a few forms, such as:

m Document Type Definition (DTD), a format native to XML.
m XML Schema, a W3C standard for declaring a schema.

m RELAX NG, a simple schema language available in XML formats as well
as a shorter version.

World of Warcraft defines its schema using the XML Schema standard. The
following section of the chapter focuses on this standard, and how to read it
and use it for validating your files.

Example Schema Definition

The following is a simple XML Schema definition for an address book:

<xs:schema
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="addressbook" type="AddressBook"/>
<xs:complexType name="AddressBook">
<xS:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="phone" type="xs:string"/>
<xs:element name="address" type="xs:string"/>
</xs:sequence>
</xs:complexType>

</xs:schema>

The initial line is standard for declaring a schema; it simply points to the
standard document for the W3C definition of the XML Schema definition.
The second tag defines a new element named addressbook, creating a new
<addressbook> tag, and associating it with the named type AddressBook. The
rest of the sequence defines what it means to be of type addressBook, namely
a sequence of four different named elements that is simply string content.

116 Partl = Learning to Program

Example XML Document

The following is a file that declares its schema to exist in the file
addressbook.xsd. Assuming both files are in the same directory, this file can
be validated against the schema directly:

<addressbook
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemal.ocation="addressbook.xsd">
<name>Alice Applebaum</name>
<phone>+1-212-555-1434</phone>
<address>
114 Auburn Street
Apt 14.
Atlanta, GA
</address>
</addressbook>

You can use a number of utilities to validate an XML schema on different
platforms:

m XMLNanny (MacOSX), www.xmlnanny.com
m Microsoft Visual Studio (Windows), www.microsoft.com/express
L thLSpy;www.altova.com/xml—editor

m Decision Soft’s Online XML Validator, http://tools.decisionsoft.com/
schemavalidate

Figure 7-1 shows this XML document being validated against the
given schema using XMLNanny. In addition to these downloadable tools
there is a very simple web-based validator that you can use at http://
wowprogramming.com/utils/xmlvalidate.

The document passes the validation step because it's been structured
correctly and the schema has been followed exactly. As a matter of fact,
the example schema requires the elements of <addressbook> to appear in the
exact order shown. If you were to swap the order of <name> and <phone>,
the document would no longer validate. To add the elements in any order,
as long as you include them all, you can change the <xs:sequence> and its
matching close tag to read <xs:all>.

Exploring the Schema

One advantage of a strict markup like XML being used for layout is that all
the information necessary to write complex layouts is contained within the
schema itself. The schema reveals to you all of the valid options for any given
tag or attribute. In addition, a number of tools are available to make it easier
for you to edit XML files.

Chapter 7 = Learning XML

117

Source: [IXML\cfalldarion,faddressbook.xml] (Browse...)
Validation: | XML Schema B‘ Browse...
E Verbose g Full-Constraint Check

End Element: {, address) address

Ignorable Whitespace (1) :"

End Element: {, addressbook) addressbook

End Prefix Mapping for Prefix; "xsi"

QB O Q@ ©

End Document

SUCCESS!
&% Document /XMLValidation/addressbook. xml
VALID. x]

Jal»

\

=

Figure 7-1: Validating with XMLNanny

For example, XMLSpy, Visual Studio, and other XML editors can provide
auto-complete when you're creating a new file, so attribute names are auto-
matically completed, and some editors even give you dropdowns to select the
values when they are defined.

XML in World of Warcraft

The WoW user interface has an incredibly detailed XML schema that dictates
exactly what tags, attributes, and values are valid when defining frames. To
better understand how everything is structured, you can unpack the latest
XML schema following the directions given in Chapter 8. It will extract to the
Blizzard Interface Data (enUS)/FrameXML/UI.xsd file under your WoW
installation, where enus is your locale. Here’s an excerpt from the file:

<xs:simpleType name="ORIENTATION">
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="HORIZONTAL"/>
<xs:enumeration value="VERTICAL"/>
</xs:restriction>

</xs:simpleType>

<xs:simpleType name="ColorFloat">
<xs:restriction base="xs:float">
<xs:minInclusive value="0.0"/>

118

Partl = Learning to Program

<xs:maxInclusive value="1.0"/>
</xs:restriction>
</xs:simpleType>

<xs:complexType name="ColorType">
<xs:attribute name="r" type="ColorFloat" use="required"/>
<xs:attribute name="g" type="ColorFloat" use="required"/>
<xs:attribute name="b" type="ColorFloat" use="required"/>
<xs:attribute name="a" type="ColorFloat" default="1.0"/>
</xs:complexType>

<xs:complexType name="GradientType">
<Xs:sequence>
<xs:element name="MinColor" type="ColorType"/>
<xs:element name="MaxColor" type="ColorType"/>
</xs:sequence>
<xs:attribute name="orientation" type="ORIENTATION" default="HORIZONTAL"/>
</xs:complexType>

This excerpt from the WoW XML schema defines a series of types that are
used later in the schema, along with attributes and valid values. The first
block defines a new type called or1ENTATION. This value is an enumeration,
which means it must be one of the listed values, specifically HORIZONTAL or
VERTICAL.

The second block defines a new type called colorFloat, which must be a
floating-point number. In this case, it must be between the values 0.0 and
1.0 inclusive. Next, a complex type called colorType is defined; it has three
required attributes and one optional attribute. Any element of this type must
supply values for r, g, and b (which must conform to the rules for colorFloat),
and may optionally provide a value for a. These correspond to the red, green,
blue, and alpha values of a given color.

Finally, a complex type GradientType is defined; it takes exactly two items
in sequence, a <MinColor> tag and a <MaxColor> tag, both of type colorType.
Additionally, this tag can take an orientation attribute, described earlier.

Using a GradientType

Assuming there is a <Gradient> tag with the type GradientType defined
somewhere, the following would be a valid usage of this schema:

<Gradient orientation="VERTICAL">
<MinColor r="1.0" g="0.0" b="0.3" a="1.0"/>
<MaxColor r="0.0" g="0.0" b="0.0" a="1.0">
</Gradient>

Chapter 7 = Learning XML

119

When used as part of a texture in the game, this appears as a gradient from
red to black, with the gradient traveling vertically. This is exactly how the
<Gradient> tag should be used.

Exploring Blizzard’s XML User Interface
Customization Tool

Blizzard has provided us with a tool to extract the XML files that comprise
the default user interface. To extract it, you must download the User Interface
Customization tool from http: //www.worldofwarcraft.com/ui. This website
contains versions for Microsoft Windows as well as for Mac OS X. Once you've
downloaded the file, extract the program and run it. On loading, you'll see the
screen shown in Figure 7-2.

You have two options:

m [nstall Interface Data—Extracts all of the code that defines the default
user interface, the XML schema that defines the markup, as well as two
tutorial addons with step-by-step descriptions.

m Install Interface Art—Extracts all the graphics files that are used in the
default interface, such as icons, border textures, and so on.

If you choose to extract the interface data, the following two subdirectories
will be created in your World of Warcraft directory:

m Blizzard Interface Data (enUS)

m Blizzard Interface Tutorial
If you extract the interface art, the following subdirectory is created:
m Blizzard Interface Art (enUS)

You may find that your directories extract with a different directory name.
The enUS in the example stands for U.S. English, the language that the interface
files use. If you use a German WoW client, you may instead see deDE, for
example. You learn more about localization a little later in the book.

The Blizzard Interface Data directory contains two subdirectories,
FrameXML and AddOns. The files contained in FrameXML are loaded
each time the client starts, whereas the files in the AddOns directory are
loaded under certain circumstances (see the listing in Chapter 1 for more
information).

120 Partl = Learning to Program

H.0.6 World of Warcraft Interface AddOn Kit

Interface AddOn Kit

The World of Warcraft interface is customizable! AddOns allow
the game to look and behave the way you want This installer
will provide the data you need to get started. Knowledge of
XML and Lua is strongly recommended.

Install Interface Data

Install Interface Art

Figure 7-2: User Interface Customization tool

BLIZZARD INTERFACE ART

Although Blizzard provides a way to extract the art that is used throughout
the game, the graphics files are in a proprietary format called BLP2. Blizzard
uses that format for its graphics and, unfortunately, no official tools have been
released to support it.

Foxlit, an enterprising member of the user interface community, has
written a web page that can convert these files on demand, and we have
the opportunity to host a version of it on the book’s companion website:
http://wowprogramming.com/utils/blp2png.

Simply upload a BLP file that you'd like converted, and the web page will
return a PNG image that can be saved and edited. Remember, however, that
World of Warcraft only loads BLP and TGA files, so you'll have to convert it to
TGA after making any changes.

Alternatively, you can browse the contents of the interface art directories
online at http: //wowprogramming.com/utils/artbrowser. Each of the
images are hosted in PNG format for you to view and download.

Chapter 7 = Learning XML

121

Summary

XML is a broad specification that allows virtually endless combinations of
schemas and structure, but when dealing with World of Warcraft, you focus
on a very particular subset defined by the schema. The default user interface
uses XML for all of its frame layout and creation, and you can take advantage
of this by using Blizzard’s own code to learn more about the system.

|

Programming in World
of Warcraft

In This Part

Chapter 8: Anatomy of an Addon

Chapter 9: Working with Frames, Widgets, and Other Graphical Elements
Chapter 10: Saving Time with Frame Templates

Chapter 11: Exploring the World of Warcraft API

Chapter 12: Interacting with Widgets

Chapter 13: Responding to Game Events

Chapter 14: Tracking Damage with CombatTracker

CHAPTER

8

Anatomy of an Addon

As discussed in Chapter 1, an addon for World of Warcraft is a collection of text
and media files packaged together and loaded to extend the core functionality
of the game client. At the more virtual level an addon is also a collection of
functions, tables, frames, textures, and font strings.

This chapter explains the contents of an addon’s files, and introduces you to
the widgets system and the event-based programming system used in WoW.

Exploring an Addon’s Files and Folders

An addon consists of a table of contents file that defines certain metadata about
an addon (such as name, author, version, and a list of files to be loaded), along
with XML frame definitions, Lua scripts, and other media files. This section
details the actual contents of these files.

Table of Contents (.toc) File

The one file that must be included in every addon is the table of contents
(TOC) file, which must have the same name as the addon’s directory. For
example, if an addon’s directory name is MyAddon, it must contain a file
called Myaddon. toc. The TOC file provides vital information about the addon
(such as title, description, author, and so on) along with a list of files to be
loaded by the game client. A sample . toc file might look like this:

Interface: 30300
Title: My Addon Name

125

126 Part Il = Programming in World of Warcraft

Author: My Name Here
Notes: This is my sample addon

MyAddon .xml
MyAddon. lua

Each line beginning with ## contains a definition of some sort of metadata.
For example, the ## Title metadata is displayed on the addon selection
screen, and ## Notes contains a longer description that is displayed when you
mouse over the addon in that list. The lines after the directives are simply a
list of files to be loaded by the addon.

Interface:

Interface: 30300

The interface version directive (## Interface: 30300 in this example)
provides a basic versioning mechanism that the client uses for the addon
selection screen. The game client uses this number to verify that an addon is
compatible with the current game version. If the version is not compatible, the
game will label it with one of two states:

m Qut of date—This state indicates that there has been a patch to the game
client since the addon was written. This is strictly just a warning; the
addons may work just fine if you check “Load out of date AddOns” at
the top of the screen. The version number typically only changes when
there is an actual change to the AP]I, so this warning should be heeded.

= [ncompatible—When a major change happens to the game client (such
as an expansion pack), the addon selection screen will display this status
and will refuse to load the addon. A new version of the addon should be
downloaded to ensure it operates correctly in the new APIL

Figure 8-1 shows two addons, one flagged as out of date and the other
as incompatible. TinyPad could be loaded by checking the Load out of date
AddOns checkbox, but nothing can force the incompatible addon to load.

Figure 8-1: Addon selection screen

Just because an addon is listed as out of date doesn’t mean there’s anything
particularly wrong with it, only that the game client has been patched since the

Chapter 8 = Anatomy of an Addon

127

. toc file was last updated. When that happens, it’s a good reminder to update
your addons and make sure you're using the latest versions. This helps you
get the latest bug fixes and features, and also makes it easier for the author of
the addon to support you.

The interface number is generally built from the version number of the
WoW client. For example, the interface number for the 3.3.0 client is 30300.
However, this does not necessarily change each time there is a patch. If after
a WoW patch you're not sure what interface number to use in building your
own addons, you can extract the latest Framexur files using the User Interface
Customization Tool introduced in Chapter 7 and consult the FramexmL. toc file.

ADDON SELECTION SCREEN

You can access the addon selection screen by clicking the AddOns button at
the bottom-left of the character selection screen. This button appears when
you have downloaded and installed an addon in the appropriate place.

From the selection screen, addons can be enabled and disabled on a
per-character or global basis. The global settings work only for a single server,
so if your characters are on different servers, you will need to configure them
independently. The addon selection screen can be used to browse the addons
that are available on a given system, as well as any dependencies they may
have.

When things go wrong with an addon, checking the addon selection screen
to ensure the addon isn’t flagged as “Out of date” or “Incompatible” is a good
place to start to ensure the addon is actually being loaded.

Title:

Title: Hello Friend

When addons are listed in the addon selection screen, they are sorted and
shown by their ## Title directive, rather than by the name of the addon’s
TOC file or directory. This can be somewhat confusing as you try to determine
which directory corresponds to which addon title in game, but these problems
are relatively infrequent and easy to resolve. The default value for this option
is the name of the addon’s directory.

The ## Title directive can be localized, meaning it can display different
text depending on which language the user’s client is set to display. To localize
it for Spanish language users, for instance, you’d add a hyphen followed by a
locale code, such as ## Title-esES: Hola amigo. When your addon is loaded
on a WoW client with that locale, the custom name will be displayed instead
of the generic one supplied in the ## Title directive. Localization of addons
is covered in more depth later in this chapter.

128 Part Il = Programming in World of Warcraft

Notes:

Notes: Greet other players

The ## Notes directive gives you the capability to provide a longer descrip-
tion of your addon. This field can also be localized to provide a different
description depending on client locale in the same way as ## Title, and may
also contain color codes to highlight portions of the text. Figure 8-2 shows the
tooltip displayed by the WoWLua addon . toc file.

Figure 8-2: WowLua tooltip, generated from ## Title and ## Notes directives

Dependencies:, ## RequiredDeps:

Dependencies: Juggernaut, Alpha
RequiredDeps: Juggernaut, Alpha

Occasionally, one addon requires another to be loaded in order to function.
For example, certain addons are organized into individual addon plugins, all
requiring one central addon. To express this, you give the ## Dependencies or
Requiredbeps directive a list of comma-separated addon names. The game
client will load all required dependencies of an addon before trying to load
the addon itself.

When an addon is missing a required dependency, or the dependency addon
has been disabled, an error message is displayed, as shown in Figures 8-3
and 8-4. You can move your mouse over the addon name to view a list of
dependencies and see which ones are missing.

Figure 8-3: Addon with dependency disabled

Figure 8-4: Addon with dependency missing

Chapter 8 = Anatomy of an Addon

129

Dependencies also ensure addons are loaded in the proper order, so if Beta
relies on Alpha, the client will load aAlpha before it loads Beta. This is even
true for a long chain of dependencies. ## Dependencies and ## RequiredbDeps
both work the same for this directive. Addons should obviously try to avoid
circular dependencies, because no addon will ever be loaded in that case.

OptionalDeps:

OptionalDeps: Juggernaut, Alpha

When an addon can interact with another addon, but doesn’t strictly require
it to function, it can be listed as an optional dependency using the ##
OptionalDeps directive. All this directive does is ensure that the optional
dependencies are loaded before this addon, if they are available. This directive
takes a comma-separated list of addon names. The names listed must match
the . toc file and the directory names of the given addons.

LoadOnDemand:

LoadOnDemand: 1

As mentioned in Chapter 1, each of the Blizzard addons is configured to
load on demand, meaning that the client will load and initialize the addon
in response to some game event. This saves memory and load time by not
loading all of the addons each time the player logs in to the game, but only
when he needs them. Because not all addons may be written in a way that
supports load on demand (LoD), there is a directive that flags an addon as
LoD capable.

An LoD addon can still use the other directives, and still appears in the
addon list, but will not be loaded until explicitly requested by another addon.
Many addons use this functionality for their configuration systems, only
loading them when the user tries to make a configuration change.

This option takes either a 1 or a 0, where 1 means the addon is LoD capable,
and 0 means it is not. If this value isn’t supplied in the TOC, it defaults to 0.

LoadsWith:

LoadsWith: Blizzard_RaidUI

The ## Loadswith directive can be combined with ## LoadonDemand to load
an addon as soon as another is being loaded. For example, an addon that alters
the default Blizzard Raid UI could include ## Loadswith: Blizzard RaidUI
to be loaded along with the default raid interface. This directive has rather
limited use but expands the usefulness of LoD components quite a bit. If

130

Part Il = Programming in World of Warcraft

multiple addons are listed, the addon will be loaded as soon as any of those
listed finishes loading.

DefaultState:

DefaultState: disabled

Not all addons are meant to be loaded on each and every character, so this
directive enables you to set the default state of an addon. The flag tells the
client whether an addon should be checked (enabled) in the addon selection
screen by default. As soon as a user overrides this setting by checking or
unchecking the addon, the user preference is respected. If not supplied, this
value defaults to enabled.

LoadManager:

LoadManager: AddonLoader

Adding to the complexity (and versatility) of the LoD system is the ##
LoadManager directive, which indicates that some other addon will take respon-
sibility for loading this addon. The addon is flagged as LoD as long as the load
manager addon is installed and enabled.

The most prevalent load manager is called AddonLoader and is available
from a few different locations, including;:

B http://wowace.com/projects/addon-loader
B http://wowinterface.com/downloads/infoll4d76-r77-release.html

AddonLoader is used by several addons as a LoadManager. The developer
can provide conditions in the TOC that AddonLoader then uses to decide
when the addon should be loaded. For example, an addon that is specific to
Rogues can be flagged with ## x-Loadon-Class: Rogue, and it will be loaded
for any rogue characters but not for any others.

This method requires the developer to add these flags to the TOC file and
the user to download AddonLoader, but it provides major benefits when used
correctly. You can find documentation about using AddonLoader online at

http://www.wowwiki.com/AddonLoader

SavedVariables:

SavedVariables: JuggernautDB

The only way an addon can save information between sessions is to define
a Lua variable and list the name of the variable in the ## sSavedvariables
directive in its TOC file. This tells the game to save the contents of that variable
out to a file when the game is closed, and read it back in when the game is
started up again. The variable can be a string, number, Boolean, or table.

Chapter 8 = Anatomy of an Addon

131

SavedVariablesPerCharacter:

SavedvVariablesPerCharacter: JuggernautDB

The ## savedvariablesPerCharacter: VariableName directive operates in
the same way as ## savedvariables:, except a different file is saved and
loaded for each character you log in with. If you log in to character Alice, her
settings will be saved separately from those for Bob. Nothing special needs to
happen in the addon; it’s all handled automatically by the client.

NONSTANDARD METADATA DIRECTIVES

Beyond the officially supported metadata tags, you may see any number of
other tags included in the . toc file of custom addons. One customary direc-
tive is ## Author. This information isn’t displayed by default client, but can be
accessed by other addons in-game.

Author: ArgyleSocks

X-Label Directives

In addition, custom directives can be defined with an X, followed by a hyphen
and then some label. These directives can contain any string of data, limited to
roughly 1,000 characters. For example, an addon could include a web address
using an ## X-Website directive.

Each of the X label directives is localized by the game client, so you can
include all of the following and only the correct version will be available
through the GetaddonMetadata () API function:

X-FAQ-Website: http://www.myaddon.com/faqg/

X-FAQ-Website-esES: http://www.myaddon.com/faqg/eskES

X-FAQ-Website-deDE: http://www.myaddon.com/faqg/deDE

Addon Categories

The addon community has developed a standard set of addon categories that
can be included in the metadata for an addon, making it easier to group simi-
lar types of addons together when listing or displaying them. Here's the list of
categories:

Action Bars Frame Modification Priest
Auction Guild Quest
Audio Healer Raid

Battlegrounds/PvP Hunter Rogue

(continued)

132 Part Il = Programming in World of Warcraft

NONSTANDARD METADATA DIRECTIVES (continued)

Buffs Interface Enhancements Shaman
Caster Inventory Tank
Chat/Communication Library Tradeskill
Combat Mage UnitFrame
Compilations Mail Warlock
Data Export Map Warrior
Development Tools Miscellaneous

Druid Paladin

You could use one of these categories or define your own set — that's
the beauty of addon metadata. To supply your category, simply use the ##
X-Category: CategoryName directive.

XML Files

HelloFriend.xml

A table of contents file can list any number of XML files to be loaded.
Markup in these files will be validated against the WoW UI XML schema file
asit’s parsed and loaded. XML files can also load Lua scripts using the <script
file="SomeFile.lua"/> tag. Each XML file should contain a top-level <ui>
element.

To validate your XML document, you will also need to include the schema
information in the <ui> element. Here’s an example:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI .xsd">

This may need a bit of explanation. The x1mns attribute defines the name-
space that the document is hoping to conform to. It must match the namespace
declared in the given schema. In this case, it is a value defined by Blizzard. The
xmlns:xsi attribute tells the validating program to which schema instance the
schema will conform. Finally, xsi : schemaLocationis a pair of strings, the first
being the name of a namespace and the second being the location where that
schema can be found.

The example specifies that the http://www.blizzard.com/wow/ui/ schema
can be found in the online document http: / /wowprogramming . com/FrameXML/
uI.xsd. This is a file that is kept updated on the website for validation
purposes. Instead of using the online version, you could specify the path to
the uT.xsd file on your local machine. The location of this file depends on your
specific installation, but it will be unpacked when you use the User Interface
Customization Tool.

Chapter 8 = Anatomy of an Addon

133

As your XML files are loaded, any errors will appear in the Logs\
FrameXML. log file in your base World of Warcraft installation. If your addons
aren’t behaving properly, it’s a good idea to check this file to ensure there
wasn’t an error in validating or parsing your code.

Lua Script Files

HelloFriend.lua

The TOC file can list any number of Lua files that exist somewhere under-
neath the addons directory. Each of these files is loaded, parsed, and then
executed by the game client in the order listed in the TOC file. Because each file
is run independently, local variables defined in one file will not be available
in another file; if you need to share data between different files you should
ensure that you use global variables of some sort.

Media Files

Addons can include custom graphics, sounds, and fonts to be displayed (or
played) within the game client, providing a different visual style or audio
cues. These files are included within the addon directories themselves, and are
addressed by full pathname from the WoW directory.

Music

Assume you have a file called creepysound.mp3 included as part of an addon
called Goober that resides in the following location:

World of Warcraft\Interface\Addons\Goober\CreepySound.mp3

It can then be played by running the following command in-game (remember
to escape the backslash character because Lua uses it as the escape character):

/run PlaySoundFile("Interface\\Goober\\CreepySound.mp3")

The WoW client can natively play MP3 files as well as WAV files. Converting
files to these formats can be accomplished through a number of tools freely
available on the Internet.

Graphics

WoW accepts two graphics formats when loading textures for frames. In
addition to being in the right format, each graphic must meet the following
basic requirements to be loaded:

1. The file’s width and height must be greater than or equal to 2, and smaller
than 1024 pixels.

2. The height and width of the file must be a power of two, although they
need not be the same.

134

Part Il = Programming in World of Warcraft

For example, a file that is 32 x 64 is acceptable, whereas a file that is 512 x 400
is not (because the height is not a power of two). In addition, the file can, and
should, contain an alpha channel, something that is particular to the specific
graphics editing software you are using.

More information on creating and editing custom graphics for addons is
available in Chapter 20.

Following is a look at the two primary graphics formats used in WoW: BLP2
and TGA.

BLP2 Format

If you have extracted the Blizzard Interface Art using the User Interface
Customization Tool (as shown in Chapter 7), you may have noticed that all the
files that were created have a .blp extension. That file format was created by
Blizzard, and has been used in both Warcraft III and World of Warcraft. Even
though Blizzard provides a way to extract the files, there is still no official tool
that can convert these files. The companion website for the book provides a
way to convert these graphics to the PNG format, which is easier to view and
edit; see Chapter 7 for more information.

The only time this book deals with .b1p files is if any original game art is
altered, in which case the texture is provided in the . tga format instead.

TGA Format

Wikipedia defines a .tga file as a Truevision Advanced Raster Graphics
Adapter (TARGA) file. This is a simple graphics file format that can be used to
store color images, including transparency information. TGA files never use
lossless compression, which means the image is not degraded as a result of
saving the image, as happens with JPG files. Most modern graphics editors can
save to this file format natively, and Chapter 20 provides an extensive tutorial
on creating files to be used in the game.

Localizing Your Addons

Localization as it relates to addon development is the process of converting
the text and icons used in the application to a format that is meaningful for
users from other regions of the world, who may speak different languages.
WoW boasts more than 10 million subscribers, many of them coming from
regions in Europe and Asia. You may see the word ““localization”” abbreviated
to L10n, which stands for “L” followed by 10 other letters, followed by an
“n.” Similarly, you may see I18n as an abbreviation for “Internationalization.”
However you call it, localization makes your addons more accessible.

Chapter 8 = Anatomy of an Addon

135

Valid Locales

Blizzard provides a number of game locales with World of Warcraft. Table 8-1
shows a list of the current valid game locale codes. For each of these
languages, Blizzard has translated each in-game message and string so they
are meaningful to users from that region.

Table 8-1: Valid Client Locales

LOCALE CODE CORRESPONDING LANGUAGE

deDE German

enUS American English
enGB British English
esES Spanish

esMX Spanish (Mexico)
frFR French

koKR Korean

TuRU Russian

zhCN Simplified Chinese
zhTW Traditional Chinese

Although there is technically an encs locale, the game will never display
that locale anywhere (in particular, GetLocale () will not return it).

Reasons for Providing Localization

When users play the game in their native language, it’s often easier for them
to make split-second decisions if they aren’t trying to read an entirely different
language as part of a custom addon. Imagine if you were a native Spanish
speaker who played the game in Spanish, but had addons that displayed your
information in English. Even if you're a fluent reader of both languages, your
brain may find difficulty in switching between the two quickly.

From a purely practical standpoint, why not provide support for localization
in your addon? Most users are willing and able to help authors with the addon
localization, and if the addon is organized well, it can be a very easy task to
keep localizations up to date.

136 Part Il = Programming in World of Warcraft

Encouraging Users to Contribute

More often than not, users will approach authors with localization files, but
the author can take some steps to ensure the addon is easy to localize. This
typically means the following:

1. Include a dedicated localization file with no other addon logic, including
a set of constants of a lookup table to be used instead of string constants.

2. Provide information in the readme.txt file for your addon and the
addon’s website on how users can contact you to help with localization.

3. Provide comments about what a specific message means so it can easily be
translated. Although the word “speed”” means only one thing in English,
it may translate to different words depending on the language.

Implementing Localization

Because localization implementations are simply different means of structuring
Lua programs, there are countless ways to do it. This section describes one
particular way to implement localization.

When working with non-English locales, you should ensure that your
editors work properly with UTF-8 markup. Most modern text editors work
just fine, but older, less-featured editors may show garbage instead of the
correct markup.

Add a File for Each Locale

Begin by adding a new localization file for each locale for which you have
translations. If you don’t have any translations to begin with, simply create a
file for the “‘base’ locale in which you've developed the addon. For my addons,
this means adding a Localization.enUs.lua file to my directory structure.
Add the file to the top of the . toc file to ensure that it’s loaded first.

Create a Global Table Containing the Base Strings

Create a new global table called MyaddonLocalization in the Localization
.enUs. lua file, replacing Myaddon with the name of your addon. For instance,
if your addon is named BurgerDoodle, your global table would be called
BurgerDoodlelLocalization.

You can use full strings or tokens to add the base translations to this file.

Using Full Strings

The following is a set of table definitions that takes the entire string to be
translated and uses it as both the key and the value. The reason for this will
become apparent later.

Chapter 8 = Anatomy of an Addon

137

MyAddonLocalization = {}

MyAddonLocalization["Frames have been locked"] = "Frames have 3
been locked"

MyAddonLocalization["Frames have been unlocked"] = "Frames have 3
been unlocked"

This tends to work for smaller strings but, as you can see, can be quite
verbose for longer string keys.

Using Tokens
Instead of using the entire string as the table key, you can use a smaller string
or “token.” The same localization file might look like this:

MyAddonLocalization = {}
MyAddonLocalization["FRAMES_LOCKED"] = "Frames have been locked"
MyAddonLocalization["FRAMES_UNLOCKED"] = "Frames have been unlocked"

Using the Localization Table

The reason for loading the localization file first is to ensure that the tables are
available when the rest of the addon files are loading. For example, you can
display the “locked”” message using the following:

print (MyAddonLocalization["Frames have been locked"])
or
print (MyAddonLocalization["FRAMES_LOCKED"])

If that appears too verbose for you, you could make a shortcut to the global
table. This is typically done with the variable r, which is used in other software
realms for localization:

local L = MyAddonLocalization
print (L["Frames have been locked"])

If you've opted for the token method, you can even use syntactic sugar to
make it easier to type:

print (L.FRAMES_LOCKED)

Adding New Locales

New languages can be added by defining new files and following the standard
you've already established. The new files should be listed after the base locale
in the . toc file, but before the main addon. For example, create a localization file
for German by creating Localization.deDE. lua with the following contents:

if GetLocale() == "deDE" then
if not MyAddonLocalization then

138 Part Il = Programming in World of Warcraft

MyAddonLocalization = {}

end

MyAddonLocalization["FRAMES_LOCKED"] = "Frames wurden gesperrt"

MyAddonLocalization["FRAMES_UNLOCKED"] = "Frames wurden entsperrt"
end

The first line checks to ensure that the user’s locale is deDE; otherwise, the
translation file is skipped. The second line creates the global table if it doesn’t
already exist, and the rest is the same as the base locale file, with the values of
the table being the translated strings.

Now the message printed on a German client will be displayed in the native
language rather than in English.

Handling Partial Translations

What happens if some strings have been translated into German but not others?
Currently, because the main English table is created first, and the German table
is loaded after it, any English strings that haven’t been translated to German
will be displayed in English. This gives you a mix of the two rather than an
error message.

Introducing Frames, Widget Scripts, and Events

Although the previous section explained the different components of addons,
it only covered the details of the files stored on your computer. There’s quite
a bit more to getting an addon up and running. This section introduces you to
the different components that make up an addon within the game.

Frames, FontStrings, and Textures

Every visual component in an addon begins with a frame, which serves as
the container for font strings and textures. A number of types of frames serve
different purposes. For example, the following is a short list of some of the
different frame types (a full listing is given in Chapter 10):

= statusBar—Used to display a numerical value in a given range, such as
health, mana, or a progress bar.

m checkButton—Used for any button that has an on and an off state, such
as checkboxes or radio buttons.

= rditBox—Allows the user to supply input via the keyboard.

= ScrollingMessageFrame—Can display a series of text messages in a
scrolling frame.

The main differences between the different types are the functions that they
provide to customize them. For example a statusBar allows you to set the

Chapter 8 = Anatomy of an Addon

139

minimum and maximum values for the bar, and the ScrollingMessageFrame
enables you to add and clear messages from the frame.

Most frames by themselves have no actual visible components, but
FontStrings and Textures can be used to add text and graphics to frames.

Displaying Text with FontStrings

A Fontstring is a special type of object that is dedicated to displaying text.
The following attributes — and a number of others — can be customized via
XML or Lua:

m Font, size, color, outline, and shadow
m Justification (both vertical and horizontal)
m Whether the text should wrap in the middle of a word

Almost all text that is visible within the Ul is a FontString customized in a
specific way, set to display certain text.

Showing Graphics and Colors with Textures

Textures in World of Warcraft serve a similar purpose to font strings, except
for graphics, colors, and gradients, which can be used to display a graphic file
stored on disk, a solid color, or a gradient from one color to another.

Anchoring Objects On-Screen

All object placement in World of Warcraft is accomplished through a series of
anchors that attach one point on an object to one point on another object. The
concepts of anchoring are covered in-depth in Chapter 9.

Responding to Interaction with Widget Scripts

World of Warcraft allows you to respond to user interaction (such as clicking a
button) via widget scripts. These scripts are numerous and varied, depending
on the type of widget being used. Table 8-2 shows a few widget scripts and
their purpose.

Setting these scripts is relatively simple, just a matter of providing a
Lua function to handle the event. Widget scripts are covered in depth in
Chapter 12.

Responding to Game Events

Most of the benefit of using addons is being able to respond to certain
game events (such as entering combat or requesting a duel) and displaying
something to the user. All handling of game events happens through frames.

140 Part 1l = Programming in World of Warcraft

Table 8-2: Widget Scripts

WIDGET TYPE SCRIPT DESCRIPTION

Button OnClick Fires when the user clicks the button, or
when other code calls the button’s click ()
method.

EditBox OnEscapePressed Fires when the escape key is pressed while
the focus is in the edit box.

ScrollFrame OnVerticalScroll Fires when the scroll frame is scrolled
vertically.

Frame OnEnter Fires when the mouse enters the boundaries

of the frame.

Frame OnShow Fires each time the frame is shown (from a
hidden state).

Frame OnEvent Fires when the frame has registered for a
game event, and the event occurs.

To register for a game event, you can call the Frame:RegisterEvent ()
method, which accepts the name of the event as a string. Once registered, you
can set the onEvent widget script to run code when the event fires.

The following code creates a frame (with no display) that prints a message
to your chat frame when you enter and leave combat. (Don’t worry about the
names of the events; you'll find some of them can be pretty peculiar.) In this
case the event to indicate you are entering combat is PLAYER_REGEN_DISABLED,
because that is when you stop regenerating health.

if not MyCombatFrame then

CreateFrame ("Frame", "MyCombatFrame", UIParent)
end
MyCombatFrame:RegisterEvent ("PLAYER_REGEN_ENABLED")
MyCombatFrame:RegisterEvent ("PLAYER_REGEN_DISABLED")

function MyCombatFrame_OnEvent (self, event, ...)

if event == "PLAYER_REGEN_ENABLED" then
print ("Leaving combat...")
elseif event == "PLAYER_REGEN_DISABLED" then
print ("Entering combat!")
end
end

MyCombatFrame: SetScript ("OnEvent", MyCombatFrame_OnEvent)

That may be confusing right now, but this is just meant to be an introduction
to game events.

Chapter 8 = Anatomy of an Addon

141

Loading of an Addon

The loading of an addon can also be somewhat confusing, so this section
shows you the different stages of the loading process.

1.

When World of Warcraft is opened, the AddOns directory is scanned
to build a list of addons the user has installed, including their metadata
(metadata will not be reloaded again until you completely close the WoW
client).

. Player logs in to World of Warcraft and is shown the character selection

screen for a given server.

. At this point the player can enable and disable addons for either the

currently selected character or for all of the characters on the server.

4. Player selects a character and begins entering the game world.

5. Default user interface XML and Lua files are loaded in the order specified

in FramexML. toc. This may cause Blizzard addons to load on demand,
depending on the situation.

. Enabled, non-load-on-demand addons that do not have errors on the

AddOns page are loaded:

a. If this addon is dependent on any other addons and they are not
currently loaded, load them first, in an order that is dependent on the
operating system (some are alphabetic, others are by date created).

b. The addon’s Table of Contents file is read to create a list of files to be
loaded.

c. Each file is processed in order, and any LoadAddon() commands
are processed immediately. Any script elements in XML files are
processed immediately upon encountering them.

d. The saved variables for this addon are loaded (if present from a
previous game session).

e. The ApDON_LOADED event is fired with the first argument set to the
name of the addon that has completed loading. Depending on the load
structure of your addons, the first event you see may not be for your
addon.

. Blizzard’s saved variables, key binding, and macros begin loading and

synchronizing (this continues in the background).

. The sPELLS_CHANGED event fires, indicating that the player’s spellbook

has loaded and is available to the user interface.

142 Part Il = Programming in World of Warcraft

9. The pLAYER_LOGIN event fires indicating that most information about the
game world should be available to the user, and sizing and positioning
of frames should have been completed.

10. The PLAYER_ENTERING_WORLD event fires, indicating that the player has
entered the game world.

At some point after this sequence the vARIABLES_LOADED event should fire,
indicating that Blizzard’s saved variables, macros, and key bindings have been
loaded or synchronized.

Summary

This chapter introduced you to the different components of an addon, both
on your computer and within the game world. You learned about the various
directives that can be included in a table of contents file. The frame and event
system was introduced briefly.

Learning about concepts is well enough, but you're reading this book to
learn how to actually create addons. The next five chapters will lead you
through creating an addon called BagBuddy for World of Warcraft. Each
chapter introduces you to the details of a specific section of the user interface,
and then you will use those skills to implement a portion of the addon.

Each chapter will build on the code from the previous chapter, so try to
work through the chapters in order. If you do choose to work out of order,
there will be full code listings at the end of each chapter to prevent confusion.

CHAPTER

9

Working with Frames, Widgets,
and Other Graphical Elements

Chapter 8 introduced the concepts of frames, textures, and font strings.
This chapter builds on that introduction, showing you how to create the
foundations for an addon called BagBuddy.

Although the frame definitions in this chapter are written using XML, you
also see how the same effect could be achieved using purely Lua code. XML
is used for this addon because it is helpful to validate against the WoW
XML schema, and it helps separate the frame definitions from the behavioral
code of an addon.

Introducing BagBuddy

Each of the different race and class combinations has its own sets of problems.
One area in which they all have issues is inventory. Items you loot go into the
first free slot in your bags, so while playing your bags can become an unsorted
mess. Countless addons help you sort your inventory, or display it in a more
meaningful way.

The addon you create in this chapter takes a different approach and is meant
to work alongside your inventory. BagBuddy is an extra panel in the user
interface that can filter your inventory by name or rarity, and always displays
results with most-recently-looted first. That way if you need to find something
that you've just looted, you can open BagBuddy and it should be displayed at
the top of the list.

143

144 Part 1l = Programming in World of Warcraft

Creating an Addon Skeleton

BagBuddy consists of an XML definition of the frames, and a Lua script
that defines the behavior and logic of the addon. Start by creating a new
directory within your Interface\addons folder called BagBuddy. Inside this
new directory create a file called BagBuddy . toc and add the following content:

Interface: 30200
Title: BagBuddy
Notes: A handy helper that allows you to filter your inventory

BagBuddy . lua
BagBuddy .xml

Now create BagBuddy.xml, adding just the basic definition of the <ui>
element that you have seen before:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

</Ui>

Finally, create an empty file called BagBuddy . 1ua. You won't be adding any
code to it for the next few chapters, but creating it now ensures that the WoW
client will recognize the file without needing to be restarted.

Creating a Frame

The World of Warcraft user interface is based around the central concept of
frames. All textures and font strings must belong to a parent frame. Frames
can register for events and receive notification of game events. In addition, the
user can interact with frames, for example by clicking them. As a result, most
addons begin with a definition of a frame. BagBuddy is no different.

In BagBuddy . xm1, add the following code inside the <ui> element:

<Frame name="BagBuddy" parent="UIParent">
<Size x="384" y="512"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER" 3
relativeTo="UIParent"/>
</Anchors>
</Frame>

This code creates a new frame called BagBuddy that is a child of uIParent.
The frame is given a width of 384 and a height of 512, and is anchored to the
center of uIParent, making it appear in the middle of the player’s screen.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

145

Parenting

Every frame, texture, and font string can have at most one parent, and in fact
textures and font strings are required to have a parent. In addition, a frame
may have any number of child frames. Having an explicit mechanism for
parenting helps define a hierarchy for the user interface:

1. When a parent is hidden, all child frames cease to be visible. If this
weren’t the case, you'd have to manually hide all the other elements that
might be attached to a frame.

2. A frame’s effective scale is defined by multiplying the frame’s scale by its
parent’s effective scale. If the parent is scaled to be larger or smaller, then
all of the children are grown or shrunk by the same amount.

3. A frame’s effective transparency (alpha) value is defined by multiplying
the frame’s alpha by its parent’s effective alpha. This enables you to make
not only a button transparent, but to “dim out” a frame and all of its
children at the same time.

Most of the Blizzard default frames are parented to urparent. This is a
special frame that is used to hide the user interface when the player presses
Alt+Z. In addition, having a single common parent allows the interface to be
scaled consistently, making everything smaller or larger. When creating new
frames, most times you should parent the frames to urparent at some point
to ensure they work the same as the other frames to which the user may be
accustomed.

When creating frames using XML, parenting also provides you with an easy
to way to name your frames consistently. Any name can include the string
$parent, which is expanded to the name of the parent frame when actually
being loaded.

You have three different ways to set the parent/child relationship between
objects: specifying a parent explicitly using XML attributes, using the hierarchy
of XML elements to define the relationship, or calling the setparent () method
on an object directly:

m Attributes—Use the parent XML attribute to define a parent/child
relationship in an XML frame. This attribute’s value should be the name
of a frame that is to be set as the parent. In the preceding example, this is
used to parent BagBuddy to UIParent. You cannot use this attribute to set
the parent of a texture or font string.

m XML hierarchy—Each object is by default given a parent simply through
its nested location within the XML file. Although creating sub-frames,
font strings, and textures is covered later in this chapter, you should know
that when defined in XML, a parent/child relationship is automatically
established.

146 Part Il = Programming in World of Warcraft

m The setParent () method—Once an object has been created, you can
call the setparent () method to change the parent. This function takes a
single argument: the frame object of the new parent (not its name).

Giving Objects Sizes

Naturally, before the user interface can know what to do with your objects, it
needs to know how large or small they are. The size of an object can be given
using the <size> XML element, using either absolute or relative dimensions.

Absolute Dimensions

Absolute dimensions are specific pixel values that define how large an object
will be. In the earlier XML definition for BagBuddy, the frame is set to be
384 units wide by 512 units tall using the size tag;:

<Size x="384" y="512"/>
Most of Blizzard’s own XML code uses the following format instead:

<Frame name="MyFrame">
<Size>
<AbsDimension x="384" y="512"/>
</Size>

</Frame>

Either method declares the size in the same way. The more compact notation
is generally considered more readable and easier to type.

Relative Dimensions

Instead of using absolute values, a frame can express its height and width as a
percentage of its parent. Consider the following XML snippet that creates two
new frames:

<Frame name="RelativeExample">
<Size x="100" y="50"/>
</Frame>
<Frame name="RelativeExampleChild" parent="RelativeExample">
<Size>
<RelDimension x="0.5" y="0.5"/>
</Size>
</Frame>

The first frame, RelativeExample, has a size in absolute dimensions
(100 units wide by 50 units high), but the second is defined using relative

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

147

dimensions. As a result, RelativeExamplechild will be 50 units wide by
25 units high. You won't see this method of sizing used very often (as a matter
of fact it’s not currently used in the default interface), but it is still available as
an option.

Anchoring Objects

All object placement in World of Warcraft is done through a series of anchors
that attach one point on a frame to some other point on another frame.
Figure 9-1 shows the nine different anchor points on the frame.

TOP
TOPLEFT l TOPRIGHT
LEFT CENTER RIGHT
BOTTOMLEFT T BOTTOMRIGHT
BOTTOM

Figure 9-1: Available anchor points

In XML, anchors are placed within the <Anchors> element. A frame can
have any number of anchors, each defined using the <anchor> element with
the following attributes:

m o0int—The point being anchored. The next section explains what each
of the anchor points is and how it works.

m relativeTo—The frame to which the point is being anchored. This
attribute is optional; if omitted, the default is the frame’s parent.

= relativePoint—The point to attach to on the relativeTo frame. This
attribute is optional; if omitted, the default is the point being anchored.

In addition to these attributes, the <anchor> element can contain an
<0ffset> element, with which you can specify an offset in absolute or relative
dimensions (this element is used in the same way as the <size> element,
allowing x and vy attributes, or an absolute or relative dimension definition).
The code for BagBuddy anchors the center point of the new frame to the center
of uTParent, which spans the full game screen.

Along the same lines, the following example creates a new frame called
MyFramel and another frame called MyFrame2. The first frame sits in the
center of the user interface, and the second frame sits directly to the right of
MyFramel. This is accomplished by anchoring the top-left point of MyFrame2 to

148 Part Il = Programming in World of Warcraft

the top-right point of MyFramel. In this way the top edges are aligned with
each other, and the frames sit side by side.

<Frame name="MyFramel" parent="UIParent">
<Size x="50" y="50"/>
<Anchor>
<Anchor point="CENTER" relativePoint="CENTER"/>
</Anchors>
</Frame>
<Frame name="MyFrame2" parent="UIParent">
<Size x="50" y="50"/>
<Anchor>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" 3
relativeTo="MyFrame"/>
</Anchors>
</Frame>

In this example, the top-left corner of MyFrame2 is attached to the top-right
corner of MyFramel, aligning their top edges and placing them side-by-side.
When there is no offset, the <offset> tag can be left out entirely, and the
<Anchor> tag can be made self-closing. The frames could be aligned using
the left point of MyFrame2 and the right point of MyFrame1, but if the frames are
different sizes, the top edges would not align.

Sticky Anchors

Anchoring a frame is not a one-time placement used to position the frame, but
rather a sticky attachment between two objects. In the preceding example, if
you later move Framel, Frame2 will follow it to obey the defined anchor points.

SetAllPoints

If you want an object to have the same placement and size as another frame,
you can use the setallpoints XML attribute, or the setal1points () method.
This sets all of the anchor points on the second frame to the same points on the
parent frame. You'll see this attribute in use later in this chapter.

Anchor Examples

The easiest way to visualize anchoring is to look at examples and determine
how the objects might be anchored together. Table 9-1 contains a number of
anchor examples, along with the anchor points that were used. Each of these
examples attaches FrameA to FrameB.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

149

Table 9-1: Anchoring Examples
DESCRIPTION EXAMPLE

FrameB’s TOPLEFT anchored to FrameA’s TOPRIGHT

FrameB's TOPLEFT anchored to FrameA’s RIGHT

FrameB’s TOPLEFT anchored to FrameA's BOTTOMRIGHT

FrameB’s TOP anchored to FrameA’'s BOTTOM

FrameB's RIGHT anchored to FrameA’s LEFT with an x-offset
of -5 and a y-offset of -5

Using Lua to Create Frames

<Frame name="BagBuddy" parent="UIParent">
<Size x="384" y="512"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER" 2
relativeTo="UIParent"/>
</Anchors>

</Frame>

The equivalent definition in Lua looks like the following:

CreateFrame ("Frame", "BagBuddy", UIParent)
BagBuddy:SetwWidth (384)

BagBuddy: SetHeight (512)

BagBuddy:SetPoint ("CENTER", UIParent, "CENTER")

The createFrame function takes several arguments. The first argument is a
string that tells WoW what type of frame to create. This is the same string as
the XML tag you are using (in this case Frame). If you were creating a status
bar instead of a frame, you would specify statusBar. The second argument
is the name of the frame (this is optional, because you can create frames that
have no names). The third argument is the parent frame object, not the name
of the parent.

150 Part 1l = Programming in World of Warcraft

You can find more information on the frame methods used in this code in
the Widget reference.

Adding Layers of Textures and Font Strings

If you tried to re-create any of the prior frame definitions (or loaded the
BagBuddy addon), you might have been confused as to why you couldn’t see
any of the frames. Although the frames were created and placed on screen,
they did not have any visual components for you to see. This section introduces
textures and font strings:

m rexture—A texture is used to display some sort of graphic, color, or
color gradient within the game. Textures are created using the <Texture>
XML element.

m rontString—A font string is used to display text in a specific font, size,
and color. Font strings can be further customized to display outlines,
drop shadows, and other standard effects. Font strings are created using
the <Fontstring> XML element.

Layering Frames and Graphics

To understand how to layer graphics and frames to display correctly, you
must first know a bit about the different layering techniques and how the user
interface is rendered.

Frame Strata

The most basic level of frame layering is the frame strata. Simply, all the frames
in a given frame strata are rendered later than frames in a lower strata, and
before those in a higher strata. Overlapping frames will be displayed layered
from lowest to highest. Table 9-2 describes the available frame strata.

Table 9-2: Possible Frame Strata Values from Lowest to Highest

FRAME STRATA DESCRIPTION

BACKGROUND For frames that don't interact with the mouse. Any frame
in this strata is blocked from receiving mouse events
unless the frame level is higher than 1.

LOwW Used by the default user interface for the buff frame,
durability frame, party interface, and pet frame.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

FRAME STRATA DESCRIPTION

MEDIUM Default frame level for UTParent, and all children of
UIParent, unless overwritten.

HIGH Used by the default user interface for the action buttons
and tutorial frames, as well as the interface error and
warning frames.

DIALOG Used for any dialog-type frame that pops up and expects
user interaction.

FULLSCREEN Any full-screen frame such as the World Map or the User
Interface options should reside in this frame strata.

FULLSCREEN_DIALOG A dialog strata that exists above the FULLSCREEN strata,
for dialogs and dropdown menus.

TOOLTIP Highest frame strata available. Used for mouseover
tooltips so they are displayed regardless of the strata.

PARENT Inherit the frame strata of the parent frame.

Setting a frame to be drawn on a specific strata is easy; you simply include
the framestrata attribute in the XML definition or use the setFramestrata ()
method. For example:

<Frame name="MyFrame" frameStrata="HIGH">
</Frame>

or

MyFrame:SetFrameStrata ("HIGH")

This is the technique used by the default user interface to allow pop-up
windows such as the confirmation dialog to appear over any other frames that
might be displayed on screen.

Frame Levels

Within a frame strata, each frame has a frame level, which determines the
order in which it is rendered (from lowest to highest). Frame levels can be
messy to set, but sometimes they are the only way to accomplish a specific
type of layering. When Framea contains a child, Frames, the frame level of
FrameB will automatically be one higher than that of Framea. This means that
any child frames will (by default) be rendered on top of their parent, if they
are overlapping elements. The frame level can be set using the frameLevel
attribute, which should be a number, or using the setFrameLevel () method.

152 Part Il = Programming in World of Warcraft

In addition, a frame can be marked as a top-level frame using the toplevel
attribute or the setTopLevel () method. A top-level frame is automatically
promoted to the highest frame level on a given strata when it is clicked, so it
is shown on top. This is useful when frames are movable to bring the frame
that is being moved to the front. The following is an example frame with
frameStrata, frameLevel, and toplevel all set:

<Frame name="MyFrame" frameStrata="HIGH" frameLevel="5" toplevel="true">

</Frame>
or in Lua:

MyFrame = CreateFrame ("Frame", "MyFrame")
MyFrame:SetFrameStrata ("HIGH")

MyFrame: SetFrameLevel (5)

MyFrame: SetToplevel (true)

Graphical Layers

All textures and font strings within a frame are grouped into graphical layers.
When creating a new texture or font string you must specify on which layer
the graphics should be drawn. The various layer levels are listed in Table 9-3
in order from the backmost layer, to the frontmost layer.

Table 9-3: Graphical Layers

LAYER DESCRIPTION

BACKGROUND The background of your frame should be placed here.

BORDER Holds any graphical borders or artwork that need to appear above
the BACKGROUND layer but below any other layer.

ARTWORK For your frame's artwork. This is typically any nonfunctional
decorative or separating artwork that needs to appear above the
background and border but below the functional portions of the
frame.

OVERLAY The highest standard layer; any elements that need to appear above
all other layers should be placed here.

HIGHLIGHT This special layer is displayed only when the mouse is moved over
the frame that is parent to the textures and font strings on the layer.
For this layer to function properly, the frame must have mouse
events enabled.

Figure 9-2 shows the first four layers using colored textures and different
font strings. These images are then placed on top of each other and layered by
the user interface.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

153

Background

Border

Figure 9-2: Graphics layers rendered in-game

Figure 9-3 shows the highlight layer being displayed by moving the mouse

over the containing frame.

Background

BordEr

Figure 9-3: Highlight layer being shown on mouseover

For graphical elements that exist within the same draw layer of the same
frame, the rendering order is random. Font strings are always rendered on
top of textures within the same graphical layer, to ensure the text is displayed
over the graphic. As a result, there is no need to put your text on a separate
higher graphical layer to be visible.

BagBuddy Frame Design

Now that you have all the terminology straight, you can start building the
BagBuddy frame. Normally when creating a new addon, I hand sketch what
I would like the frame to look like, and how I would like it to operate.
This gives me something to work from when writing my code. Rather than
subjecting you to my horrible drawing skills, you can see the finished addon
in Figure 9-4.

You may notice that the frame looks a little bit like the bank frame. That’s
because the artwork is actually old artwork for the bank! The designers left
the graphics in the game files, so you're able to use them. This allows you to

154 Part 1l = Programming in World of Warcraft

create a frame that fits within the Blizzard style, while not requiring you to be
a graphic artist.

Filter by quality

ee @

Found 14 [tems

Figure 9-4: BagBuddy frame

In the top-left corner there is a circular graphic showing gears. This is an
item icon, shaped to fit the circle in the correct way. In the top-right corner
you can see a close button. When the user clicks this button, the frame closes.
At the top of the frame, a text string is displayed, telling the user the name of
the addon.

In the middle of the frame you can see a list of items. Moving your mouse
over the items displays the tooltip, as you might expect. Where the bank bags
might normally be are a series of colored orbs. These orbs allow you to filter
the item list by item quality (note that the colors match the item rarity colors
in-game).

At the bottom of the frame is a line of status text that shows how many items
were found. Next to that are two buttons that allow you to page through the
results. The button on the left moves you to the previous page, and the button
on the right moves you to the next page. Finally, there is a small edit box at the
very bottom of the frame that allows you to search for items by name. In this
case we've set the filter to the letter “g” and have found 14 results that contain
that letter.

Over the course of this chapter, you create the frame background, portrait
icon, title text, and status text.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

Finding Graphics

You may be wondering how you might browse through the game files, looking
for a graphic to add to your frames. In Chapter 7 you were shown how to
extract the interface art, but the files that are extracted cannot be natively
viewed on most computers.

Luckily, you have two easy ways to browse those pictures. The first is an
addon that you can run in the game, and the second is a website that makes it
easy to browse the images.

TexBrowser AddOn

The author of Omen2 and other popular addons, Antiarc, has written an
in-game browser for the textures included in the game files. The addon is
called TexBrowser and you can find it at http://wow.curse.com/downloads/
wow-addons/details/texbrowser.aspx.

Because this addon contains a large list of the available textures, it does not
load automatically (this helps prevent slowing down your login and normal
gameplay). You can use AddonLoader (discussed in Chapter 8) or run the
commands listed on the addon’s webpage:

/run LoadAddOn ("TexBrowser")
/tex

Figure 9-5 shows the TexBrowser window, viewing different available tex-
tures. One neat feature of TexBrowser is that it’s not limited to the interface
textures, but actually lists some textures that are used in the game environment,
such as spell textures.

ArtBrowser on Wowprogramming.com

To allow you to view the available graphics without having access to World
of Warcraft, we created a web application that allows you to browse the
textures. Just load http://wowprogramming.com/utils/artbrowser in your
web browser, and you’ll have access to all of the interface images in easy-to-
view PNG format.

Adding Textures

Textures are two-dimensional graphics that are rendered by the game client
for the user interface. A texture can consist of a graphics file loaded from disk,
a solid color, or a gradient from one color to another. The following is a very
basic texture definition:

<Layers>
<Layer level="BACKGROUND">

156 Part Il = Programming in World of Warcraft

<Texture name="Sparent_Icon" &
file="Interface\Icons\Ability_ Rogue_Sprint">
<Size x="50" y="50"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
</Texture>
</Layer>
</Layers>

Figure 9-5: TexBrowser viewing the available textures

Remember that all texture definitions must happen inside a frame definition,
so first you indicate that you're going to define the details of the graphical
layers. Next you create a layer on the correct level, and inside you define the
new texture.

A texture definition is very similar to the frame definitions you have already
seen. Textures are both sized and anchored the same way as frames. A new
attribute, file, is introduced here, used to specify a texture file to be loaded
and displayed. If you were to include this definition in your BagBuddy addon
you would see an icon in the very center of your screen.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

157

Defining BagBuddy’'s Background Textures

Open BagBuddy . xm1 and add the following code after the </anchors> tag:

<Layers>
<Layer level="BORDER">
<Texture file="Interface\BankFrame\UI-BankFrame-TopLeft">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-TopRight">
<Anchors>
<Anchor point="TOPRIGHT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotLeft">
<Anchors>
<Anchor point="BOTTOMLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotRight">
<Anchors>
<Anchor point="BOTTOMRIGHT"/>
</Anchors>
</Texture>
</Layer>
</Layers>

For now, ignore the fact that you're putting the background on the BORDER
layer. This code simply creates four new textures, one anchored to each corner
of the frame. Figure 9-6 shows the four different textures. These graphics,
when put together, create the frame shown in Figure 9-7.

Figure 9-6: From left to right: top left corner, top right corner, bottom left corner, and
bottom right corner textures.

158 Part Il = Programming in World of Warcraft

Figure 9-7: BagBuddy frame with BORDER textures

Coloring Textures

Most textures used in addons for World of Warcraft are made up of graphic
images that are placed on screen. However, the user interface also supports
the use of color to enhance a texture, display a solid color, or create a gradient
from one color to another.

Using Solid Colors

If you want to color a graphic image included with the file attribute, or just
display a solid color, you include the <color> element in the texture definition.
This element accepts four attributes (r, g, b, a) as the three color components
red, green, and blue, and the alpha (opacity) value. Each should be a number
between 0.0 and 1.0. The following example shows a sample frame definition
that creates a red square in the center of the screen with 50% transparency:

<Frame name="RedSquareTest" parent="UIParent">
<Size x="50" y="50"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND" setAllPoints="true">
<Color r="1.0" g="0.0" b="0.0" a="0.5"/>
</Layer>
</Layers>
</Frame>

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

Creating a Gradient

In addition to solid colors, a texture can also display a gradient between two
different colors. To do this, you define a minimum color and a maximum color,
using the <Gradient> tag. Figure 9-8 shows two example gradients.

Figure 9-8: Horizontal gradient (top) and vertical gradient (bottom)

The <Gradient> element takes a single, optional attribute, orientation,
which can be either HORIZONTAL or VERTICAL. The default is a horizontal
gradient. The tag must contain two elements, <MinColor> and <MaxColor>,
each of which takes the standard color attributes r, g, b, and a.

A <Gradient> tag alone won't create a gradient; it must be combined with
a <Color> tag. At each step in the gradient, the color values from the <color>
tag are multiplied by the current gradient value to determine what color is
displayed on screen. The easiest way to handle this is to create a white color
and then apply the gradient:

<Color r="1.0" g="1.0" b="1.0" a="1.0"/>

This ensures that your gradient begins at your <MminColor>and ends at your
<MaxColor> because the base color value for each component is 1.0, which
doesn’t change the value it’s multiplied against. Here’s the XML used to create
the gradients shown in Figure 9-8:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<Frame name="GradientTest" parent="UIParent">
<Size x="200" y="200"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER" 2
relativeTo="UIParent"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">

160 Part Il = Programming in World of Warcraft

<Texture name="S$parentHorizontal">
<Size x="200" y="100"/>
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPLEFT"/>
</Anchors>
<Color r="1.0" g="0.0" b="0.0" a="1.0"/>
<Gradient orientation="HORIZONTAL">
<MinColor r="1.0" g="0.0" b="0.0" a="1.0"/>
<MaxColor r="0.0" g="0.0" b="0.0" a="1.0"/>
</Gradient>
</Texture>
<Texture name="S$parentVertical">
<Size x="200" y="100"/>
<Anchors>
<Anchor point="BOTTOMLEFT" relativePoint="BOTTOMLEFT"/>
</Anchors>
<Color r="1.0" g="1.0" b="1.0" a="1.0"/>
<Gradient orientation="VERTICAL">
<MinColor r="0.0" g="0.0" b="0.0" a="1.0"/>
<MaxColor r="1.0" g="1.0" b="0.0" a="1.0"/>
</Gradient>
</Texture>
</Layer>
</Layers>
</Frame>
</Ui>

Adding the Portrait Texture

The reason the previous section placed the seemingly background textures on
the BORDER layer was to make the portrait graphic that will appear in the circle
at the top-left fit correctly. Trying to match the artwork perfectly would be
very difficult, so instead an image is created that is just slightly larger than the
opening, and layered so the excess is covered. This layering makes the images
appear to go together better than we could have achieved by editing them.
Add this layer definition before the BorDER layer, but within the <vayers>

element:

<Layer level="BACKGROUND">
<Texture name="$parent_Portrait" parentKey="portrait"
file="Interface\Icons\INV_Misc_EngGizmos_30">
<Size x="60" y="60"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="7" y="-6"/>
</Anchor>
</Anchors>
</Texture>
</Layer>

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

The sizing and placement of this texture should be familiar to you by now,
but a new attribute called parentkey is included. To understand how it works,
you must know that a frame in Lua is just a special kind of Lua table. When
this attribute is set, WoW sets the named key in the parent frame’s table to be
the texture. In this case, you will be able to access the portrait texture in the
following ways:

B BagBuddy_Portrait
B BagBuddy.portrait

B RBagBuddy ["portrait"]

The first is possible because the texture is named using the name attribute.
The second uses the table access shortcut notation to access the portrait
key in the BagBuddy table. The third example just uses the full notation for
the same.

You can access the portrait using the first option because it has a distinct
name. The second two are a result of setting the parentxkey attribute. This may
not seem useful right now, but it becomes incredibly helpful when working
with lots of subframes and textures.

Unfortunately, the graphic we are using is a square (shown in Figure 9-9)
and Figure 9-10 shows how everything appears when it is used. The major
problem is that the edges of the image stick out from behind the background
of the frame.

Figure 9-9: Texture being used for BagBuddy portrait circle

Thankfully, because this same problem crops up in a number of places in the
default user interface (such as the bag frames), Blizzard provides you with a
function that crops the image to appear as a circle, so it works correctly with
these types of frames. The function is called setPortraitToTexture and it
takes the texture object as the first argument, followed by the filename to use.

To call this function, set an onLoad script for this frame. You learn more
about frame scripts in Chapter 12, but essentially you are telling WoW to run
a specific script when this frame is being loaded. Add the following XML after
the </Layers> tag, and before the </Frame> tag:

<Scripts>
<OnLoad function="BagBuddy_ OnLoad"/>
</Scripts>

162 Part Il = Programming in World of Warcraft

Figure 9-10: BagBuddy with a square portrait image

Now you need to define the corresponding function in BagBuddy . 1ua:

function BagBuddy_ OnLoad(self)

SetPortraitToTexture (self.portrait, 2
"Interface\\Icons\\INV_Misc_EngGizmos_30")
end

An onLoad script is always passed a single argument, the frame itself. Just
call setPortraitToTexture, passing in the portrait texture and the name of the
texture file to be displayed. Figure 9-11 shows the new version of the frame,
without the edges sticking out at the corner.

Creating Textures in Lua

In addition to creating frames, you can also create textures using Lua. Take
the definition of the portrait texture for BagBuddy:

<Layer level="BACKGROUND">
<Texture name="S$parent_Portrait" parentKey="portrait">
<Size x="60" y="60"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="7" y="-6"/>
</Anchor>

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

163

</Anchors>
</Texture>

</Layer>

Figure 9-11: BagBuddy after using SetPortraitToTexture to crop the image

Assuming that you've already created the BagBuddy frame using Lua
previously, you could create this texture like this:

BagBuddy.portrait = BagBuddy:CreateTexture ("BagBuddy_ Portrait", 3
"BACKGROUND")

BagBuddy.portrait:SetWidth (60)

BagBuddy .portrait:SetHeight (60)

BagBuddy:SetPoint ("TOPLEFT", 7, -6)

Because each texture and font string need to belong to a parent, there is
simply a method you call on the frame itself to create a new texture. The first
argument to CreateTexture is the name of the new texture and the second is
the layer on which to place the texture. There is a third argument that you
learn more about in Chapter 10.

If you then wanted to set a graphics file to be loaded, you could accomplish
this with the setTexture method:

BagBuddy .portrait:SetTexture("Interface\\Icons\\INV_Misc_EngGizmos_30")

Indeed, you can specify a solid color using the same method; for example,
the following code sets the texture to be solid blue with 50% transparency:

BagBuddy.portrait:SetTexture (0.0, 0.0, 1.0, 0.5)

164 Part Il = Programming in World of Warcraft

Similarly, methods exist that allow you to set the gradient min and max
colors. In general, if there is a way to accomplish something in XML, there is a
way to accomplish it in Lua as well.

Creating Text using FontStrings

Adding text to your frames is very similar to adding textures. Inside a <Layer>
element, you define a <Fontstring> element and then customize it. Font
strings have many different XML attributes that can be used to change the
style of the displayed text, shown in Table 9-4.

Table 9-4: Attributes Available to FontString Elements

ATTRIBUTE DESCRIPTION

font The path to a font file to be used when displaying the text. This
can be a file included with WoW, or a true type font supplied by
a custom addon.

bytes A positive number expressing a limit on the number of
characters to be displayed in the FontString.

text The text to be displayed.

spacing Sets the spacing, in pixels, between lines if the FontString has

multiple lines.

outline Specifies the outline type of the FontString. Should be one of
the following values: NONE, NORMAL, THICK.

monochrome A Boolean value specifying whether the font should be
monochromatic (grayscale).

nonspacewrap A Boolean value that specifies whether long strings without
spaces are wrapped or truncated. When this is true, the string is

wrapped.

justifyv Specifies the vertical justification of the text using one of the
following values: TOP, MIDDLE, BOTTOM.

justifyH Specifies the horizontal justification of the text as one of the
following values: LEFT, CENTER, RIGHT.

maxLines Specifies the maximum number of lines to be displayed in a
FontString.

indented Specifies whether or not lines after the first line in the
FontString are indented, if the Fontstring has multiple
lines.

inherits Specifies a font definition from which attributes and elements

should be inherited.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

165

Further Customization

In addition to the XML attributes, the following elements can be added to a
FontString to customize the display:

m <rFontHeight>—Can be specified using the val attribute, or using
<AbsValue> Or <RelValue>. Specifies the height of the font string in pixels
or a relative value.

m <color>—~Changes the color of the font string; specified using the r, g, b,
and a attributes.

m <shadow>—Adds a drop shadow to the font. The color and placement of
the shadow is specified by the <color>and <offset> elements, which are
required.

Using Font Definitions

Although having the flexibility to specify so many different attributes for each
font string is a good thing, it can become quite cumbersome when writing
addons and actually creating them regularly. You can delineate font (or font
string) definitions that can be used to inherit settings. Fonts and font strings
are a bit of an exception to the template system, which is covered in Chapter 10.
For now, use the predefined template GameFontNormal for the title string in the
BagBuddy window by adding the following code to the BagBuddy definition
in the <Layers> element, after the definition of the BACKGROUND layer:

<Layer level="OVERLAY">
<FontString name="$parent_Title" parentKey="title" inherits=
"GameFontNormal" text="BagBuggy">
<Anchors>
<Anchor point="TOP">
<Offset x="0" y="-18"/>
</Anchor>
</Anchors>
</FontString>
</Layer>

Here you create a new font string on the overLAY layer, anchored to the top
of the frame. You place the text on the ovErRLAY layer to ensure that it is always
displayed on top of the textures you have already defined, which exist in the
BACKGROUND and BORDER layer. You inherit the settings from the GameFontNormal
definition, which defines the gold-colored text that you see through the user
interface. Font definitions and templates are shown in Chapter 10, along with
further explanation about how to create your own templates.

166 Part Il = Programming in World of Warcraft

Creating FontStrings in Lua

The createFontstring() method can be used to create new font strings. It
takes three arguments, the name of the new font string, the layer on which to
draw the font string, and an optional font definition or template from which
to inherit. You could create the font string from the previous section with the
following code:

BagBuddy.title =

BagBuddy:CreateFontString ("BagBuddy_Title", "OVERLAY", 2
"GameFontNormal")

BagBuddy.title:SetPoint ("TOP", 0, -18)
BagBuddy.title:SetText ("BagBuddy")

Understanding Object Visibility

A somewhat confusing topic when dealing with UI objects is the concept
of visibility. For an object to be actually drawn on screen, it must fulfill the
following requirements:

1. The object must have some visual component, such as text, graphics,
background color, or border. A frame with none of these is not visible,
and a texture or font string without any contents is equally invisible.

2. The object must have a positive height and width. Although this may
seem obvious, it’s easy to forget one or the other.

3. The object must be placed somewhere within the bounds of the screen. If
it’s anchored outside the viewable window, it can’t be displayed.

4. The object and each of its parents must be shown.

In this case, the word “shown’ means that the object is not hidden. An
object can be hidden in two ways:

m [t canstart outhidden by setting the hidden attribute in the XML definition
to true.

m [t can be made hidden by calling the object’s :Hide () method.
There are two API functions that can be used to troubleshoot an object’s
visibility:
= Tsshown () —Returns 1 if the frame is shown, a state that can be toggled
using the show () and Hide () methods.

m Tsvisible () —Returns 1 if the frame and all of its parents are shown.

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

167

Finding Existing Frames

Frequently when placing your own frames on the screen, you will want to
anchor them to an existing frame. If you know the name of the frame you
can easily accomplish this, but as you've seen, sometimes the frame structure
is a bit convoluted. In the World of Warcraft 3.2 patch, a new utility was
added that allows you to see information about the frames at a given point on
the screen. You can invoke this utility with the /framestack slash command,
which is used to toggle it on and off. Figure 9-12 shows how the information
is displayed in-game.

Frame Stack (257.71, 16.21)
DIALOG

MEDIU

Figure 9-12: /framestack tooltip showing the frames under the mouse cursor

The tooltip provides quite a bit of information. It lists the frames within a
given frame strata from highest to lowest. Within each strata, it lists the frame
along with the frame level in that strata (again from highest to lowest). That
enables you to see the way in which the current location on the screen is being
rendered, and also makes it easier to see how frames that you didn’t create
might be constructed.

Summary

This chapter introduced the basics of creating frames in both XML and Lua.
You learned about the sizing mechanisms, and the anchoring system that is
used to position frames on the screen. In addition you developed the base
look for the BagBuddy addon using layers to ensure the graphics appear
correctly.

Chapter 10 shows how you can use frame templates to ease the burden of
creating lots of very similar frames.

168 Part Il = Programming in World of Warcraft

The Code

BagBuddy.toc

Interface: 30200
Title: BagBuddy
Notes: A handy helper that allows you to filter your inventory

BagBuddy . lua
BagBuddy .xml

BagBuddy.lua

function BagBuddy_ OnLoad(self)

SetPortraitToTexture (self.portrait, 2
"Interface\\Icons\\INV_Misc_EngGizmos_30")
end

BagBuddy.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

<Frame name="BagBuddy" parent="UIParent">
<Size x="384" y="512"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER" 3
relativeTo="UIParent"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="Sparent_Portrait" parentKey="portrait" Lo
file="Interface\Icons\INV_Misc_EngGizmos_30">
<Size x="60" y="60"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="7" y="-6"/>
</Anchor>
</Anchors>
</Texture>
</Layer>
<Layer level="BORDER">
<Texture file="Interface\BankFrame\UI-BankFrame-TopLeft">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>

</Texture>

Chapter 9 = Working with Frames, Widgets, and Other Graphical Elements

169

<Texture file="Interface\BankFrame\UI-BankFrame-TopRight">
<Anchors>
<Anchor point="TOPRIGHT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotLeft">
<Anchors>
<Anchor point="BOTTOMLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotRight">
<Anchors>
<Anchor point="BOTTOMRIGHT"/>
</Anchors>
</Texture>
</Layer>
</Layers>
<Scripts>
<OnLoad function="BagBuddy_ OnLoad"/>
</Scripts>
</Frame>
</Ui>

CHAPTER

10

Saving Time with Frame

Templates

Chapter 9 introduced the concept of using frame templates to save time. Rather
than specifying the same attributes and elements over and over again, you can
create a single template and later inherit from it when creating new frames. In
this chapter you'll create a frame template for the item slots in BagBuddy and

then create frames dynamically from the template.

Understanding Templates

Templates provide developers with an easy way to define common sets
of attributes and elements and then create multiple frames that utilize the
template, inheriting all of that setup. Say, for example, that you need to create
a row of three 16 x16 buttons that contain a single texture. Without templates,

the code might look something like this:

<Button name="Buttonl">
<Size x="16" y="16"/>
<Layers>
<Layer level="BACKGROUND">
<Texture name="S$parentIcon" parentKey="icon">
<Color r="1.0" g="1.0" b="1.0"/>
</Texture>
</Layer>
</Layers>
</Button>
<Button name="Button2">
<Size x="16" y="16"/>
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT"

relativeTo="Button2"/>

171

172 Part Il = Programming in World of Warcraft

</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="$parentIcon" parentKey="icon">
<Color r="1.0" g="1.0" b="1.0"/>
</Texture>
</Layer>
</Layers>
</Button>
<Button name="Button3">
<Size x="16" y="16"/>
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" relativeTo="Button2"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="SparentIcon" parentKey="icon">
<Color r="1.0" g="1.0" b="1.0"/>
</Texture>
</Layer>
</Layers>
</Button>

Using frame templates, you could instead write the following:

<Button name="MyButtonTemplate" virtual="true">
<Size x="16" y="16"/>
<Layers>
<Layer level="BACKGROUND">
<Texture name="SparentIcon" parentKey="icon">
<Color r="1.0" g="1.0" b="1.0"/>
</Texture>
</Layer>
</Layers>
</Button>

<Button name="Buttonl" inherits="MyButtonTemplate"/>
<Button name="Button2" inherits="MyButtonTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" relativeTo="Button2"/>
</Anchors>
</Button>
<Button name="Button3" inherits="MyButtonTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" relativeTo="Button2"/>
</Anchors>
</Button>
</Ui>

Using a template in this case only saves 13 lines, but imagine if you needed to
create a row of eight buttons instead of three! You can use the createFrame ()
function to create new frames, saving yourself quite a bit of code.

Chapter 10 = Saving Time with Frame Templates 173

Templates can be created and inherited for the following type of elements:
= Frames

= Font strings

m Textures

= Animations

= Animation groups

In addition, the template system is overloaded to work with font definitions
and font strings. A font string can, of course, inherit from a font string
template and inherit the attributes and elements, but may also inherit from a
font definition. When this happens, the font string does not really inherit the
attributes, but rather links itself to the font definition. If the font definition
were to later change, the font string would change along with it.

Throughout this chapter, font definitions are referred to as a distinct concept
from templates.

Advantages of Using Templates

The primary advantage of using templates is the capability to create complex
elements repeatedly without needing to retype them for each instance. To
accomplish this, templates take advantage of the means to automatically
name elements using $parent, and make sub-elements accessible using the
parentKey attribute.

Naming Elements Using Sparent

Using the string $parent in an element’s name in order to include the parent’s
name becomes very important when working with templates, to ensure that
frames are consistently named. Prior to the 3.0 patch, this was the primary
method used to name frames in the default user interface.

Many of the default templates, such as the dropdown menu template,
require a frame to have a name for them to function properly. They make
heavy use of parent-named textures and sub-frames in the code that manages
them. In the future, these templates might be converted to use the parentkey
attribute instead, so the naming required might be removed, but there have
been no moves in that direction yet.

In the preceding example, the textures created in the template will be
accessible as ButtonlIcon, Button2Icon,and Button3Icon. Programmatically,
code might find the icon of such a button using the following code (assuming
that the variable self is set to one of the three buttons):

_Gl[self:GetName() .. "Icon"]:SetTexture(l, 0, 0)

This code fetches the name of the frame, concatenates the string Icon on
the end, and looks that key up in the global environment. It then calls the

174

Part Il = Programming in World of Warcraft

setTexture of the resulting texture, to color it red. Although accesses such as
this are better handled using the parentkey attribute, naming frames is still
very important. As shown at the end of Chapter 9, users and developers can
use the /framestack command to determine what frames are on screen at a
given point in time. If you make lots of unnamed frames, it is very difficult to
distinguish among them. For that reason, you are encouraged to create named
frames in addition to utilizing the parentkey attribute where appropriate.

Setting Keys Using the parentKey Attribute

In addition to being useful in normal frame definitions, the parentkey attribute
can be used in template definitions to make textures, font strings, and
sub-frames accessible. Rather than perform a name lookup, you could set
the texture of a button’s icon using the following code (assuming that the
variable self is set to one of the three buttons):

self.icon:SetTexture(l, 0, 0)

In addition to being more efficient, this method is easier to read and
doesn’t require the code to know whether or not frames are named. Although
the majority of the templates in the default user interface do not yet take
advantage of this feature, it’s a nice and easy way to define and access the
elements of a frame.

Creating a Template for BagBuddy’s Item Buttons

Each item slot in BagBuddy will show the item’s icon and the number of items
of a given type in your inventory. In addition, there will be a colored border
around each item showing its rarity (that is, purple for epic, blue for rare, and
so on). The default user interface already has a template that contains all of
these elements, called ItemButtonTemplate.

In fact, you could inherit directly from ItemButtonTemplate, but that
wouldn’t be a very good example. In addition, if Blizzard makes any changes
to its template, your addon might break. Instead you will copy the code from
the FrameXML definition and adapt it to your own needs. Open BagBuddy . xm1
and add the following at the top of the file, inside the <ui> element:

<Button name="BagBuddyIltemTemplate" virtual="true">
<Size>
<AbsDimension x="37" y="37"/>
</Size>
<Layers>
<Layer level="BORDER">
<Texture name="S$parentIconTexture" parentKey="icon"/>

Chapter 10 = Saving Time with Frame Templates 175

<FontString name="S$parentCount" parentKey="count"
inherits="NumberFontNormal" justifyH="RIGHT" hidden="true">
<Anchors>
<Anchor point="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-5" y="2"/>
</0Offset>
</Anchor>
</Anchors>
</FontString>
</Layer>
<Layer level="OVERLAY">
<Texture name="SparentGlow" parentKey="glow" alphaMode="ADD"
file="Interface\Buttons\UI-ActionButton-Border">
<Size x="70" y="70"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Color r="1.0" g="1.0" b="1.0" a="0.6"/>
</Texture>
</Layer>
</Layers>
</Button>

This template is named BagBuddyItemTemplate. Because the names of tem-
plates are global, you should ensure that your name won’t conflict with another
template. The easiest way to do this is to prefix it with some text and use a
meaningful name. You give the frame a size, and define a single graphics layer
on the BORDER level. Inside this group, you create an icon texture and a single
font string to display the item count.

Setting Button Textures

Each button in World of Warcraft can have a few different types of textures that
are displayed in different states. The NormalTexture is shown when the button
is in a resting state. When the user clicks the button, the PushedTexture is
displayed. Finally the HighlightTexture appears when the mouse is hovering
over the button. Define these in BagBuddyItemTemplate, after the </Layers>
tag but before the </Button> tag:

<NormalTexture name="$parentNormalTexture" file="Interface\Buttons\UI- 2
Quickslot2">
<Size>
<AbsDimension x="64" y="64"/>
</Size>
<Anchors>
<Anchor point="CENTER">

176

Part Il = Programming in World of Warcraft

<Offset>
<AbsDimension x="0" y="-1"/>
</Offset>
</Anchor>
</Anchors>
</NormalTexture>
<PushedTexture file="Interface\Buttons\UI-Quickslot-Depress"/>
<HighlightTexture file="Interface\Buttons\ButtonHilight-Square"
alphaMode="ADD" />

The pushed and highlight textures inherit the size and the placement of the
normal texture, because the game just changes the image file being displayed.
You can see a new texture attribute that is used in the highlight texture, called
alphaMode. This attribute has five different options:

m prsaBLE—Ignores the alpha channel completely when rendering the
texture.
= pLEND— Uses the alpha channel with a normal blending overlay.

m A1 pHAKEY —Interprets the alpha with any black value being transparent,
and any non-black value being opaque.

m App—Uses the alpha channel with an additive blending overlay.
= yop—Ignores the alpha channel, multiplying the image against the back-
ground.

The template uses the app alpha mode to achieve its particular highlight
effect.

Creating New Frames with Your Template

Now that you've defined the template, you need to actually create some frames
using it. Although you could do this in XML, you would need to create 24
different frames and set anchors on each of them individually. Instead you
will do it using Lua, which is much shorter. Open BagBuddy . 1ua and add the
following inside the BagBuddy_onLoad function:

-- Create the item slots

self.items = {}
for idx = 1, 24 do

local item = CreateFrame("Button", "BagBuddy Item" .. idx, self,
"BagBuddyItemTemplate")

self.items[idx] = item

if idx == 1 then

item:SetPoint ("TOPLEFT", 40, -73)
elseif idx == 7 or idx == 13 or idx == 19 then

Chapter 10 = Saving Time with Frame Templates

177

item:SetPoint ("TOPLEFT", self.items[idx-6], "BOTTOMLEFT", 0, -7)
else

item:SetPoint ("TOPLEFT", self.items[idx-1], "TOPRIGHT", 12, 0)
end

end

You first create a table that will be used to store the individual buttons.
This will make it easier to iterate over the buttons when displaying items. For
each index you create a new button from the template you created. Then you
programmatically set the anchors:

m Jf you're creating the first button, anchor it to the frame itself in the first
button slot.

m When creating the first button in any subsequent row, anchor the new
button to the first column of the prior row.

m For all other buttons, anchor the new button to the previous button on
the row.

By contrast, accomplishing the same thing in XML would require 3 to 5
lines for each button for a total of somewhere between 70 and 250 lines. When
creating just a few instances of a template, I tend to include them in the XML,
but whenever I'm doing something very repetitive like this I prefer to create
the frames in Lua.

As you move your mouse over the item buttons you can see the highlight
texture appear. This allows you to easily see which button you are currently
hovering over.

Exploring Font Definitions

Font definitions are a bit of an exception when it comes to the template system
in World of Warcraft. Although they use the same inheritance mechanism,
they work quite differently. This section looks at a specific font definition to
provide an understanding of how they work. You can find the definition of
GameFontNormalSmall in FontStyles.xml, which can be extracted using the
Blizzard Interface Toolkit, introduced in Chapter 8. The code for the template
is as follows:

<Font name="GameFontNormalSmall" inherits="SystemFont_Shadow_Small" «2
virtual="true">

<Color r="1.0" g="0.82" b="0"/>

The font definition includes the virtual attribute, butit’s essentially ignored.
Remember, you are creating a font definition (which is an actual in-game object)

178

Part Il = Programming in World of Warcraft

rather than just creating a template. This particular definition inherits from
another template called systemFont_shadow_small, defined in Fonts.xml1:

<Font name="SystemFont_Shadow_Small" font="Fonts\FRIZQT .TTF"
virtual="true">
<Shadow>
<Offset>
<AbsDimension x="1" y="-1"/>
</Offset>
<Color r="0" g="0" b="0"/>
</Shadow>
<FontHeight>
<AbsValue val="10"/>
</FontHeight>

This template doesn’t inherit from any other template, and actually defines
the font file that is used to display text, along with a drop shadow and the
height of the text. The font used is called Friz Quadrata and is included in
the game files. The font template defines a drop shadow to the bottom right
of the text with an offset of 1 pixel in each direction. The color of the shadow
is set to black, and the height of the font is set to 10 pixels.

When the GameFontNormalsmall font definition inherits from SystemFont
_Shadow_small, it links itself to the original font. Any changes made to the
parent font will be reflected in the inheriting font. The only change the new
template makes is to set the color to gold, but any of the attributes or elements
defined in a font definition can be overridden while inheriting.

Altering a Font Definition

The major difference between templates and font definitions is that font
definitions can be altered once you are in-game, and the changes will trickle
down the inheritance tree. For example, you can run the following code to
change the height of systemFont_shadow_small from 10 to 13:

/run SystemFont_Shadow_Small:SetFont ("Fonts\\FRIZQT .TTF", 13)

Figure 10-1 shows the player unit frame and the social panel at the default
font size, and after running the code.

As you can see, only those elements that inherited from systemFont_shadow
_small (and by inheritance GameFontNormalsSmall) are changed. The color and
shadow definitions remain set, but the font size has been changed. In the same
way, you could actually replace the font file that is being used to display
some text, and it will immediately be reflected in-game throughout the font
inheritance tree.

Chapter 10 = Saving Time with Frame Templates

179

Friends

Figure 10-1: The player unit frame and social panel with default (left) and altered (right)
font settings

Investigating UIPanelTemplates

There are a number of already defined templates that you may find
useful when creating your own addons. Many of them are defined in
UIPanelTemplates.xml, but there are templates defined throughout the
default user interface. This section explores a few of the more commonly used
templates with code to create an example and an image of each.

Run the following code to define a helper function that will enable you to
move any of the frames you have created (this function is used in the example
code):

function MakeMovable (frame)
frame:SetMovable (true)
frame:RegisterForDrag ("LeftButton")
frame:SetScript ("OnDragStart", frame.StartMoving)
frame:SetScript ("OnDragStop", frame.StopMovingOrSizing)
end

180 Part Il = Programming in World of Warcraft

For now, just ignore what the code is doing; you will learn more about
interacting with widgets in Chapter 12.

UlPanelButtonTemplate

The urpanelButtonTemplate template is used for the buttons on the main
game menu and on many of the panels in the user interface. The button can
be resized (in fact, you must supply a size because the template does not) and
contains a gold label in the center. Figure 10-2 shows the frame created by the
following code:

local frame = CreateFrame ("Button", "UIPanelButtonTemplateTest",
UIParent, "UIPanelButtonTemplate")

frame:SetHeight (20)

frame:SetWidth (100)

frame:SetText ("Test Button")

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, 0)

MakeMovable (frame)

Test Button

Figure 10-2: Example frame created from UlPanelButtonTemplate

UlPanelCloseButton

The urPanelcloseButton template (which lacks the word template in its name)
is used for the close button that appears on most of the panels in the user
interface. As a matter of fact, you should be careful if you click on the example
button you create, because it will hide your entire user interface due to a
script defined in the template. You can re-show your Ul by pressing Alt+Z.
Figure 10-3 shows the close button created by the following code:

local frame = CreateFrame ("Button", "UIPanelCloseButtonTest",
UIParent, "UIPanelCloseButton")

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, O0)

MakeMovable (frame)

Figure 10-3: Close button created using UlPanelCloseButton

Chapter 10 = Saving Time with Frame Templates 181

UlPanelScrollBarTemplate

Although the uIPanelscrollBarTemplate template is meant to be used with
the built-in scroll frame templates, you could certainly instantiate it in other
circumstances. The template defines a button that scrolls up, a button that
scrolls down, and the scroll “knob” that can be dragged to set the scroll value.
Figure 10-4 shows the scroll bar created with the following code:

local frame = CreateFrame("Slider", "UIPanelScrollBarTemplateTest", 2
UIParent, "UIPanelScrollBarTemplate")

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, O0)

frame:SetHeight (100)

frame:SetWidth(20)

frame:SetScript ("OnvValueChanged", nil)

frame:SetMinMaxValues (0, 100)

frame:Setvalue (70)

MakeMovable (frame)

Figure 10-4: Scroll bar frame created using UlIPanelScrollBarTemplate

InputBoxTemplate

When creating a new input box, you can use the InputBoxTemplate template
to create the background and border. It seems to have an issue when you create
it dynamically in Lua (in particular, the middle portion of the background
does not resize itself properly). Figure 10-5 shows the example created with
the following Lua code, designed to work around this bug;:

local frame = CreateFrame("EditBox", "InputBoxTemplateTest", 2
UIParent, "InputBoxTemplate")

frame:SetWidth (250)

frame:SetHeight (20)

InputBoxTemplateTestMiddle:ClearAllPoints ()

182 Part Il = Programming in World of Warcraft

InputBoxTemplateTestMiddle:SetPoint ("LEFT", InputBoxTemplateTestLeft, 3
"RIGHT", 0, 0)

InputBoxTemplateTestMiddle:SetPoint ("RIGHT", InputBoxTemplateTestRight, <2
"LEFT", 0, 0)

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, 0)

frame:SetAutoFocus (false)

frame:SetText ("This is an example input box")

MakeMovable (frame)

If you’d rather use XML you can create the frame in the following way to
avoid the bug (which is a result of the frame being created initially without a
size):

<EditBox name="InputBoxTemplateTest" parent="UIParent" inherits=
"InputBoxTemplate">
<Size x="250" y="20"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Scripts>
<OnLoad>
self:SetAutoFocus (false)
</OnLoad>
</Scripts>
</EditBox>

This is an example input box

Figure 10-5: Example input box using InputBoxTemplate

UlCheckButtonTemplate

To create a toggleable checkbox, you can use uICheckButtonTemplate. This
template contains the actual check button itself, with a text label on its right
side. Figure 10-6 shows the example created with the following code:

local frame = CreateFrame ("CheckButton", "UICheckButtonTemplateTest", 3
UIParent, "UICheckButtonTemplate")

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, O0)

_G[frame:GetName () .. "Text"]:SetText ("Example checkbutton")

MakeMovable (frame)

*Jf Example checkbutton

Figure 10-6: Example check button using UICheckButtonTemplate

Chapter 10 = Saving Time with Frame Templates

183

TabButtonTemplate

The tabs at the bottom of the character and social panels are created using
TabButtonTemplate. To work with them properly, you can use a number
of utility functions defined in UIPanelTemplates.lua. One such function
is PanelTemplates_TabResize, which is used in the following example.
Figure 10-7 shows the tab button resulting from the code.

local frame = CreateFrame("Button", "TabButtonTemplateTest", UIParent, 2
"TabButtonTemplate")

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, O0)

frame:SetText ("Example Tab")

PanelTemplates_TabResize (frame)

MakeMovable (frame)

Example Tab

Figure 10-7: Panel tab created using TabButtonTemplate

UlRadioButtonTemplate

To create a radio button rather than a checkbox, you can create a frame using
UIRadioButtonTemplate. To deselect any other radio buttons when one is
selected, you would need to manage that logic on your own. Figure 10-8
shows the radio button created using the following example code:

local frame = CreateFrame ("CheckButton", "UIRadioButtonTemplateTest", 2
UIParent, "UIRadioButtonTemplate")

frame:SetHeight (20)

frame:SetWwidth (20)

frame:ClearAllPoints ()

frame:SetPoint ("CENTER", 0, 0)

_G[frame:GetName () .. "Text"]:SetText ("Example radio button")
MakeMovable (frame)

21 Example radio button

Figure 10-8: Radio button created using UIRadioButtonTemplate

Summary

This chapter showed how templates can be used to better organize frame,
texture, and font string definitions. You created a template for BagBuddy and
used it to dynamically create new item buttons in Lua. You also explored the
various UIPanelTemplates already defined in the default user interface.

184 Part Il = Programming in World of Warcraft

The Code

BagBuddy.lua

function BagBuddy_OnLoad(self)
SetPortraitToTexture (self.portrait, 2
"Interface\\Icons\\INV_Misc_EngGizmos_30")

-- Create the item slots

self.items = {}
for idx = 1, 24 do
local item = CreateFrame("Button", "BagBuddy Item" .. idx, 2

self, "BagBuddyItemTemplate")
self.items[idx] = item
if idx == 1 then
item:SetPoint ("TOPLEFT", 40, -73)

elseif idx == 7 or idx == 13 or idx == 19 then
item:SetPoint ("TOPLEFT", self.items[idx-6], "BOTTOMLEFT", 3
0, -7)
else
item:SetPoint ("TOPLEFT", self.items[idx-1], "TOPRIGHT", 2
12, 0)
end
end
end
BagBuddy.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

<Button name="BagBuddyItemTemplate" virtual="true">
<Size>
<AbsDimension x="37" y="37"/>
</Size>
<Layers>
<Layer level="BORDER">
<Texture name="SparentIconTexture" parentKey="icon"/>
<FontString name="$parentCount" parentKey="count" «3
inherits="NumberFontNormal" justifyH="RIGHT" hidden="true">
<Anchors>
<Anchor point="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-5" y="2"/>
</0Offset>
</Anchor>
</Anchors>
</FontString>

Chapter 10 = Saving Time with Frame Templates

185

</Layer>
<Layer level="OVERLAY">
<Texture name="$parentGlow" parentKey="glow" 3
alphaMode="ADD" file="Interface\Buttons\UI-ActionButton-Border">
<Size x="70" y="70"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Color r="1.0" g="1.0" b="1.0" a="0.6"/>
</Texture>
</Layer>
</Layers>
<NormalTexture name="SparentNormalTexture" &
file="Interface\Buttons\UI-Quickslot2">
<Size>
<AbsDimension x="64" y="64"/>
</Size>
<Anchors>
<Anchor point="CENTER">
<Offset>
<AbsDimension x="0" y="-1"/>
</Offset>
</Anchor>
</Anchors>
</NormalTexture>
<PushedTexture file="Interface\Buttons\UI-Quickslot-Depress"/>
<HighlightTexture 3
file="Interface\Buttons\ButtonHilight-Square" alphaMode="ADD"/>
</Button>

<Frame name="BagBuddy" parent="UIParent">
<Size x="384" y="512"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER" 2
relativeTo="UIParent"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="$parent_Portrait" parentKey="portrait" 3
file="Interface\Icons\INV_Misc_EngGizmos_30">
<Size x="60" y="60"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="7" y="-6"/>
</Anchor>
</Anchors>
</Texture>
</Layer>
<Layer level="OVERLAY">
<FontString name="$parent_Title" parentKey="title" 3

186 Part Il = Programming in World of Warcraft

inherits="GameFontNormal" text="BagBuggy">
<Anchors>
<Anchor point="TOP">
<Offset x="0" y="-18"/>
</Anchor>
</Anchors>
</FontString>
</Layer>
<Layer level="BORDER">
<Texture file="Interface\BankFrame\UI-BankFrame-TopLeft">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-TopRight">
<Anchors>
<Anchor point="TOPRIGHT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotLeft">
<Anchors>
<Anchor point="BOTTOMLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotRight">
<Anchors>
<Anchor point="BOTTOMRIGHT"/>
</Anchors>
</Texture>
</Layer>
</Layers>
<Scripts>
<OnLoad function="BagBuddy_ OnLoad"/>
</Scripts>
</Frame>
</Ui>

CHAPTER

11

Exploring the World
of Warcraft API

World of Warcraft is an incredibly complex game. Atany given moment—even
with the default Ul—there can be a massive amount of information on the
screen: unit frames showing players” and mobs” health, mana, hostility, and
PvP status; buffs and their durations; action buttons with various states such
as cooldown, number of uses, and range indication; tracked quests; and so on.
To get much of this information, you must query the application programming
interface, or API.

.]m] APl is a generic term in the software field describing a set of functions and
data structures that are used by a program to interact with its environment.
Another example of an API is Win32, which allows Windows programs to read and
create files, display controls such as buttons and checkboxes, communicate over a
network, launch other applications, and so on.

Similar to the API that the Lua programming language provides, World of
Warcraft provides a large set of functions that allow you to query information
about the state of the game. Other functions allow you to change something
about the client, such as selecting different quests in the quest log, or changing
what map is displayed in the world map frame. This chapter introduces you
to the API system provided by World of Warcraft.

Understanding the WoW API

The World of Warcraft API consists of several types of functions including
C functions (functions defined in C and exposed to the Lua environment),
Lua-defined functions (found in Blizzard’s FrameXML files), and protected

187

188 Part Il = Programming in World of Warcraft

functions, which can only be used by Blizzard code because of security and
automation concerns.

The functions cover quite a wide range of topics from changing game
settings to posting auctions. Some operate like Lua library functions; others
provide a specific interface to some aspect of gameplay.

As you progress through this chapter, you may want to flip to Chapter 27,
““API Reference,” to see the details of the various APIs presented. It will both
help you to understand the content of this chapter and give you a glimpse into
the kinds of functions available to you.

Normal APIs

Most of the built-in functions you’ll use on a regular basis are defined in
C, rather than in Lua. They interact with the various subsystems of the
WoW client to gather information about the state of the game and to take
action in several ways. One example is UnitHealth, which returns the health
of a specified unit (a creature or player referenced by a unit ID). Run the
following statement in-game, and it displays your current number of hit
points:

/run print (UnitHealth("player"))

The unit ID in this case is "player", which always refers to you, the player.
Use "target" instead, and it prints the health of your target, or ni1 if you have
no target.

This introduces a recurring theme in the WoW API. Many groups of func-
tions operate on a certain type of data. In the preceding example, the data
type is unit ID. Some of the many functions that use unit IDs are uUnitMana,
UnitExists, and UnitLevel.

Library-like APIs

The Lua standard libraries provide a wide range of functions for string
manipulation, mathematic operations, and so on. However, not all functions
that are exposed in a standard Lua installation are appropriate for inclusion
in WoW. Because addons are not allowed to access any files directly, the
io library obviously isn’t included. The debug and os libraries also contain
some more potentially hazardous functions, so they aren’t included. However,
some of the functions provided by these libraries are benign enough that their
functionality has been exposed through new functions. Table 11-1 shows some
of these library-API relationships.

.m Some of the parameters and returns may vary between the standard
versions and those included in the WoW client. See Chapter 27, “API Reference,”
for documentation of each function.

Chapter 11 = Exploring the World of Warcraft API

189

Table 11-1: Library Functions and Their API Equivalents

STANDARD LIBRARY EQUIVALENT WOW API

os.date date
os.time time
os.difftime difftime
debug. traceback debugstack

In addition to direct library translations, several functions specific to WoW
play a support role in addon development but do not directly relate to anything
in-game. These have semantics similar to library functions but are technically
part of the WoW API They are easily identifiable because their names are
entirely lowercase—debugprofilestart and hooksecurefunc, for instance.
Some of these functions are defined by the game client, but others are defined
in the game’s FrameXML code.

FrameXML Functions

The code for the default user interface includes definitions for a number of
utility functions. Although they may not be considered APIs in the strictest
sense, their usage is consistent enough with true API functions that they
deserve documentation here. For example, consider the definition of the
TakeScreenshot function:

function TakeScreenshot ()
if (ActionStatus:IsShown()) then
ActionStatus:Hide() ;
end
Screenshot () ;
end

This function is designed to make it easier to take screenshots programmat-
ically. Normally after you take a screenshot the ““Screen Captured” message is
displayed. This function hides that text so you can take multiple screenshots
in quick succession.

The most unique characteristic of FrameXML-defined functions is that you
can examine their inner workings. All of the APIs mentioned so far are hidden
behind the Lua-C interface. You can call the functions from Lua and use the
values they return, but in general there is no way to know exactly how they
operate.

Protected Functions

Early in WoW’s life, addons had free reign over all functions available in the
API. Some of these functions included movement control, combat activities,

190 Part Il = Programming in World of Warcraft

and other features the designers have since deemed inappropriate for addons.
That early leeway made it relatively trivial —especially with a bit of help from
external programs—to write “grinding bots”” that would completely control
your character while you went to the movies. Set it up before work and by the
time you got home you could have gained a few levels and received massive
amounts of loot to sell.

A similar problem were “button masher” addons like Emergency Monitor
and Decursive. A player could repeatedly press a single key or mouse button
and the addon would do all the decision-making: who to target, what spell to
cast, and so on.

Subsequent patches removed these capabilities by marking the offending
functions as protected. Protected functions can be called only by built-in code.
In addition there is another class of functions that are only protected during
combat. WoW is able to tell when the running code is from an addon or macro
versus a built-in file, so it can prevent the protected function from running in
those cases. Table 11-2 describes a small sampling of protected functions to
give you an idea of their nature.

Table 11-2: Sample of Protected Functions

FUNCTION DESCRIPTION

Jump Causes the character to jump

CastSpellByName Attempts to cast the given spell

ToggleAutoRun Controls the character’s auto-run

TargetUnit Targets the specified unit

PetAttack Sends your pet to attack

RegisterUnitWatch Registers a frame to be shown/hidden based on a unit

These are just examples. All movement, targeting, ability use, and action bar
manipulation functions are completely protected. The API reference section in
Chapter 27 shows which functions are protected, so you know whether or not
you can call them.

.]m] You may be wondering how it is possible to write an action bar or unit
frame addon at this point, considering that spell-casting and targeting functions
are protected. This problem is resolved by using secure templates, which are
covered in Chapter 15.

Unit Functions Up Close

The first logical grouping of APIs to examine is unit functions. As previously
mentioned, these functions expose data about players, mobs, and NPCs. Most

Chapter 11 = Exploring the World of Warcraft API

191

of the functions are quite simple; they take in one or two unit IDs and return
some information to the calling code. Table 11-3 shows a few of the different
unit functions.

Table 11-3: Example Unit Functions

UNIT FUNCTION DESCRIPTION

Returns 1 if the unit exists, ni1 otherwise. For example,
UnitExists ("target") returns 1 only if you have a

target selected. Many of the other unit functions return

nil if UnitExistsisnil.

exists =
UnitExists (unit)

name, realm = Returns the name of the specified unit. If the unit is a

UnitName (unit)

player in a cross-realm battleground, the second return is
the server name, otherwise it is nil.

level =
UnitLevel (unit)

Returns the level of the unit or -1 if you're not supposed
to know the level (special bosses, enemy players more
than 10 levels above you).

reaction =
UnitReaction (unit,
otherUnit)

Determines the reaction of unit to otherUnit. Returns
a number from 1-7, where 1 is extremely hostile, 7 is as
friendly as possible, and nil is returned if unknown.

health =
UnitHealth (unit)

Returns the health of the unit. For the player, the player's
pet, party/raid members, and their pets, health is the
absolute number of hit points. All other units return a
percentage from 0—100.

mana = Same as UnitHealth but for mana, rage, energy, and

UnitPower (unit[, focus (collectively referred to as mana throughout the

powerType) API). By default this function returns the current power
type that unit is using, but you can specify a second
argument to query another power type (for example, the
mana of a druid who is shapeshifted).

healthMax = Returns the maximum health of the unit (actual number

UnitHealthMax (unit)

of hit points or 100 depending on the same criteria as
UnitHealth).

manaMax =
UnitManaMax (unit)

Same as UnitHealthMax but for mana.

Each of these functions takes in unit IDs that follow a very simple pattern.
A unit ID can be one of the tokens listed in Table 11-4 with either pet added
to the end, or possible target included an arbitrary number of times. For
example, partyltarget shows the target of your first party member, and
party2pettarget represents the target of your second party member’s pet.
Additionally, the WoW client will accept the name of a party or raid member
as a unit ID. These unit ID tokens are not case-sensitive.

192 Part Il = Programming in World of Warcraft

.m Not every function will work correctly on all unit IDs. The documentation
in Chapter 27 explains those cases.

Table 11-4: Base Unit IDs

UNIT ID REFERS TO...

player The character controlled by the player.

pet The player’s pet.

Vehicle The player's vehicle.

target The player's target (equivalent to "playertarget").

focus The player's focus target.

mouseover The unit underneath the mouse cursor. Includes characters in the

3-D world and any frame with a set unit attribute.

partyN The nt"party member where N is a number from 1-4. None of the
party unit IDs refers to the player.

partypetN The nt"party member's pet.

raidnN The nt"raid member where N is a number from 1 to however many

members there are in the raid. The highest N always refers to the
player, and the lowest N always refers to the raid leader. There is no
correlation between the N for raid units and the N for party units.

raidpetN The nt"raid member's pet.
arenaN The nthenemy in the arena.
npc The currently selected NPC. UnitExists only returns true for this

unit while you are interacting with an NPC (that is, when you are
turning in a quest, using a vendor, and so on).

none No unit. It was created to allow activation of the target selection
cursor even when you are targeting something vulnerable to the
spell you are casting.

In addition to these token-based unit IDs, most functions will accept the
name of a party or raid member. For example, if you have a party member
called “Healadin” you could query his health by running;

/run print (UnitHealth ("Healadin"))

Chapter 11 = Exploring the World of Warcraft API

193

Querying Item Information for BagBuddy

To get the information you need for BagBuddy, you have to access three
different (but related) API systems:

= Container API—Provides information about your bags, and the items in
your bags.

m Jtem API—Provides various information about specific game items.

= Inventory API—Provides information about the items the player cur-
rently has equipped.

In this section, you implement a simple function that scans your bags for
items, then sorts them and displays them in the BagBuddy frame. Later, you
extend this update function to allow for filtering of items based on name
and rarity.

Scanning Bags with the Container API

Start with an example function that can scan the player’s bags for empty slots.
Run the following code snippet in-game:

local freeSlots = 0
for bag = 0, NUM_BAG_SLOTS do
for slot = 1, GetContainerNumSlots (bag) do
local texture = GetContainerItemInfo (bag, slot)
if not texture then
freeSlots = freeSlots + 1
end
end
end
print ("You have", freeSlots, "free slots in your containers.")

This container API uses bag IDs and slot IDs. A bag ID can be any of the
following values:

m 0—The player’s backpack

m 1 —The player’s first bag (from the right)

m > —The player’s second bag (from the right)
m 3 —The player’s third bag (from the right)
m 4 —The player’s fourth bag (from the right)

194 Part Il = Programming in World of Warcraft

In the future, WoW may add more bag slots, so when you iterate
over the bags in the preceding snippet, start at 0 and go through to
NUM_BAG_SLOTS. Because each bag might have a different number of slots,
you use the GetContainerNumslots() function to query the max number
of slots. This function takes in a bag ID and returns the number of slots in
that bag.

The second (inner) loop goes through each slot in the bag and uses the
GetContainerItemInfo () function to query information about the item in the
given slot. In this case, the function returns the following information:

m texture—The path to the icon texture for the item.

m count—The number of items in the stack at the given container slot.

=]ocked—Indicates if the item is currently locked (such as when the item
has been dragged to a mail slot, or the trade window).

= quality—A number representing the quality/rarity of the item.

readable—Indicates if the item can be read; for example, a book or scroll.

= lootable—Indicates if the item can be looted; for example, a chest or
clam that can be opened.

m 1ink—A hyperlink for the item in a given slot that can be passed to the
item functions for more information.

If the slot does not contain an item, texture (the first return) will be ni1.
You can check it to easily see if the slot contains an item. The preceding
snippet checks to see if this value is missing, and counts it as a free slot if
that’s the case. Although there is an easier function to obtain this informa-
tion, GetContainerNumFreeSlots (), you'll be using the same type of loop in
BagBuddy.

Querying Detailed Item Information

You get quite a bit of information from the container API, but you can’t get
other basic information such as the item’s name. For that, you need to utilize
the item APL It enables you to get the following information about an item
(among other details):

m The item’s name.

m The item’s rarity.

= The maximum stack size for the given item.

m The sale price of the item at a vendor.

= The level required to use the item.

Chapter 11 = Exploring the World of Warcraft API

195

Item Identifiers

To use the item API, you need some way to specify the item you'd like to
query. You could simply specify the item name, but due to names not being
completely unique, this only works when the item is in the player’s inventory
or containers. The more specific form allows you to specify the numeric item
ID, or an item’s hyperlink or item string.

Numeric Item ID

Each item in World of Warcraft is uniquely identified by a numeric ID.
Table 11-5 shows a list of common items and their item IDs. Notice that some
of the names are the same, whereas the IDs are distinct.

Table 11-5: Sample Mapping Between Items and Item IDs

Hearthstone 6948
Insignia of the Alliance 18864
Insignia of the Alliance 29593
Militia Dagger 2224

The first Insignia of the Alliance item is the class-specific insignia for
Paladins. The second is the Shaman-specific trinket. Although they no longer
have different effects, they remain distinct items as far as WoW is concerned.
Another advantage to utilizing item IDs instead of names is that the lookup
will work correctly regardless of what locale client the player is using. If you
try to look up an item with its English name on a French client, it will not work
correctly.

In addition, the database sites for World of Warcraft (including WoW
Armory) use these IDs. For example, the URL to access information about the
Militia Dagger is http: //www.wowarmory.com/item-info.xml?i=2224.

Item Strings

A problem with using just item IDs is that they don’t include any information
about a specific instance of an item. Say you have a pair of gloves that is
enchanted with Enchant Gloves - Gatherer, an enchantment that gives you
+5 skill in Mining, Herbalism, and Skinning. When you query the item by
numeric ID, it will not include the enchantment. An item string combines the
item ID with this information, and consists of the string item: followed by
nine different numeric values, separated with colons. Table 11-6 shows the
different values included in the string.

196 Part Il = Programming in World of Warcraft

Table 11-6: Components of Item Strings

itemID The numeric item ID.

enchantID A numeric identifier representing the permanent item enchantment.
jewellD1 A numeric identifier indicating a socketed gem in the given item.
jewellD2 See above.

jewellD3 See above.

jewellD4 See above.

suffixID A numeric suffix identifier. This is how the game differentiates

between an item that is “of the Monkey” and “of the Whale.”

uniquelD Information pertaining to a specific instance of an item, such as who
crafted it or how many charges are left on a multi-charge item. The
specific meaning of these numbers is unclear, and appears to be
something generated and used by Blizzard on the server end of the
game.

linkLevel The level of the character supplying the link. This is used by the new
Heirloom items to calculate the correct item tooltips.

Like most things in the WoW API, examples tend to make a bit more sense.
The following is a list of example item strings, and the information they
contain:

B item:6948:0:0:0:0:0:0:0:0—Hearthstone with no additional informa-
tion about stats, creator, or level.

B item:10042:0:0:0:0:0:614:0:0—Cindercloth Robe with a suffix ““of the
Monkey” that adds +11 Agility and +11 Stamina.

™ item:42992:0:0:0:0:0:0:0:45—Discerning Eye of the Beast, the heir-
loom mana trinket, shown scaled to level 40.

B item:41319:3842:3642:3466:0:0:0:0:80—Hateful Gladiator’'s Kodo-
hide Helm with 430 Stamina 425 Resilience enchantment, and a gem

that provides 432 Stamina and Stun Duration Reduced by 10 and a +9
Spell Power and +12 Stamina gem.

As you can see, any values not provided at the end default to 0. This means
you can avoid specifying the item level or unique id if you don’t have that
information (or simply specify that they are 0).

Item Hyperlinks

Once you understand the format of an item string, creating an item hyperlink
is very easy. A hyperlink, in general, consists of the following format:

| H<DATA> | h<DISPLAYTEXT> | h

Chapter 11 = Exploring the World of Warcraft API

197

The pipe (|) character is used in World of Warcraft as an escape character,
much like Lua itself uses the backslash (\). The hyperlink begins with a |5,
followed by the data for the hyperlink. In the case of item links, this is just the
item string itself. The data ends with |n, followed by the text that is actually
displayed in the hyperlink, including the left and right brackets. The hyperlink
ends with a final |h. To color the link, you can wrap it using color codes.

For example, a script that can print a hyperlink for your Hearthstone might
look like this:

print ("|cfffEffff|Hitem:6948:0:0:0:0:0:0:0:0|h[Hearthstone] |h|r")

The color code for white is specified, the hyperlink data is included, and the
text of the link itself follows. You may encounter different types of hyperlinks
in your exploration of the WoW API, but you won't find yourself creating
them very often. More often than not, when you need a hyperlink you simply
query the API and use whatever is returned.

Using the Item API

Once you have an item identifier, the item API is simple to use. In particular
you are concerned with the GetItemInfo() function, which takes in such an
identifier and returns the following;:

= name—The name of the item.

= 1ink—A hyperlink for the item.

= quality—Quality (rarity) level of the item.

iLevel—Internal level of the item.

regLevel —Minimum character level required to use or equip the item.
class—Localized name of the item’s class/type.

subclass—Localized name of the item’s subclass/subtype.

maxStack—Maximum stack size for the item (that is, largest number of
items that can be held in a single bag slot).

equipslot—Non-localized token identifying the inventory type of the
item.

m texture—Path to an icon texture for the item.

®m vendorprice—DPrice an NPC vendor will pay to buy the item from the
player.

We are only concerned with the item’s name, which is the first return from
the function. You will use this to sort the items once you've finished scanning.

To prevent against item scanning, where someone tries to get information
about items that aren’t yet in the game, this function returns only information
about those items that the player has seen. In particular, the item must exist in
the player’s local item cache.

198 Part Il = Programming in World of Warcraft

Writing a Bag Scanner

You can put together the different APIs to update BagBuddy to actually display
the player’s inventory. Open BagBuddy.lua and add the following function
definition at the end of the file:

function BagBuddy_ Update ()
local items = {}

-- Scan through the bag slots, looking for items
for bag = 0, NUM_BAG_SLOTS do
for slot = 0, GetContainerNumSlots (bag) do
local texture, count, locked, quality, readable, lootable, link =
GetContainerItemInfo (bag, slot)
if texture then
-- If found, grab the item number and store other data
local itemNum = tonumber (link:match("|Hitem: (%d+):"))
if not items[itemNum] then
items[itemNum] = {
texture = texture,
count = count,
quality = quality,
name = GetItemInfo(link),
link = 1link,
}
else
-- The item already exists in our table, just update the count
items[itemNum] .count = items[itemNum].count + count
end
end
end
end
end

This function goes through all of the player’s bag slots and checks to see if
the slot is empty or not. For each item it finds, it parses the item link to get the
item number and then stores the following information in a table:

m The path to the item’s icon texture.
= The number of items in the stack.
m The quality number for the item.
m The item’s name.

= The item’s link.

You use the item number rather than the name because it enables you to
differentiate between different items that share a name. You could use the item
link, but the uniquelD component of the link may be different (for example, if
the items were crafted by two different people). If you used the item link, the
items would appear to be different.

Chapter 11 = Exploring the World of Warcraft API

199

If (during the loop) you encounter an item that you've already added to the
table, you simply increment the item’s count in the table entry that has already
been stored.

Sorting the Player’s Inventory

To ensure the inventory is displayed in a consistent order, you will sort them
by name. Add the following function definition somewhere before the update
function:

local function itemNameSort(a, b)
return a.name < b.name
end

This function simply takes in two tables that are being compared, and
compares the names of the items. Now you can use the function by adding the
following to BagBuddy_uUpdate (), at the end of the function:

local sortTbl = {}

for 1link, entry in pairs(items) do
table.insert (sortTbl, entry)

end

table.sort (sortTbl, itemNameSort)

This code simply loops over all of the stored items, and adds each entry to
a new temporary table. Then you call table.sort (), passing in your sorting
function to do the heavy lifting.

Displaying the Inventory

Now that you have a sorted list of inventory items, you can write some
code to display them in the BagBuddy frame. Add the following to
BagBuddy_Update (), after the sorting and before the end of the function:

-- Now update the BagBuddyFrame with the listed items (in order)
for i = 1, 24 do

local button = BagBuddy.items[i]

local entry = sortTbl[i]

if entry then
-- There is an item in this slot

button.icon:SetTexture (entry.texture)

if entry.count > 1 then
button.count:SetText (entry.count)
button.count:Show ()

else
button.count:Hide ()

end

if entry.quality > 1 then
button.glow:SetVertexColor (GetItemQualityColor (entry.quality))

200 Partll = Programming in World of Warcraft

button.glow: Show ()
else
button.glow:Hide ()
end
button: Show ()
else
button:Hide ()
end
end

Because you already know you have 24 buttons in the frame, simply loop
over each of them. You also have a list of items that are sorted in order, so you
know that the first item in the list should be displayed in the first button.

A lot happens on each iteration of the loop. First you check to see if there is a
corresponding item in the list. If there isn’t you just hide the button. Otherwise
you first set the item’s icon texture. If there are multiple items with the same
item number, you update the item count font string. Finally, you check the
quality of the item. If the quality is greater than one (that is, the item is green,
blue, purple, or higher), you shade the glow texture to the appropriate color,
obtained with the GetItemgualityColor () function.

This function takes in a quality index, and returns the red, green, and blue
color components (between 0.0 and 1.0). These can then be passed into any
of the functions that accept colors in that form, such as the texture method
SetvertexColor (). The different quality indices are listed in Table 11-7.

Table 11-7: Item Quality Indices

INDEX DESCRIPTION COLOR EXAMPLE ITEM

0 Poor Grey Broken LW.L.N. Button

1 Common White Archmage Vargoth's Staff

2 Uncommon Green X-52 Rocket Helmet

3 Rare or Superior Blue Onyxia Scale Cloak

4 Epic Purple Talisman of Ephemeral Power
5 Legendary Orange Fragment of Val'anyr

6 Artifact or Heirloom Light Yellow Bloodied Arcanite Reaper

Testing the Update Function

You haven’t set anything up to call the function, but you can call it manually
by running the following code in-game:

/run BagBuddy_ Update ()

Figure 11-1 shows BagBuddy after running the update function. The items
are all sorted by name, and multiple items are combined into a single virtual

Chapter 11 = Exploring the World of Warcraft API

201

stack. Any item that is higher than common quality glows to show the familiar
rarity colors (this will be hard to see in the figure). The frame shows only the
first 24 items, or less if you don’t have that many items in your inventory.

BagBuddy

Figure 11-1: BagBuddy showing a sorted inventory

Finding the Right API Functions

The most difficult part when starting to work with the World of Warcraft API
is finding the right function or event (which you’ll learn about in Chapter 13).
Although we would love to provide a simple guide that tells you what
functions and events to use for any situation, the API consists of more than
1,900 functions and 530 events. Any guide would be incredibly large, and near
impossible to write. Instead we hope to give you a set of guidelines that you
can use to find the right functions.

Exploring the API Categories

This book contains a chapter that lists a number of different categories, and the
functions that belong to the given group. This is a good place to start if you're
looking to better understand a portion of the API. Be aware that many functions
are listed in multiple categories. The same reference is available (and kept
up—to—date) online at http: //wowprogramming.com/docs/api_categories.
Although it does not always contain an updated list of available func-
tions, the World of Warcraft API listing at WoWWiki (http://wowwiki
.com/World of wWarcraft APT) lists functions by various categories as well.

202

Part Il = Programming in World of Warcraft

Examining the FrameXML Code

A useful question whenever you are trying to accomplish something in a
custom addon is to ask:

“Does the default user interface do this?”

If so, then somewhere in the code for the default Ul is the technique used
to accomplish the task; it’s just a matter of finding it. For example, you might
want to display the player’s haste rating and percentage effect somewhere
in your addon. A quick look at the API categories doesn’t reveal anything
immediately so you instead look at the default user interface.

That information is displayed on the character panel in the stats section
at the bottom. To find out where that panel is defined, you can do a bit
of investigative work. Start by running the /framestack command that was
introduced in Chapter 9. From the information you get there, it appears that
PaperDollFrame and CharacterFrame are both good candidates. Conveniently
enough, these frames are defined in files by the same name in the FrameXML
code.

Opening CharacterFrame.xml shows you the definition of the different
tabs, so it appears that that’s the outmost frame that contains the sub-
frames. The CharacterAttributesFrame in PaperDollFrame .xml, however,
looks like a good candidate. Now that you've found the frame, you can open
PaperDollFrame. lua to look around.

At the top of the file you see a number of global constants defined. Looking
for one having to do with haste, you find the following constants:

CR_HASTE_MELEE = 18;
CR_HASTE_RANGED = 19;
CR_HASTE_SPELL = 20;

When haste was first introduced in the game, there were different versions
for melee, ranged, and spell. In Wrath of the Lich King they were all combined
into a single haste rating. Pick the melee version and search for that throughout
the whole file.

The only instance in the file is in the following line of code, in the aptly
named PaperDollFrame_SetAttackSpeed() function:

statFrame.tooltip2 = format (CR_HASTE_RATING_TOOLTIP, 2
GetCombatRating (CR_HASTE_MELEE), GetCombatRatingBonus (CR_HASTE_MELEE)) ;

Now you can test these two functions to see if they work for your needs.
Run the following code in-game:

/run print (GetCombatRating (CR_HASTE_MELEE))
/run print (GetCombatRatingBonus (CT_HASTE_MELEE))

You will find that although the returns from GetCombatRating() are the
same, you may have different results for the actual percent bonus. This bonus

Chapter 11 = Exploring the World of Warcraft API

203

could depend on any number of factors, and you’ll want to take that into
consideration when using it in your addon.

Looking at Another Addon

If you can’t find a place in the default user interface that does what you want,
but know that other addons somehow accomplish it, you can always look at
the other addon. When doing this, keep in mind that the code we write as
authors is not completely open for copying. When in doubt, you may find it
useful to contact the author to see how he’s done something and ask if you can
use a similar method in your own addon.

Of course, sometimes it’s just a simple as finding the right function, which
you can then just use directly in your own addon.

Asking for Help!

Each situation will be slightly unique, so it’s always useful to ask for help
when working on your own addon. A number of websites, forums, and chat
rooms support addon development for World of Warcraft (see Appendix D
for more information). When asking for help, we suggest the following:

m When initially presenting your problem, try to explain what you are
trying to accomplish instead of how you are trying to accomplish it.
This gives the people who are helping you a chance to understand the
problem without getting caught up in a specific way of doing it. This can
sometimes reveal a much nicer solution to the problem.

m Provide as much code as possible and indicate the areas that are having
problems. Posting 10 lines of code out of a 300-line function makes it very
difficult to see what is happening. You can post large bits of code on sites
like http://pastey.net and http: //pastebin.com.

m Jf you are getting an error, give the specific error text, and post the code
involved in the error.

m Be patient! Not everyone is always waiting around to pounce on a new
question. You should continue to explore in your own time, and hopefully
someone will be able to help you.

Summary

This chapter introduced you to APIs in the general sense, and gave you
a specific example of how to use the item and container API to access
information about the player’s containers and items. Understanding the way
these functions interact with the game is essential to creating effective addons
that accomplish a variety of goals.

204 Partll

Programming in World

of Warcraft

The Code

BagBuddy.lua

function BagBuddy_OnLoad(self)
SetPortraitToTexture (self.po

rtrait,

"Interface\\Icons\\INV_Misc_EngGizmos_30")

-- Create the item slots
self.items = {}

for idx = 1, 24 do

local item = CreateFrame ("Button",

self,
self.items[idx] =

if idx == 1 then
item:SetPoint ("TOPLEFT",

7 or idx ==

"BagBuddyItemTemplate")

item

elseif idx ==
item:SetPoint ("TOPLEFT",

"BOTTOMLEFT", 0, -7)
else
item:SetPoint ("TOPLEFT",
"TOPRIGHT", 12, 0)
end
end

end

local function itemNameSort (a,
return a.name < b.name
end

function BagBuddy_ Update ()
local items = {}

-- Scan through the bag slots,
NUM_BAG_SLOTS do
GetContainerNumSlots (bag) do

readable,

for bag = 0,
for slot = 0,
local texture,
lootable,
if texture then

count,

-- If found, grab the item number and store other data
local itemNum = tonumber (link:match("|Hitem: (%d+)

if not items[itemNum]
items[itemNum] = {
texture = texture,
count = count,
quality = quality,
name =
link = 1link,

else

locked, quality,
link = GetContainerItemInfo (bag,

"BagBuddy_Item"

40, -73)
13 or idx == 19 then
self.items[idx-6],

self.items[idx-1], <

b)

looking for items

slot)

then

GetItemInfo (link),

idx,

:"))

P}

Chapter 11 = Exploring the World of Warcraft API

205

-- The item already exists in our table, update count
items[itemNum] .count = items[itemNum].count + count
end
end
end
end

local sortTbl = {}

for link, entry in pairs(items) do
table.insert (sortTbl, entry)

end

table.sort (sortTbl, itemNameSort)

-- Now update the BagBuddyFrame with the listed items (in order)
for i = 1, 24 do

local button = BagBuddy.items[i]

local entry = sortTbl[i]

if entry then
-- There is an item in this slot

button.icon:SetTexture (entry.texture)

if entry.count > 1 then
button.count:SetText (entry.count)
button.count:Show ()

else
button.count:Hide ()

end

if entry.quality > 1 then
button.glow:SetVertexColor(3
GetItemQualityColor (entry.quality))
button.glow:Show ()
else
button.glow:Hide ()
end
button: Show ()
else
button:Hide ()
end
end
end

CHAPTER

12

Interacting with Widgets

You've already created the base frame for BagBuddy, and added graphics,
text, and item buttons created using templates. However, other than the
highlight texture on the item buttons, the frames are entirely static and you
can’t really interact with them. In this chapter you learn about different types
of frames, such as buttons, status bars, and edit boxes. Once you've created
new frames, you learn how to add dynamic behavior to them.

Each different type of frame widget in World of Warcraft has certain scripts
that can be set to respond to changes. For example, a button can set an onclick
script to run code when the button is clicked, or onEnter to do something
when the mouse moves over the button. Other more complex widgets, such as
edit boxes, allow you to respond to different types of key presses.

This chapter is meant as an introduction to interacting with widgets; for
a full listing of the available frame scripts and methods, please refer to the
Widget Reference in Chapter 29.

Making BagBuddy's Buttons Interactive

The most often used widget (other than the basic frame type) is a Button.
Buttons are used all over the default user interface to accomplish different
types of tasks:

m Player, target, and other unit frames

m Action buttons

m Buff and debuff icons

207

208

Part Il = Programming in World of Warcraft

= Dropdown (selection) menus

m Menu buttons

In BagBuddy you will use buttons for the rarity filters and the close button
in the top-right corner of the frame, in addition to the already created item
buttons. Let’s start exploring interactive widgets by setting onEnter and
onLeave scripts for the item buttons.

Setting Frame Scripts via XML

You can add a frame script to an XML definition by adding a <scripts>
tag with one or more script definitions inside. Add the following code to
the definition of BagBuddyItemTemplate, after the </Layers> tag but before the

<NormalTexture> tag:

<Scripts>
<OnEnter>
print ("Mouse has entered", self:GetName())
</OnEnter>
<OnLeave>
print ("Mouse has left", self:GetName())
</OnLeave>
</Scripts>

If you load up the game, you should be able to run your mouse over any of
the item buttons, and the game will display a message for each of the different
scripts. The output may look similar to the following:

Mouse has entered BagBuddy Itemb6
Mouse has left BagBuddy_Item6
Mouse has entered BagBuddy_Item20
Mouse has left BagBuddy_ Item20

This is one of two ways to set frame scripts using XML. For each type of
script, you simply write code that is then compiled to a function and run in
response to that widget event. Each different type of script handler is passed
certain arguments; you can see that the variable self is used here, which isn’t
explicitly defined.

The onEnter and onLeave scripts are passed two different arguments:

m self—The button that the mouse has just entered.

m notion—A Boolean flag indicating if the event was caused by the mouse
moving over the frame. When this value is false, the frame being
shown while the mouse is already over its position may have caused
the event.

Chapter 12 = Interacting with Widgets

209

Using the function Attribute

We prefer to avoid writing any code directly in XML files because keeping
the frame definition code separate from any behavior code makes it easier to
maintain addon code. To do this, you can create your functions in BagBuddy . 1ua
and assign them directly in the XML using the function attribute. Replace the
<Scripts> section you wrote in the last section with the following:

<Scripts>
<OnEnter function="BagBuddy_ Button_OnEnter"/>
<OnLeave function="BagBuddy_Button_OnLeave"/>
</Scripts>

Now open BagBuddy . lua and add the following two functions somewhere
in the file:

function BagBuddy_ Button_OnEnter (self, motion)
print ("Mouse has entered", self:GetName())
end

function BagBuddy_ Button_OnLeave (self, motion)
print ("Mouse has left", self:GetName())
end

Because you're writing your own functions, you need to specify the argu-
ments to access them; other than that, the functions are the same.

Setting Frame Scripts Using Lua

As with most things dealing with the frame system in World of Warcraft,
frame scripts can be set using Lua instead of XML. This is accomplished using
the setscript () method for frames. If you include the function definitions
for BagBuddy_Button_OnEnter and BagBuddy_Button_OnLeave, you could just
add the following to the end of the BagBuddy_onLoad function:

for idx, button in ipairs(self.items) do
button:SetScript ("OnEnter", BagBuddy_ Button_OnEnter)
button:SetScript ("OnLeave", BagBuddy_ Button_OnLeave)
end

It doesn’t make much sense to structure your code this way when you're
using a frame template. With a different type of addon, though, you might
need to set scripts in this way, so it’s good to know the possibility exists.

Using the setscript () method is the only way to clear an existing script
from a frame. To accomplish this, you simply passnil as the second argument.

210 Partll = Programming in World of Warcraft

Showing Item Tooltips Using OnEnter and OnLeave

Having the item buttons print something to the chat window is great, but
it’s not very useful; instead you can display the item’s tooltip. You can
accomplish this using the GameTooltip object provided by the default user
interface. Figure 12-1 shows the tooltip for the Death Knight spell Blood
Presence.

Blood Presence
1 Blood

Figure 12-1: GameTooltip showing tooltip for Blood Presence

To show a tooltip, you typically use the following process:

1. Call the GameTooltip:setowner () method, passing in the frame object
that will temporarily own the tooltip, a string that tells the system how
to anchor the tooltip, and optionally a set of offsets.

2. Call one of the many set methods to tell the tooltip what information to
display. In this case, you'll use the setHyperlink method, passing in the
item hyperlink.

3. Show the tooltip by calling GameTooltip:Show ().

But first you need to store the item link in a place where the script handler
can access it. Open BagBuddy.lua and change the update loop at the end
of BagBuddy_Update () to the following (the highlighted lines are the only
changes):

for 1 =1 , 24 do
local button = BagBuddy.items[i]
local entry = sortTbl[i]

if entry then
-- There is an item in this slot

button.link = entry.link

button.icon:SetTexture (entry.texture)

Chapter 12 = Interacting with Widgets

211

if entry.count > 1 then
button.count:SetText (entry.count)
button.count:Show ()

else
button.count:Hide ()

end

if entry.quality > 1 then
button.glow: SetVertexColor (GetItemQualityColor (entry.quality))
button.glow: Show ()
else
button.glow:Hide ()
end
button: Show ()
else
button.link = nil
button:Hide ()
end
end

During the iteration of the loop, you just update the 1ink key in the frame
table using the link stored in the item entry. If there isn’t an item to display
the button, you clear the value from the frame table. Next, you need to
update the script handler functions. Replace the definitions of the onEnter and
onLeave handlers with the following;:

function BagBuddy_ Button_OnEnter (self, motion)
if self.link then
GameTooltip:SetOwner (self, "ANCHOR_TOPRIGHT")
GameTooltip:SetHyperlink(self.link)
GameTooltip: Show ()
end
end

function BagBuddy_ Button_OnLeave (self, motion)
GameTooltip:Hide()
end

In the onEnter handler, you first check to see if the button is set to display
an item. Then you tell the tooltip to anchor itself to the top right of the item
button, and set it to display the item. The corresponding onLeave script simply
hides the tooltip.

If you load the addon and run the BagBuddy_Uupdate () function, you should
be able to mouse over the items in BagBuddy to display item tooltips.
Figure 12-2 shows one such tooltip.

212 Part Il = Programming in World of Warcraft

f Damnation
n picked up

BagBuddy

Figure 12-2: BagBuddy showing an item tooltip OnEnter

Adding Clickable Buttons to BagBuddy

Although you eventually will make the item buttons clickable to use, that
is a protected action and is a bit more complicated than just setting a script
handler. However, you don’t need to do anything special to create a close
button and a set of filter buttons.

Introducing the OnClick Handler

The Button frame type can register to receive mouse clicks. World of War-
craft recognizes several different mouse buttons, calling the default ones
LeftButton, RightButton, MiddleButton, Button4, and Button5. There are
some computer mice that have more than five buttons, and these continue as
Button6, Button7, etc. Which physical button on your mouse corresponds to
a given button name is between your operating system and the WoW client.
In addition to different mouse buttons, you can register for either the click
portion or the release portion of the click.

Toregister for mouse clicks, you must call the RegisterForclicks () method.
This function accepts a list of strings, each indicating a type of click you would
like to register for. By default, all buttons are registered for the LeftButtonup
click, which is the release portion of a left button click. The following are all
valid:

H TeftButtonUp

B MiddleButtonDown
B Button4Up

= AnyUp

B AnyDown

Chapter 12 = Interacting with Widgets

213

The last two are special buttons that register automatically for all release
button clicks and down button clicks, respectively.

Once you've registered for clicks, you can set an onclick script on the frame
to receive the click events. When the client calls an onc1ick handler, it passes
the following arguments:

m se1f—The frame object that the handler was called for.

= Lbutton—A string indicating which mouse button was used to click the
frame.

= jown—A Boolean flag indicating if the mouse click was triggered by a
downward click, rather than the releasing of a click.

You can run the following code in-game to play with the different mouse
buttons and the release/press portions of a click. Click the game button with
multiple buttons on your mouse to see the differences between them. Also,
click and hold the button so you can see the difference between the “up” and
“down” portions of a click.

if not ClickFrame then

ClickFrame = CreateFrame ("Button", "ClickFrame", UIParent, 2
"GameMenuButtonTemplate")
end

ClickFrame:ClearAllPoints()
ClickFrame:SetPoint ("CENTER", 0, O0)
ClickFrame:SetText ("Click Frame")

ClickFrame:RegisterForClicks ("AnyUp", "AnyDown")

ClickFrame:SetScript ("OnClick", function(self, button, down)
local name = self:GetName ()
print (name, button, down)

end)

You should see a line of output added to your chat frame showing the name
of the frame, clickFrame, and the button that was clicked along with whether
or not the click captured was on the release of the click.

Creating a Close Button Using Templates

Because almost every window in the default user interface has a close button,
naturally there is a template you can use to save some time. After the </Layers>
tag in the definition for BagBuddy, add the following definition:

<Frames>

<Button name="$parent_Close" parentKey="close" 3

214 Partll = Programming in World of Warcraft

inherits="UIPanelCloseButton">
<Anchors>
<Anchor point="TOPRIGHT">
<Offset x="-30" y="-8"/>
</Anchor>
</Anchors>
</Button>

</Frames>

The template already includes the code that is used to actually hide the
frame. The template is defined in urPanelTemplate.xml:

<Button name="UIPanelCloseButton" virtual="true">
<Size>
<AbsDimension x="32" y="32"/>
</Size>
<Scripts>
<OnClick>
HideParentPanel (self) ;
</OnClick>
</Scripts>
<NormalTexture file="Interface\Buttons\UI-Panel-MinimizeButton-Up"/>
<PushedTexture file="Interface\Buttons\UI-Panel-MinimizeButton-Down"/>
<HighlightTexture
file="Interface\Buttons\UI-Panel-MinimizeButton-Highlight"
alphaMode="ADD" />
</Button>

When the button is clicked, the HideParentPanel () function is called with
the frame passed as the firstargument. This function is defined in uTparent . 1ua
and is simply a short function that quickly looks up the parent frame, and then
hides it.

Creating Clickable Filter Buttons

You are going to create seven different buttons that can be used to filter
items by their rarity, shown in Figure 12-3. Because you already have a
template that contains more than what you need, you can just inherit from
BagBuddyItemTemplate and ignore the count text and glow texture, or you
could define a new template. In this case, you'll choose to re-use the existing
template, making your code much shorter. Add the following template defi-
nition following the item template definition, but before the code for the main
BagBuddy frame:

<CheckButton name="BagBuddyFilterTemplate" 2
inherits="BagBuddyItemTemplate" virtual="true">
<Scripts>

Chapter 12 = Interacting with Widgets

215

<OnEnter function="BagBuddy_ Filter_OnEnter"/>
<OnLeave function="BagBuddy_ Filter_OnLeave"/>
<OnClick function="BagBuddy_ Filter_OnClick"/>
</Scripts>
<CheckedTexture file="Interface\Buttons\CheckButtonHilight" 3
alphaMode="ADD" />
</CheckButton>

BagBuddy

Figure 12-3: Filter buttons with filtered inventory

You'd like to be able to display a tooltip when the mouse is over the frame,
so you define new onEnter and onLeave scripts in the template. These scripts
overwrite the original definitions from BagBuddyItemTemplate, which is very
useful.

You may also have noticed that the Button tag is changed to a checkButton
tag. That gives you access to the GetChecked () method, which enables you
to see if the button is currently selected. There is also setChecked () method,
but you won’t need to use it in this addon. The state of the button changes
automatically when the user clicks it, so all you need to do is check to see if
it’s actually set in your onclick handler.

Finally, you set the CheckedTexture for the button. This is a special texture
for check buttons that is shown when the button is selected, and is hidden
otherwise. In this case it’s just a highlight around the edge of the button that
should indicate this state.

216 Partll = Programming in World of Warcraft

Creating the Filter Buttons Dynamically

Now you must create the filter buttons, and you’ll do this dynamically in the
onLoad function where you're doing other initialization. At the bottom of the
function, add the following code:

-- Create the filter buttons
self.filters = {}
for idx=0,5 do

local button = CreateFrame ("CheckButton", "BagBuddy Filter" .. idx, <3
self, "BagBuddyFilterTemplate")

SetItemButtonTexture (button, <
"Interface\\ICONS\\INV_Misc_Gem_Pearl_03")

self.filters[idx] = button
if idx == 0 then
button:SetPoint ("BOTTOMLEFT", 40, 200)
else
button:SetPoint ("TOPLEFT", self.filters[idx-1], "TOPRIGHT", 12, 0)
end

button.icon:SetVertexColor (GetItemQualityColor (idx))
button:SetChecked(false)
button.quality = idx
button.glow:Hide ()
end

self.filters[-1] = self.filters[0]

This code first creates a table to store the filter buttons, and then creates
a series of buttons named BagBuddyFilterx, where X is a number between
and including 0 and 5. Each button’s icon is set to a pearl texture, because it’s
white and looks like an orb, so you can easily color it and it’s recognizable.
The first button is anchored specially, but the others are all anchored to the
previous button.

For each button, you use the setvertexcolor () texture method to change
the color of the item being displayed. You call the API function GetItem
QualityColor () to obtain the correct quality color. This gives you six different
glowing colored orbs that indicate the quality color. Next, you uncheck each
filter button using the setChecked () method, passing false in as an argument.
Then you store the quality index in the button table itself. This allows you to
later determine what quality index the button is meant to be filtering for. Next,
you hide the glow texture because you won’t be using it for these buttons.
Finally, you set up a link between the -1 filter and the o filter. That’s due
to the API that occasionally returns -1 rarity for some items. Figure 12-4 shows
the filter buttons after creation.

Chapter 12 = Interacting with Widgets

217

Figure 12-4: BagBuddy rarity filter buttons

Adding Custom Tooltips

You've already learned one way to display tooltips for the item buttons, using
the GameTooltip: SetHyperlinkmethod. However, the text you want to display
for the filter buttons isn’t something the game can associate to a game object
(such as a player or an item). Instead, you can use the GameTooltip:SetText ()
method to add a line of text directly to the tooltip. Define the following
functions at the bottom of BagBuddy . lua:

function BagBuddy_ Filter_OnEnter (self, motion)
GameTooltip:SetOwner (self, "ANCHOR_TOPRIGHT")
GameTooltip:SetText (_G["ITEM QUALITY" .. self.quality .. "_DESC"])
GameTooltip:Show ()

end

function BagBuddy_ Filter_OnLeave (self, motion)
GameTooltip:Hide ()
end

Global variables are set on every client that can be used to access the
name of the various quality levels. For example, on an English client, TTEM_
QUALITY1_DESC is set to poor.

Making the Filter Buttons Clickable

Making the buttons actually filter the item results involves two steps. The
first is setting a click handler that triggers the update function. The second
step is a bit more complex, and requires changes to the already written update
function. The click handler is relatively simple, so add the following function
to the bottom of BagBuddy . lua:

function BagBuddy Filter_OnClick(self, button)
BagBuddy.qualityFilter = false
for idx = 0, 5 do
local button = BagBuddy.filters[idx]
if button:GetChecked() then
BagBuddy.qualityFilter = true
end

218 Part Il = Programming in World of Warcraft

end
BagBuddy_Update ()
end

You'll use BagBuddy . qualityFilter as a Boolean flag that indicates whether
any of the quality filters have been selected. The first thing you doin the onclick
handler is set this to false. Then you loop through each of the filter buttons
and check if they are set. If any of them are selected, you change the value to
true. Finally, you call the BagBuddy_update () function to update the results.

Updating the Results

Rather than having you re-type the entire BagBuddy_update () function, you
can just edit the first main loop, which is responsible for scanning the player’s
bags. The sort and display loops don’t need to change, because they’ll do the
same thing. Replace the scanning loop with the following code:

-- Scan through the bag slots, looking for items
for bag = 0, NUM_BAG_SLOTS do
for slot = 0, GetContainerNumSlots (bag) do
local texture, count, locked, quality, readable, lootable, link = 2
GetContainerItemInfo (bag, slot)

if texture then

local shown = true

if BagBuddy.qualityFilter then
shown = shown and BagBuddy.filters[quality] :GetChecked ()
end

if shown then
-- If an item is found, grab the item number and store data
local itemNum = tonumber (link:match("|Hitem: (%d+):"))
if not items[itemNum] then
items[itemNum] = {
texture = texture,
count = count,
quality = quality,
name = GetItemInfo(link),
link = 1link,
}
else
-- The item already exists in table, just update the count
items[itemNum] .count = items[itemNum].count + count
end
end
end
end
end

Chapter 12 = Interacting with Widgets

219

You've done a bit of restructuring here, adding a variable (shown) that is set
on each iteration to indicate whether or not the item has passed all the given
filters. This will be useful when you add name filters, but for now it helps you
filter based on quality. The code checks to see if Bagbuddy.qualityFilter is
set, and if so checks the filter button to see if it’s selected. If it is, the item
“passes” and is added to the items table.

It’s important to note that when no quality filters are selected, all items will
automatically pass this check. Filters are additive, so you can select the Epic
and Rare filters, as shown in Figure 12-5, and all items that match either quality
level will be shown.

BagBuddy

Figure 12-5: BagBuddy with the Rare and Epic filters selected

Navigating Multiple Pages

As it stands, BagBuddy displays only the first 24 filtered items in your bags.
Although this might be useful if your bags are small, it doesn’t really work
well with a level 80 character with larger bags. It would be useful to be able to
move between different ““pages” of results to find what you need.

To add this feature to BagBuddy, you'll need to add two more buttons and
a font string. The buttons will be placed in the bottom portion of the frame,
allowing the user to click to go to the next (or previous) page. The font string
will be used to display some status information, such as how many pages of
items match the current filters.

220 Partll = Programming in World of Warcraft

Adding XML Definitions for Buttons and Status Text

Open BagBuddy .xml and add the following definitions after the </Button> tag
for the close button, and before the </Frames> tag:

<Button name="BagBuddy_PrevButton" parentKey="prev">
<Size x="32" y="32"/>
<Anchors>
<Anchor point="CENTER" relativeTo="BagBuddy" 3
relativePoint="BOTTOMLEFT">
<Offset>
<AbsDimension x="50" y="150"/>
</0Offset>
</Anchor>
</Anchors>
<Scripts>
<OnClick function="BagBuddy_PrevPage"/>
</Scripts>
<NormalTexture file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Up"/>
<PushedTexture
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Down"/>
<DisabledTexture
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Disabled"/>
<HighlightTexture file="Interface\Buttons\UI-Common-MouseHilight"
alphaMode="ADD" />
</Button>

<Button name="BagBuddy_ NextButton" parentKey="next">
<Size x="32" y="32"/>
<Anchors>
<Anchor point="CENTER" relativeTo="BagBuddy" 3
relativePoint="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-70" y="150"/>
</0Offset>
</Anchor>
</Anchors>
<Scripts>
<OnClick function="BagBuddy_ NextPage"/>
</Scripts>
<NormalTexture file="Interface\Buttons\UI-SpellbookIcon-NextPage-Up"/>
<PushedTexture
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Down"/>
<DisabledTexture
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Disabled"/>
<HighlightTexture file="Interface\Buttons\UI-Common-MouseHilight" 3
alphaMode="ADD" />
</Button>

Chapter 12 = Interacting with Widgets

221

There shouldn’t be any unfamiliar concepts in these definitions. You use
the previous page and next page buttons from the spellbook interface. Each
button calls a different function when clicked, which is responsible for moving
the page ahead or back. Before you leave the XML file, add the following to the
OVERLAY layer in the XML file, after the definition of the title font string:

<FontString name="$parent_Status" parentKey="status" 3
inherits="GameFontHighlight">
<Anchors>
<Anchor point="CENTER" relativePoint="BOTTOM">
<Offset x="-10" y="150"/>
</Anchor>
</Anchors>
</FontString>

Writing OnClick Handlers for Navigation Buttons

The click handlers for the navigation buttons are quite simple, actually. You'll
use the BagBuddy . page variable to indicate what page you are on. You'll make
sure that the previous button is disabled when you're at the front of the listing,
and the next button when you are at the end. That makes the logic pretty
simple. Add this to the end of BagBuddy . lua:

function BagBuddy_ NextPage (self)
BagBuddy .page = BagBuddy.page + 1
BagBuddy_Update (BagBuddy)

end

function BagBuddy_PrevPage (self)
BagBuddy .page = BagBuddy.page - 1
BagBuddy_Update (BagBuddy)

end

The font string and the button enable/disable states will be handled in the
update function itself.

Altering the Update Function for Pages

Surprisingly, the changes you need to make to add page navigation to the
update function are pretty simple. The scan remains the same; you just need
to change the actual update loop. Again, the code is provided in-full, with the
changed lines highlighted.

-- Now update the BagBuddyFrame with the listed items (in order)
local max = BagBuddy.page * 24
local min = max - 23

222 Part Il = Programming in World of Warcraft

for idx = min, max do
local button = BagBuddy.items[idx - min + 1]
local entry = sortTbl[idx]

if entry then
-- There is an item in this slot

button.link = entry.link

button.icon:SetTexture (entry.texture)

if entry.count > 1 then
button.count:SetText (entry.count)
button.count:Show ()

else
button.count:Hide ()

end

if entry.quality > 1 then
button.glow:SetVertexColor (GetItemQualityColor (entry.quality))
button.glow: Show ()

else
button.glow:Hide ()

end

button:Show ()

else

button.link = nil

button:Hide ()
end
end

Instead of looping through the first 24 items, you'll use BagBuddy.page to
calculate the maximum item and the minimum item you’ll need to display.
So if you're on page 2, max is going to be 48 and min is going to be 25. Then
you loop starting at min and working up through to max. To make sure you
get the right button for a given item index, you need to subtract the minimum
number from the current index and add one.

This is because, when on page 2, the fifth item being displayed has an index
in sortTbl of 29. To get the right button number, you take 29, subtract 25
(which is the minimum item index being displayed), and add 1, giving you 5.
There are no other changes to this function.

Enabling and Disabling Navigation Buttons

After you've filtered and displayed your items, you should enable and disable
the navigation buttons to ensure they can’t be clicked accidentally. This is
accomplished using the Button:Disable () method, which disables clicking

Chapter 12 = Interacting with Widgets

223

functionality and can change the display of the button. Add the following code
after the update loop:

-- Update page buttons
if min > 1 then
BagBuddy .prev:Enable ()
else
BagBuddy.prev:Disable()
end
if max < #sortTbl then
BagBuddy .next:Enable ()
else
BagBuddy .next:Disable ()
end

First you check to see if the minimum item being displayed is greater than
one, and if so you enable the previous button. If the last item being displayed
is less than the last item in the sorted list, then you enable that button. The
buttons are then only disabled when you're at the start of the list (for previous)
and at the end of the list (for next).

Creating and Updating Status Text

When paging filtered items, it helps to show how many items have been
found so the user can see which page they are on. Add a new font string to
BagBuddy . xm1, after the definition of the title font string:

<FontString name="$parent_Status" parentKey="status"
inherits="GameFontHighlight">
<Anchors>
<Anchor point="CENTER" relativePoint="BOTTOM">
<Offset x="-10" y="150"/>
</Anchor>
</Anchors>
</FontString>

Now you can update the text after changing the button states. Add the
following code right after the navigation button enable/disable block you've
just added in BagBuddy . lua:

-- Update the status text
if #sortTbl > 24 then

local max = math.min(max, #sortTbl)

local msg = string.format ("Showing items %d - %d of %d", min, max, 2
#sortTbl)

BagBuddy.status:SetText (msg)

224 Partll = Programming in World of Warcraft

else
BagBuddy.status:SetText ("Found " .. #sortThl .. " items")
end

The code displays a different message depending on whether there is more
than one page of items to display. If so, you create a temporary variable that
is set to the smaller of either the max item being displayed, or the length of
the sortTbl table. Because your message looks like "showing items 49 - 56
of 56", you need this information to accurately display the last item being
shown.

Final Changes to Support Navigation

You need to make two more changes to support navigation. The first is
initializing BagBuddy to start on page 1. You can do this by adding the
following to the end of the BagBuddy_oOnLoad function:

-- Initialize to show the first page
self.page = 1

Secondly, you need to alter the filter buttons to set the page back to 1 every
time a filter is clicked. This is to ensure that you don’t get stuck on page 2 when
there are less than 24 items to display. Change BagBuddy_Filter_onClick to
the following (changed lines are highlighted):

function BagBuddy Filter_OnClick(self, button)
BagBuddy.qualityFilter = false
for idx = 0, 5 do
local button = BagBuddy.filters[idx]
if button:GetChecked() then
BagBuddy.qualityFilter = true
end
end

BagBuddy .page = 1

BagBuddy_Update ()
end

Adding a Name Filter to BagBuddy

At this point, you have a working inventory addon that allows you to filter
by rarity to better find items. The addon won’t update when your inventory
changes; you learn how to do that in Chapter 13. The next feature you are
going to add is the ability to filter your inventory by name. To accomplish this,
you use an EditBox, a widget that is quite unlike the Button type you've been
using so far this chapter.

Chapter 12 = Interacting with Widgets

225

Creating an EditBox

The most prevalent edit box in the default user interface is the one that appears
when you press Enter: the chat edit box. Using it you can input commands,
type messages to friends, or even run Lua code. The edit box you use for
BagBuddy won’t have all of these features because all it needs to do is accept
text from the user.

You must exercise caution when working with an Edi tBox, whether you are
creating it in Lua or XML. It has an odd property that causes it to automatically
take the keyboard’s focus when it is displayed and doesn’t (by default) have a
way to relinquish this control. As a result, if you don’t pay attention you could
wind up needing to restart your client to regain control of the keyboard.

You can, however, set a property (via an XML attribute or Lua) and a frame
script to provide better behavior. Open BagBuddy.xml and add the following
definition before the </Frames> tag in the BagBuddy definition, but after the
code for the previous and next buttons:

<EditBox name="S$parent_Input" parentKey="input" autoFocus="false">
<Size x="400" y="20"/>
<Anchors>
<Anchor point="BOTTOMLEFT">
<Offset x="32" y="100"/>
</Anchor>
</Anchors>
<Scripts>
<OnEscapePressed>
self:ClearFocus ()
</OnEscapePressed>
<OnTextChanged>
BagBuddy_Update ()
</OnTextChanged>
</Scripts>
<FontString inherits="GameFontHighlight"/>
</EditBox>

The important part of this code is the autoFocus attribute being set to false.
This ensures that the edit box won’t automatically try to steal the keyboard
whenever it is shown. It's not enough, however, to ensure that there is an
easy way to get the keyboard’s focus away from the EditBox. For this you set
an onEscapePressed script. This script handler fires anytime the edit box has
focus and the player presses the escape key. Because most people are used
to pressing escape to clear the focus from an input box, whether it be on the
Web or in World of Warcraft, it’s a good behavior to emulate. The handler
body simply calls the self:clearFocus () method. This method is specific to
the EditBox type, and simply releases control of the keyboard so it can be used
elsewhere.

226 Partll = Programming in World of Warcraft

m If you happen to get stuck inside an EditBox there are a few things you can
do to escape, all involving getting the chat frame edit box open:

m Right-click your target frame or a party member’s frame. Select the
Whisper option, which should open the chat frame’s edit box.

m Click someone’s name in your chat frame and select the Whisper
option, which should open the chat frame’s edit box.

Once you've got a place where you can run code, you can reload your user
interface, attach new scripts, or do something else that will stop the runaway
edit box.

You may have noticed what appears to be a dangling Fontstring ele-
ment at the end of the EditBox definition. Because an EditBox is always
displaying text in some fashion, you need to indicate the font that should be
used to accomplish this. In Lua you can set this using the :setFont () and
:SetFontObject () methods, but in XML you can just include it as shown in
the preceding code.

The last thing you may have noticed is the onTextcChanged script handler.
This handler is passed a single argument, the edit box itself. You can extract
the text from the edit box using the GetText () method. Your handler simply
calls BagBaddy’s update function to handle any further work.

Filtering by Name

Now you have an edit box that the users can type in, but you need to actually
do something with the text they type. For this, you'll need to make some minor
changes to the BagBuddy_Update function. Right before the scan loop begins in
that function, add the following;:

local nameFilter = BagBuddy.input:GetText () :lower ()

This code just calls the GetText () method on the input box to retrieve the
text and then converts it to lowercase. You'll do the same with the item name
when you actually compare it to the user input, so it works properly even if
the user types capital letters.

Now you add a check during the search loop that actually performs the
check to see if the item’s name matches the user input. Add the following code
after the block that checks the item against the quality filters:

if #nameFilter > 0 then

local lowerName = GetItemInfo (link) :lower ()

shown = shown and string.find(lowerName, nameFilter, 1, true)
end

Chapter 12 = Interacting with Widgets

227

This is all you need to add to make filtering work properly. First you check
to see if the text in the edit box is non-empty (that is, if the length of the string
is more than 0). If so, you take the name of the item and make it lowercase and
compare it to the name filter. As a result, only those items that match the name
filter (if it is set) will make it into the item list. Figure 12-6 shows BagBuddy
filtering to show only items whose names contain the word “potion.”

Potion of Wild Magic
Requires Level 70
; e

Found 6 items

potion]

[}

Figure 12-6: BagBuddy filtering by item name

Exploring Widget Types

In this chapter you have worked with the normal Frame type, in addition
to Button and EditBox. Quite a number of different widget types exist, all
distinguished by the type of script handlers and methods that are available.
This section details actual examples of the different types of frames to show
how they are typically used. Full details about each of these types is available
in Chapter 29, “Widget Reference.”

When exploring these widget types, it’s often useful to look at an existing
example to see how they are used, and what other attributes and elements
might exist in the XML definition.

Button

Buttons are used to allow user input by clicking a meaningful icon or visual
button with text. Buttons can react to clicks and, in some cases, even cast spells
and target units. Examples of buttons include the configuration buttons on the

228 Part Il = Programming in World of Warcraft

main menu, and the buttons on the player’s action bars (shown in Figure 12-7).
Buttons often show different textures when the mouse is moved over them,
or when they are pressed or disabled. Most buttons display text or icons to
convey more meaning.

Logout

Exit Game

Return to Game

Figure 12-7: Main menu buttons (left) and action bar buttons (right)

CheckButton

A CheckButton is a special kind of button that have only two states: checked
and unchecked. They are used to convey toggleable options, and normally
come with text labels to explain which options the checkbox alters. Check
buttons are used primarily in custom configuration interfaces and the user
interface options screen, as shown in Figure 12-8.

4" Instant Quest Text

Automatic Quest Tracking

Automatic Quest Progress Updates

Figure 12-8: Checkboxes in the interface options screen

ColorSelect

The colorselect frame type (see Figure 12-9) is used by the chat interface
to change output color for channels, along with the background of the chat
windows. It pops up as a dialog box that enables you to select a color (possibly
with alpha transparency) to use for a specific option.

Color Picker

Figure 12-9: ColorSelect example frame as a dialog box

Chapter 12 = Interacting with Widgets 229

This widget type doesn’t define any new scripts, but has a number of
methods that allow you to set and get the value of the color wheel and other
color selection elements.

EditBox

The EditBox type of frame is used to allow for text input, along with basic
history and editing capabilities. The simplest example of an edit box is attached
to the chat frame, enabling you to run commands and communicate with other
players, as shown in Figure 12-10.

Say: Hello World!]

Figure 12-10: Chat frame's EditBox

GameTooltip

A GameTooltip is a frame that can display two columns of data that further
describe the Ul element you currently have your mouse over, including
buttons, items, and even players in the 3-D world. Figure 12-11 shows an item
tooltip.

[Cindercloth Robe of the Monkey X
| Binds when equipped
| Chest Cloth
59 Armor
[+11 Agility
| +11 Stami
Requires

Figure 12-11: Item tooltip

MessageFrame

MessageFrames are used by the game to send a stream of errors, warnings, or
messages to the user. This is most often seen with the UTErrorsFrame, which
displays any issues with spellcasting, as shown in Figure 12-12.

Figure 12-12: UlErrorsFrame showing spellcasting errors

Minimap
The Minimap frame type is special in that there can only ever be one of
them. The minimap in the default user interface is used for navigation (see

230

Part Il = Programming in World of Warcraft

Figure 12-13) and is normally the only one that exists. The portion of the
minimap that is rendered using this widget type is only the map-specific part
of the image, whereas the rest of the elements are attached graphics, buttons,
and fontstrings.

Figure 12-13: Minimap used for navigation

Model

Models are used to display three-dimensional models in-game, potentially
with the capability to pan and zoom in on the model. Models are used in the
default UI within the character window, dressing room at the auction house,
and the tabard planner in the major cities. Figure 12-14 shows the tabard
vendor window, using models.

Aldwin Laughlin

You must be ild master to
purchase a tabard, but feel free to
browse.

Cost: 10@ |

leon
leon Color

Border

Figure 12-14: Tabard vendor showing player model

Chapter 12 = Interacting with Widgets

231

ScrollingMessageFrame

Being a Massively Multi-player Online Role-Playing Game, WoW has a fair
amount of communication between its players, and these are typically dis-
played in scroll message frames, namely the ChatFrame, shown in Figure 12-15.

General

Figure 12-15: ChatFrame showing chat messages

ScrollFrame

When something is too large to be displayed in its native window, a scroll frame
can be included to allow the user to scroll either vertically or horizontally. The
ScrollFrame widget type is frequently used throughout the user interface,
particularly within the friends window, the skills window, the auction house,
and the quest log (see Figure 12-16).

Shroudjaf
Tempration

e —

Figure 12-16: Scroll frame used in the quest log

SimpleHTML

For presenting data, scrolling message frames aren’t always suitable, such as
when reading a book or item in-game. In these situations, a special type of
frame is used that allows for basic HTML-like markup. When combined with

232 Part Il = Programming in World of Warcraft

multiple pages or a scroll frame, data becomes easier to present. Figure 12-17
shows a plaque in Stormwind, which uses a SimpleHTML frame.

Figure 12-17: SimpleHTML frame displaying a plaque

Slider

Sliders are used when there is a range of numbers that can possibly be
selected. They're used primarily in the default user interface options screen
(see Figure 12-18). Sliders enable the developer to set a minimum value, a
maximum value, and the default step that the slider will allow, so you can
control precision.

Figure 12-18: Sliders in the default interface options

StatusBar

StatusBars are used throughout the default user interface to show progress or
percentages, such as in the skills window (see Figure 12-19). To use a status
bar, you must supply a texture to be shown, as well as minimum/maximum

Chapter 12 = Interacting with Widgets

233

values for the bar. Then you can simply set the value of the bar to show the
correct value.

166/400
Unarmed 248/400

Figure 12-19: StatusBars displayed in the skills window

Summary

This chapter introduced you to two different types of interactive widgets that
can be used in custom addons. You created multiple buttons that showed
tooltips when the mouse moved over them, and buttons that could be clicked
to accomplish some task. In addition, you utilized an edit box to accept input
from the user.

The Code
BagBuddy.lua

function BagBuddy_ OnLoad(self)
SetPortraitToTexture (self.portrait, 3
"Interface\\Icons\\INV_Misc_EngGizmos_30")

-- Create the item slots

self.items = {}
for idx = 1, 24 do
local item = CreateFrame("Button", "BagBuddy Item" .. idx,

self, "BagBuddyItemTemplate")
self.items[idx] = item
if idx == 1 then
item:SetPoint ("TOPLEFT", 40, -73)

elseif idx == 7 or idx == 13 or idx == 19 then
item:SetPoint ("TOPLEFT", self.items[idx-6], "BOTTOMLEFT", 3
0, -7)
else
item:SetPoint ("TOPLEFT", self.items[idx-1], "TOPRIGHT", 2
12, 0)
end
end

-- Create the filter buttons
self.filters = {}

234 Partll = Programming in World of Warcraft

for i1dx=0,5 do
local button = CreateFrame ("CheckButton", 3
"BagBuddy_Filter" .. idx, self, "BagBuddyFilterTemplate")
SetItemButtonTexture (button, 3
"Interface\\ICONS\\INV_Misc_Gem_Pearl_03")
self.filters[idx] = button

if idx == 0 then
button:SetPoint ("BOTTOMLEFT", 40, 200)
else

button:SetPoint ("TOPLEFT", self.filters[idx-1], 2
"TOPRIGHT", 12, 0)
end

button.icon:SetVertexColor (GetItemQualityColor (idx))
button:SetChecked(false)
button.quality = idx
button.glow:Hide ()
end

self.filters[-1] = self.filters[0]

-- Initialize to show the first page
self.page = 1
end

local function itemNameSort(a, b)
return a.name < b.name

end

function BagBuddy_ Update ()
local items = {}

local nameFilter = BagBuddy.input:GetText () :lower ()

-- Scan through the bag slots, looking for items
for bag = 0, NUM_BAG_SLOTS do
for slot = 0, GetContainerNumSlots (bag) do
local texture, count, locked, quality, readable,
lootable, link = GetContainerItemInfo (bag, slot)

if texture then
local shown = true

if BagBuddy.qualityFilter then
shown = shown and BagBuddy.filters[quality]:GetChecked()
end

if #nameFilter > 0 then
local lowerName = GetItemInfo(link) :lower ()
shown = shown and string.find(lowerName, nameFilter, «2

Chapter 12 = Interacting with Widgets

235

1, true)
end

if shown then
-- If an item is found, grab the item number and
store other data
local itemNum = tonumber (link:match("|Hitem: (%d+):"))
if not items[itemNum] then
items[itemNum] = {
texture = texture,
count = count,
quality = quality,
name = GetItemInfo (link),
link = link,
}
else
-- The item already exists in our table, just 3
update the count
items[itemNum] .count = items[itemNum].count + count
end
end
end
end
end

local sortTbl = {}

for link, entry in pairs(items) do
table.insert (sortTbl, entry)

end

table.sort (sortTbl, itemNameSort)

-- Now update the BagBuddyFrame with the listed items (in order)
local max = BagBuddy.page * 24
local min = max - 23

for idx = min, max do
local button = BagBuddy.items[idx - min + 1]
local entry = sortTbl[idx]

if entry then
-- There is an item in this slot

button.link = entry.link
button.icon:SetTexture (entry.texture)
if entry.count > 1 then
button.count:SetText (entry.count)
button.count:Show ()
else
button.count:Hide ()

236 Partll = Programming in World of Warcraft

end

if entry.quality > 1 then
button.glow:SetVertexColor (2
GetItemQualityColor (entry.quality))
button.glow: Show ()
else
button.glow:Hide ()
end
button:Show ()
else
button.link = nil
button:Hide ()
end
end

-- Update page buttons
if min > 1 then
BagBuddy .prev:Enable ()
else
BagBuddy.prev:Disable ()
end
if max < #sortTbl then
BagBuddy .next :Enable ()
else
BagBuddy.next:Disable ()
end

-- Update the status text
if #sortTbl > 24 then
local max = math.min (max, #sortTbl)
local msg = string.format ("Showing items %d - %d of %d",
min, max, #sortTbl)
BagBuddy.status:SetText (msg)
else
BagBuddy.status:SetText ("Found " .. #sortThl .. " items")
end

end

function BagBuddy_ Button_OnEnter (self, motion)
if self.link then
GameTooltip:SetOwner (self, "ANCHOR_TOPRIGHT")
GameTooltip:SetHyperlink(self.link)
GameTooltip: Show ()
end
end

function BagBuddy_ Button_OnLeave (self, motion)
GameTooltip:Hide ()

Chapter 12 = Interacting with Widgets 237

end

function BagBuddy_Filter_OnEnter (self, motion)
GameTooltip:SetOwner (self, "ANCHOR_TOPRIGHT")
GameTooltip:SetText (_G["ITEM_QUALITY" .. &3

self.quality .. "_DESC"])
GameTooltip:Show ()

end

function BagBuddy_ Filter_OnLeave (self, motion)
GameTooltip:Hide()
end

function BagBuddy_ Filter_OnClick(self, button)
BagBuddy.qualityFilter = false
for idx = 0, 5 do
local button = BagBuddy.filters[idx]
if button:GetChecked() then
BagBuddy.qualityFilter = true
end
end
BagBuddy .page = 1
BagBuddy_Update ()
end

function BagBuddy_ NextPage (self)
BagBuddy.page = BagBuddy.page + 1
BagBuddy_Update (BagBuddy)

end

function BagBuddy_ PrevPage (self)
BagBuddy .page = BagBuddy.page - 1
BagBuddy_Update (BagBuddy)

end

BagBuddy.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI .xsd">

<Button name="BagBuddyItemTemplate" virtual="true">
<Size>
<AbsDimension x="37" y="37"/>
</Size>
<Layers>
<Layer level="BORDER">
<Texture name="SparentIconTexture" parentKey="icon"/>
<FontString name="$parentCount" parentKey="count"«?

238 Part Il = Programming in World of Warcraft

inherits="NumberFontNormal" justifyH="RIGHT" hidden="true">
<Anchors>
<Anchor point="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-5" y="2"/>
</0Offset>
</Anchor>
</Anchors>
</FontString>
</Layer>
<Layer level="OVERLAY">
<Texture name="$parentGlow" parentKey="glow" 2
alphaMode="ADD" file="Interface\Buttons\UI-ActionButton-Border">
<Size x="70" y="70"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Color r="1.0" g="1.0" b="1.0" a="0.6"/>
</Texture>
</Layer>
</Layers>
<Scripts>
<OnEnter function="BagBuddy_ Button_OnEnter"/>
<OnLeave function="BagBuddy_Button_OnLeave"/>
</Scripts>
<NormalTexture name="S$parentNormalTexture" o
file="Interface\Buttons\UI-Quickslot2">
<Size>
<AbsDimension x="64" y="64"/>
</Size>
<Anchors>
<Anchor point="CENTER">
<Offset>
<AbsDimension x="0" y="-1"/>
</Offset>
</Anchor>
</Anchors>
</NormalTexture>
<PushedTexture file="Interface\Buttons\UI-Quickslot-Depress"/>
<HighlightTexture
file="Interface\Buttons\ButtonHilight-Square" alphaMode="ADD"/>
</Button>

<CheckButton name="BagBuddyFilterTemplate" 3
inherits="BagBuddyItemTemplate" virtual="true">
<Scripts>
<OnEnter function="BagBuddy_ Filter_OnEnter"/>
<OnLeave function="BagBuddy_ Filter_OnLeave"/>
<OnClick function="BagBuddy_ Filter_OnClick"/>
</Scripts>

Chapter 12 = Interacting with Widgets 239

<CheckedTexture file="Interface\Buttons\CheckButtonHilight" «3
alphaMode="ADD" />
</CheckButton>

<Frame name="BagBuddy" parent="UIParent">
<Size x="384" y="512"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER" 2
relativeTo="UIParent"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="Sparent_Portrait" parentKey="portrait" Lo
file="Interface\Icons\INV_Misc_EngGizmos_30">
<Size x="60" y="60"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="7" y="-6"/>
</Anchor>
</Anchors>
</Texture>
</Layer>
<Layer level="OVERLAY">
<FontString name="$parent_Title" parentKey="title" 3
inherits="GameFontNormal" text="BagBuggy">
<Anchors>
<Anchor point="TOP">
<Offset x="0" y="-18"/>
</Anchor>
</Anchors>
</FontString>
<FontString name="$parent_Status" parentKey="status"
inherits="GameFontHighlight">
<Anchors>
<Anchor point="CENTER" relativePoint="BOTTOM">
<Offset x="-10" y="150"/>
</Anchor>
</Anchors>
</FontString>

</Layer>
<Layer level="BORDER">
<Texture file="Interface\BankFrame\UI-BankFrame-TopLeft">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-TopRight">
<Anchors>
<Anchor point="TOPRIGHT"/>

240 Partll = Programming in World of Warcraft

</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotLeft">
<Anchors>
<Anchor point="BOTTOMLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotRight">
<Anchors>
<Anchor point="BOTTOMRIGHT"/>
</Anchors>
</Texture>
</Layer>
</Layers>
<Frames>
<Button name="S$parent_Close" parentKey="close"
inherits="UIPanelCloseButton">
<Anchors>
<Anchor point="TOPRIGHT">
<Offset x="-30" y="-8"/>
</Anchor>
</Anchors>
</Button>
<Button name="BagBuddy_ PrevButton" parentKey="prev">
<Size x="32" y="32"/>
<Anchors>
<Anchor point="CENTER" relativeTo="BagBuddy" 2
relativePoint="BOTTOMLEFT">
<Offset>
<AbsDimension x="50" y="150"/>
</Offset>
</Anchor>
</Anchors>
<Scripts>
<OnClick function="BagBuddy_PrevPage"/>
</Scripts>
<NormalTexture 3
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Up" />
<PushedTexture 3
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Down" />
<DisabledTexture
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Disabled"/>
<HighlightTexture
file="Interface\Buttons\UI-Common-MouseHilight" alphaMode="ADD"/>
</Button>

<Button name="BagBuddy NextButton" parentKey="next">
<Size x="32" y="32"/>
<Anchors>
<Anchor point="CENTER" relativeTo="BagBuddy" 2

Chapter 12 = Interacting with Widgets

24

relativePoint="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-70" y="150"/>
</0Offset>
</Anchor>
</Anchors>
<Scripts>
<OnClick function="BagBuddy_NextPage"/>
</Scripts>
<NormalTexture 3
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Up" />
<PushedTexture 3
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Down" />
<DisabledTexture
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Disabled"/>
<HighlightTexture
file="Interface\Buttons\UI-Common-MouseHilight" alphaMode="ADD"/>
</Button>
<EditBox name="$parent_Input" parentKey="input"
autoFocus="false">
<Size x="400" y="20"/>
<Anchors>
<Anchor point="BOTTOMLEFT">
<Offset x="32" y="100"/>
</Anchor>
</Anchors>
<Scripts>
<OnEscapePressed>
self:ClearFocus ()
</OnEscapePressed>
<OnTextChanged>
BagBuddy_Update ()
</OnTextChanged>
</Scripts>
<FontString inherits="GameFontHighlight"/>
</EditBox>
</Frames>
<Scripts>
<OnLoad function="BagBuddy_ OnLoad"/>
</Scripts>
</Frame>
</Ui>

CHAPTER

13

Responding to Game Events

By this point you should be fairly comfortable making new frames, textures,
and font strings. You've defined several templates for use in your own
addons, explored Blizzard’s own FrameXML templates, and learned how
to make your widgets more interactive by responding to widget scripts
and user input. This chapter introduces the next aspect of user interface
programming: responding to changes in the game client using the event
system and event-based programming.

Understanding Events

Events are a way for the game client to notify addons of a change in the state
of the game. For example, when the player’s health changes, the user interface
needs to be informed so it can update the status bar. If it weren’t for events, the
game client would need to continuously update the health bar, which would
be very wasteful.

Events range from the extremely detailed to simple notifications that some-
thing has changed. A good example of the former is the UNIT_coMBAT event.
This event is used for the combat notifications that appear on the player frame.
It fires whenever a unit takes damage, is healed, or performs some other
combat action (such as dodging, missing, or parrying). When the event is
finally triggered, it provides the following information:

m The unit that was affected

m The action type that occurred (wound, dodge, heal, and so on)

243

244 Partll = Programming in World of Warcraft

m A modifier to the action, such as crushing or critical
m The amount of damage or healing that was received

= A number indicating the type of damage that was dealt

Registering for Events

To do anything meaningful with game events, you must first register for them.
Like many other things in the user interface, you do this through frames. Every
frame object has a RegisterEvent () method for this purpose. It expects a single
string argument, the name of the event. Run the following code in-game to
create a new frame, and register for the unIT_coMBAT event:

MyEventFrame = CreateFrame("Frame", "MyEventFrame", UIParent)
MyEventFrame:RegisterEvent ("UNIT_COMBAT")

You cannot register for more than one event at a time, but you can simply
call RegisterEvent () multiple times, or write a helper function that can do
multiple registrations for you.

Once a frame has been registered for an event, it will continue to receive
event information until the event has been unregistered. The Unregister
Event () event is provided for this purpose, taking the same argument as

RegisterEvent ().

Responding to Events with OnEvent

To actually respond to events, you must set an onEvent widget script for the
frame that has registered for events. Each widget script can have at most one
handler, so you will likely register for multiple events on the same frame, and
your handler must be capable of differentiating between different events. This
is done by examining the arguments that are passed to your handler:

m self—The frame that registered for the event

m ovent —The event that is being triggered

m . —Alist of additional arguments to the event

Because the handler is given the name of the event as well as the frame itself,
you can use basic conditional statements to differentiate between different

events. For example, if you register for both unIT_#EALTH and UNIT_MANA and
need to distinguish between them, you could do the following:

if event == "UNIT_HEALTH" then
-- do something with the unit health
elseif event == "UNIT_MANA" then

Chapter 13 = Responding to Game Events

245

-- do something different with mana
end

Add an onEvent script to the MyEventFrame you created previously. Run the
following code in-game:

function MyEventFrame_OnEvent (self, event, ...)
print ("Event handler", event, ...)
end

MyEventFrame:SetScript ("OnEvent", MyEventFrame_OnEvent)

Alternatively, you could just create the new function inline:

MyEventFrame:SetScript ("OnEvent", function(self, event, ...)
print ("Event handler", event, ...)
end)

An even shorter form (that doesn’t allow you to add a custom message to
the start) simply sets the print function as the script handler:

MyEventFrame:SetScript ("OnEvent", print)

The result of any of these will be a message sent to the chat frame each time
the event occurs. You can test this by fighting with something in-game. You
should receive messages for both you and your enemy. Figure 13-1 shows
some messages from combat.

Figure 13-1: Event messages for UNIT_COMBAT

In this case you can see that the event has five arguments that are passed to
the handler. You'll work with the unIT_comBaT event more in Chapter 14 and
learn what each of these arguments are.

This simple method of setting up event handlers to print debug information
can be useful when working on an addon because it lets you see easily which
arguments were sent with a given event. Alternatively, you could use the new
/eventtrace command that was added to WoW in 3.2. It is discussed at the
end of this chapter.

246

Part Il = Programming in World of Warcraft

Query Events

There are certain API calls that require communication with the server, instead
of getting their information locally from the game client. For example, when
you want to update your guild roster, you call the Guildroster () function. You
might expect the information to be available immediately, but the information
is all stored on the server so you must wait for the GUILD_ROSTER_UPDATE event,
which signifies that the data has been received by the client and is available.

When working with an API system, always read the related documentation
so you will understand how the information becomes available.

Tracking Changes to Inventory for BagBuddy

The event-based system used in World of Warcraft is conceptually simple,
but in practice it can be a bit tricky to work this. In this section, you'll use
the BAG_UPDATE event to add some functionality to BagBuddy. To sort the
inventory with the most recently looted items first, you must monitor changes
to the player’s inventory. The BAG_UPDATE event fires whenever something
changes in the player’s bags, so it gives you just what you need.

Examining the BAG_UPDATE Event

BAG_UPDATE is a very interesting event because it can fire for a number of
reasons, and doesn’t really provide much information. In fact, there is only
one argument to the event: the numeric index of the bag that was updated.
The event fires whenever the state of the player’s containers changes, such as
when the player moves items from one bag to another, or loots a new item.

If you write a simple addon to monitor the event, you might see that it
can fire multiple times back to back. For example, if you loot two items and
one of them goes into an existing stack, and the other goes into a new slot
elsewhere in your inventory, the event then fires for each of the bags that
changed. In addition, the BAG_UPDATE event’s first argument is sometimes a
negative number due to the internal implementation of the player’s inventory
and equipment. As a result, you'll need to ignore any negative values, and run
your handler only when a legitimate bag has been updated.

Tracking New Inventory Items

For the purposes of BagBuddy, you just want to watch to see new items enter
the inventory so you can somehow tag them with the time they were looted.
Then when you go through the display loop in BagBuddy_update, you can sort
according to that value.

Chapter 13 = Responding to Game Events 247

You'll need a place to store the item counts for each bag, so add the following
to the end of BagBuddy OnlLoad in BagBuddy . lua:

self.bagCounts = {}

Now add the following function definition somewhere in BagBuddy . 1ua:

function BagBuddy_ ScanBag(bag, initial)
if not BagBuddy.bagCounts[bag] then
BagBuddy.bagCounts [bag] = {}
end

local itemCounts = {}
for slot = 0, GetContainerNumSlots (bag) do
local texture, count, locked, quality, readable, lootable, link =
GetContainerItemInfo (bag, slot)

if texture then
local itemId = tonumber (link:match("|Hitem: (%d+):"))
if not itemCounts[itemId] then

itemCounts|[itemId] = count
else
itemCounts[itemId] = itemCounts[itemId] + count
end
end
end

if initial then
for itemId, count in pairs(itemCounts) do
BagBuddy_TItemTimes[itemId] = BagBuddy_ItemTimes[itemId] or time()
end
else
for itemId, count in pairs(itemCounts) do
local oldCount = BagBuddy.bagCounts|[bag] [itemId] or 0
if count > oldCount then

BagBuddy_TItemTimes[itemId] = time()
end
end
end
BagBuddy.bagCounts[bag] = itemCounts

end

This function takes a numerical bag index, and a flag called initial. The
flag will indicate whether the function is being called on the first scan of a
session because there would be no prior count with which to compare.

Next, the function loops over all of the slots in the given bag and checks to
see if there is an item in the slot. If so, it parses the item ID from the hyperlink
and updates the local i temCounts table with the new count.

248 Partll = Programming in World of Warcraft

Item times are stored in the global BagBuddy_ItemTimes tables, which we
will create in a later section. When the initial flag is set, the item times are
set using the prior value, if possible, or the current time. At any other time, the
item counts are compared to the previous item counts. If the count has gone
up, then the item time is set to the current time. Finally, the new itemcCounts
table is stored in BagBuddy . bagCounts so it can be used on the next inventory
change.

Note that you're using the item number here to store the loot time, otherwise
items with different unique IDs would show up as distinct items. Ideally you
would use the item string (excluding the unique ID portion) so you can
differentiate between items that have different enchants or sockets. This
version just lumps those types of items into a single stack for simplicity.

Writing a New Sorting Function

The previous version of this addon sorted items by name, but now you want
to include item loot time as part of the sorting. Insert a new sorting function
by adding the following definition before BagBuddy_update ():

local function itemTimeNameSort(a, b)
-- If the two items were looted at the same time
local aTime = BagBuddy.itemTimes[a.num]
local bTime = BagBuddy.itemTimes [b.num]
if aTime == bTime then
return a.name < b.name
else
return aTime >= bTime
end
end

The function checks to see if the loot times are the same, in which case it
sorts the items by name. If the times are different, then they are sorted in
descending order (by using >= instead of <) in the comparison. To use this new
sorting function, you need to make some small changes to the update.

Altering BagBuddy Update

The changes to BagBuddy_Update are very simple; you just need to add the item
number to the entry table and call the new sort function. In BagBuddy_update,
the new item table code should be changed to the following (changed line is
highlighted):

if not items[itemNum] then
items[itemNum] = {
texture = texture,

Chapter 13 = Responding to Game Events

249

count = count,
quality = quality,
name = GetItemInfo(link),
link = 1link,
num = itemNum,
}

else

Finally, change the call to table.sort from

table.sort (sortTbl, itemNameSort)

to

table.sort (sortTbl, itemTimeNameSort)

Adding an OnEvent Handler

To actually catch the BaG_UPDATE events, you need to add an event handler.
Open BagBuddy.xml and add the following to the <scripts> element in the
definition of the BagBuddy frame:

<OnEvent function="BagBuddy_ OnEvent"/>

Now open BagBuddy.lua and add this function definition somewhere
toward the end of the file:

function BagBuddy_OnEvent (self, event, ...)
if event == "ADDON_LOADED" and ... == "BagBuddy" then
if not BagBuddy_TItemTimes then
BagBuddy_ItemTimes = {}
end
for bag = 0, NUM_BAG_SLOTS do
-- Use the optional flag to skip updating times
BagBuddy_ScanBag (bag, true)
end
self:UnregisterEvent ("ADDON_LOADED")
self:RegisterEvent ("BAG_UPDATE")
elseif event == "BAG_UPDATE" then
local bag =
if bag >= 0 then
BagBuddy_ScanBag (bag)
if BagBuddy:IsVisible () then
BagBuddy_Update ()
end
end
end
end

250

Part Il = Programming in World of Warcraft

This handler is set to watch for two events: ADDON_LOADED and BAG_UPDATE.
ADDON_LOADED is used as an initialization event because it indicates that an
addon is fully loaded. However, addons can sometimes load out of order
due to dependencies and other API calls, so you have to check the first
argument to the function to see which addon has finished loading.

When BagBuddy’s ApDON_LOADED event is encountered, the BagBuddy_
ItemTimes table is created and the initial scan is run for each of the player’s
bags. After that, the addon no longer cares about the ADDON_LOADED event, so
it un-registers it. Finally, the handler registers for the BAG_UPDATE event, so it
can detect changes to the player’s inventory.

The BaG_uPDATE portion of the handler is very simple; it just checks to see
if the bag index is greater than or equal to o (the player’s backpack) and then
runs the bag scan. If the frame is visible, it calls BagBuddy_update () to update
the frame. This ensures that the frame is always showing the latest information.

Finally, you need to register for the AbpoN_roADED event, so add the following
to the end of BagBuddy_oOnLoad():

self:RegisterEvent ("ADDON_LOADED")

Now when you log into the game and loot some items, you should then see
them sorted with the most recently looted items shown first. In addition you
can still filter the items by rarity or name and have them sorted by loot time.

Cleaning Up

Right now the frame is visible when the game is loaded, and can’t easily be
re-opened once it’s been closed. In addition, it would be nice if the frame
would operate like the rest of the panels in the user interface. Luckily there’s
an easy system that allows you to do that.

At the top of BagBuddy_onLoad () add the following code:

UIPanelWindows ["BagBuddy"] = {
area = "left",
pushable = 1,
whileDead = 1,

}

UIPanelwindows is a special global table that contains definitions of the
various panels that are controlled by the user interface. The key is the name
of the frame and the value is a table of options. In this case, you indicate
that the window should appear on the left side of the screen, can be pushed
toward the center by another panel, and should be visible while the player
is dead. Additionally, by adding your frame to the uTPanelwindows table, it

Chapter 13 = Responding to Game Events

251

automatically gains the capability to be closed by pressing the Escape key
rather than having to click the close button.

Unfortunately, by the time the BagBuddy_onLoad() function is run, the
frame will already have been shown, so it won’t be treated as one of the spe-
cial UI panels. Additionally, it doesn’t seem to make much sense to have
the frame shown every time the player logs in. Open BagBuddy.xml and
change the opening tag for BagBuddy to the following (the addition has been
highlighted):

<Frame name="BagBuddy" parent="UIParent" hidden="true">

Now when you’d like to see the frame, you can run the following command
and BagBuddy will behave the same as the other UI panels:

/run ShowUIPanel (BagBuddy)

Adding a Slash Command

You can make it easier to open BagBuddy by adding the following slash
command definition to the end of BagBuddy . lua:

SLASH_BAGBUDDY1 = "/bb"
SLASH_BAGBUDDY2 = "/bagbuddy"
SlashCmdList ["BAGBUDDY"] = function (msg, editbox)

BagBuddy.input:SetText (msg)
ShowUIPanel (BagBuddy)
end

This provides two new slash commands (/bb and /bagbuddy) that both work
in the same way. Any text typed after the slash command will be put into the
edit box and used as a name filter, then the panel is shown. Now instead of
running a script command, you can just type /bb to open the frame.

Slash commands are further discussed in Chapter 17.

Storing Data with SavedVariables

With this version of BagBuddy, the item times are reset every time the user
interface is reloaded. If you reload your user interface in the middle of a
questing session and then open BagBuddy, you will find that the items are
again sorted by name rather than by loot time, making that feature a bit
less useful. To fix this, you need some way to carry data from session to
session.

252

Part Il = Programming in World of Warcraft

World of Warcraft offers a system that allows addons to register certain
global variables to be saved between game sessions. These are called saved
variables, named after the table of contents directive that is used to specify
them. There are two different types of saved variables:

m SavedVariables— Account-wide, accessible to any character on a given
account.

m SavedVariablesPerCharacter—Separate for each individual character,
so not even two characters on the same server can share them.

Although you could obviously take a normal saved variable and partition
it so multiple users can use it without interfering with each other’s data,
each character truly has access to all of the data. On the other hand, there
is no way to simulate a normal saved variable with a per-character saved
variable because all saving and loading is handled directly by the game
client.

Registering a New Saved Variable

Using saved variables is quite easy; you just need to add a directive to your
addon’s table of contents file, and restart the game client. When the game
client is loaded, it loads any stored data and makes it available to your addon
(more on this later). When the game client is closed, a character logs out, or
the user interface is reloaded, the data is saved out to disk.

Start by adding a saved variable to BagBuddy . toc. Open the file and add the
following after the ## Notes directive:

SavedvVariablesPerCharacter: BagBuddy ItemTimes

There’s really no reason that users would need access to each other’s times,
so you can declare your saved variable to be per-character only. That way you
don’t have to be concerned about storing your data in any specific place;
you can just leave it in the table itself.

For this change to take effect, you will need to quit your client and re-open
it. Changes that are made to the metadata of an addon’s table of contents file
are refreshed only when the client is opened, not on user interface reload.

Saved Variables and ADDON_LOADED

When an addon is being loaded (that is, when the code is actually being parsed
and run) any saved variables are not yet available. Once the addon has finished
initializing, the client loads the saved variables and fires the ADDON_LOADED

Chapter 13 = Responding to Game Events

253

event. Although the reasons for this weren’t discussed in the previous section,
that is why initialization is delayed until ADDON_LOADED.

Using Items from BagBuddy

Finding items in your inventory is great, but it would be nicer to be able to
click to use them once you've found them. This can be accomplished using
secure templates, which are discussed in Chapter 15. For now, you can make the
following changes to your code to enable that functionality.

In BagBuddy_OnLoad (), change the loop that creates item slots to register for
right-clicks (change is highlighted):

-- Create the item slots

self.items = {}
for idx = 1, 24 do
local item = CreateFrame("Button", "BagBuddy Item" .. idx, self,

"BagBuddyItemTemplate")
item:RegisterForClicks ("RightButtonUp")

self.items[idx] = item
if idx == 1 then

item:SetPoint ("TOPLEFT", 40, -73)
elseif idx == 7 or idx == 13 or idx == 19 then

item:SetPoint ("TOPLEFT", self.items[idx-6], "BOTTOMLEFT", 0, -7)
else

item:SetPoint ("TOPLEFT", self.items[idx-1], "TOPRIGHT", 12, 0)
end

end

In BagBuddy_Update (), add the following highlighted line in the conditional
that indicates there is an item in the slot. This sets the button up to use the
named item when it is right-clicked.

if entry then
-- There is an item in this slot

button:SetAttribute("item2", entry.name)

button.link = entry.link
button.icon:SetTexture (entry.texture)

The last two changes must be made in BagBuddy.xml. First, change the
opening tag for BagBuddyItemTemplate from

<Button name="BagBuddyItemTemplate" virtual="true">

254

Part Il = Programming in World of Warcraft

to

<Button name="BagBuddyItemTemplate" 3
inherits="SecureActionButtonTemplate" virtual="true">

Finally, add an attribute definition between the </Layers> tag and the
<Scripts>tagforBagBuddyItemTemplate

<Attributes>

<Attribute name="type2" type="string" value="item"/>
</Attributes>

Now when you open BagBuddy, you should be able to use items (such as
food, potions, bandages, and quest items) by right-clicking on them.

Finding the Right Event Using /eventtrace

One of the most challenging aspects of writing an addon for World of Warcraft
is finding the right events to ensure your addon functions properly. Some
applications are very simple, such as using UNIT_HEALTH to monitor the health
of an in-game unit. Others, such as those dealing with the player’s containers
and inventory, can be a bit tricky to deal with at times.

The Blizzard DebugTools addon included with the default user interface
provides the slash command /eventtrace that makes tracking down event
information a bit easier. The command has a few different forms:

m /eventtrace start—Start capturing events, whether or not the window
is shown.

m /eventtrace stop—Stop capturing events.

m /eventtrace—Show the window if it is currently hidden, and start
capturing events if the window hasn’t been shown before. Otherwise,
hide the window.

m /eventtrace <num>—If the addon is not currently capturing events,
capture exactly <num> events and then stop capturing events.

The results are displayed for you in an easy-to-navigate window, shown in
Figure 13-2.

You can scroll through the resulting events to view their arguments and
the time at which they were called. In addition, the event trace will show you
how much time elapsed between two events (if any) and how many times the
screen was updated.

When you need to find out what events fires under a certain situation (such
as when you cast a spell on an enemy), you can start an event trace and
replicate the situation. Then you can stop the event trace and explore the
events that fired to get the information you need.

Chapter 13 = Responding to Game Events 255

T_UMFILTERED

4T
NT_LIMFILTERED:

COMBAT_LOG_EVENT_LINFILTERED
Time 1217.497
125684 131

"SPELL_PERKIDIC "

1297
D002 3AS05BE/

Urpa
ELL_UMDATE
UNIT_ ALURA

Figure 13-2: /eventtrace window showing event information

Summary

This chapter explored how the game client notifies addons of changes to the
state of the game. You added event handling to BagBuddy to track changes to
the player’s inventory. The last few chapters have introduced you to all of the
vital parts of creating an addon. The next chapter pulls everything together to
create another fully-functional addon called CombatTracker.

The Code
BagBuddy.lua

function BagBuddy OnLoad (self)
UIPanelWindows ["BagBuddy"] = {
area = "left",
pushable = 1,
whileDead = 1,

SetPortraitToTexture (self.portrait, 2
"Interface\\Icons\\INV_Misc_EngGizmos_30")

-- Create the item slots

256 Partll = Programming in World of Warcraft

self.items = {}
for idx = 1, 24 do
local item = CreateFrame("Button", "BagBuddy Item" .. idx, 2

self, "BagBuddyItemTemplate")
item:RegisterForClicks ("RightButtonUp")

self.items[idx] = item
if idx == 1 then
item:SetPoint ("TOPLEFT", 40, -73)
elseif idx == 7 or idx == 13 or idx == 19 then
item:SetPoint ("TOPLEFT", self.items[idx-6], "BOTTOMLEFT", O,
else
item:SetPoint ("TOPLEFT", self.items[idx-1], "TOPRIGHT", 12,
end
end

-- Create the filter buttons
self.filters = {}
for idx=0,5 do
local button = CreateFrame ("CheckButton",
"BagBuddy Filter" .. idx, self, "BagBuddyFilterTemplate")
SetTtemButtonTexture (button, 3
"Interface\\ICONS\\INV_Misc_Gem_Pearl_03")
self.filters[idx] = button
if idx == 0 then
button:SetPoint ("BOTTOMLEFT", 40, 200)
else
button:SetPoint ("TOPLEFT", self.filters([idx-1], "TOPRIGHT",
end

button.icon:SetVertexColor (GetItemQualityColor (idx))
button:SetChecked(false)
button.quality = idx
button.glow:Hide ()
end

self.filters[-1] = self.filters[0]

-- Initialize to show the first page
self.page = 1

self.bagCounts = {}

self:RegisterEvent ("ADDON_LOADED")
end

local function itemNameSort(a, b)
return a.name < b.name

end

local function itemTimeNameSort(a, b)

-7)

0)

12,

0)

Chapter 13 = Responding to Game Events 257

-- If the two items were looted at the same time
local aTime = BagBuddy ItemTimes[a.num]
local bTime = BagBuddy ItemTimes [b.num]
if aTime == bTime then
return a.name < b.name
else
return aTime >= bTime
end
end

function BagBuddy Update ()
local items = {}

local nameFilter = BagBuddy.input:GetText () :lower ()

-- Scan through the bag slots, looking for items
for bag = 0, NUM BAG SLOTS do
for slot = 0, GetContainerNumSlots (bag) do
local texture, count, locked, quality, readable, lootable,
link = GetContainerItemInfo (bag, slot)

if texture then
local shown = true

if BagBuddy.qualityFilter then
shown = shown and BagBuddy.filters[quality]:GetChecked()

end

if #nameFilter > 0 then
local lowerName = GetItemInfo (link) :lower ()
shown = shown and string.find(lowerName, nameFilter, 1, true)

end

if shown then
-- If an item is found, grab item number and store other data
local itemNum = tonumber (link:match("|Hitem: (%d+):"))
if not items[itemNum] then
items[itemNum] = {
texture = texture,
count = count,
quality = quality,
name = GetItemInfo(link),
link = link,
num = itemNum,
}
else
-- The item already exists, just update the count
items[itemNum] .count = items[itemNum].count + count

end

258 Part Il = Programming in World of Warcraft

end
end
end
end

local sortTbl = {}

for link, entry in pairs(items) do
table.insert (sortTbl, entry)

end

table.sort (sortTbl, itemTimeNameSort)

-- Now update the BagBuddyFrame with the listed items (in order)
local max = BagBuddy.page * 24
local min = max - 23

for idx = min, max do
local button = BagBuddy.items[idx - min + 1]
local entry = sortTbl[idx]

if entry then
-- There is an item in this slot

button:SetAttribute("item2", entry.name)
button.link = entry.link
button.icon:SetTexture (entry.texture)
if entry.count > 1 then
button.count:SetText (entry.count)
button.count: Show ()
else
button.count:Hide ()

end

if entry.quality > 1 then
button.glow: SetVertexColor (GetItemQualityColor (entry.quality))
button.glow:Show ()
else
button.glow:Hide ()
end
button: Show ()
else
button.link = nil
button:Hide ()
end
end

-- Update page buttons
if min > 1 then
BagBuddy .prev:Enable ()
else
BagBuddy.prev:Disable ()

Chapter 13 = Responding to Game Events

259

end

if max < #sortTbl then
BagBuddy .next :Enable ()

else
BagBuddy .next :Disable ()

end

-- Update the status text
if #sortTbl > 24 then
local max = math.min (max, #sortTbl)

local msg = string.format ("Showing items %d - %d of %d", min,

max, #sortTbl)
BagBuddy .status:SetText (msg)
else

BagBuddy.status:SetText ("Found " .. #sortTbl .. " items")

end

end

function BagBuddy Button OnEnter (self, motion)
if self.link then
GameTooltip:SetOwner (self, "ANCHOR_TOPRIGHT")
GameTooltip:SetHyperlink(self.link)
GameTooltip: Show ()
end
end

function BagBuddy Button_ OnLeave(self, motion)
GameTooltip:Hide()
end

function BagBuddy Filter OnEnter (self, motion)
GameTooltip:SetOwner (self, "ANCHOR_TOPRIGHT")
GameTooltip:SetText (_G["ITEM_QUALITY" .. self.quality
GameTooltip:Show ()

end

function BagBuddy Filter OnLeave(self, motion)
GameTooltip:Hide ()
end

function BagBuddy Filter OnClick(self, button)
BagBuddy.qualityFilter = false
for idx = 0, 5 do
local button = BagBuddy.filters[idx]
if button:GetChecked() then
BagBuddy.qualityFilter = true
end
end
BagBuddy.page = 1

" DESC" 1)

260 Partll = Programming in World of Warcraft

BagBuddy Update ()
end

function BagBuddy NextPage (self)
BagBuddy.page = BagBuddy.page + 1
BagBuddy Update (BagBuddy)

end

function BagBuddy PrevPage (self)
BagBuddy .page = BagBuddy.page - 1
BagBuddy Update (BagBuddy)

end

function BagBuddy ScanBag(bag, initial)
if not BagBuddy.bagCounts[bag] then

BagBuddy.bagCounts[bag] = {}
end
local itemCounts = {}

for slot = 0, GetContainerNumSlots (bag) do
local texture, count, locked, quality, readable, lootable, 2
link = GetContainerItemInfo(bag, slot)

if texture then
local itemId = tonumber (link:match("|Hitem: (%d+):"))
if not itemCounts[itemId] then

itemCounts[itemId] = count
else
itemCounts[itemId] = itemCounts[itemId] + count
end
end
end

if initial then
for itemId, count in pairs(itemCounts) do
BagBuddy ItemTimes[itemId] = BagBuddy_ ItemTimes[itemId] or time ()
end
else
for itemId, count in pairs(itemCounts) do
local oldCount = BagBuddy.bagCounts[bag] [itemId] or 0
if count > oldCount then

BagBuddy ItemTimes[itemId] = time()
end
end
end
BagBuddy.bagCounts[bag] = itemCounts

end

function BagBuddy OnEvent (self, event, ...)

Chapter 13 = Responding to Game Events

261

if event == "ADDON_LOADED" and ... == "BagBuddy" then
if not BagBuddy ItemTimes then
BagBuddy ItemTimes = {}
end
for bag = 0, NUM BAG SLOTS do
-- Use the optional flag to skip updating times
BagBuddy_ScanBag (bag, true)
end
self:UnregisterEvent ("ADDON_LOADED")
self:RegisterEvent ("BAG_UPDATE")
elseif event == "BAG _UPDATE" then
local bag =
if bag >= 0 then
BagBuddy ScanBag (bag)
if BagBuddy:IsVisible() then
BagBuddy_Update ()

end
end
end
end
SLASH_BAGBUDDY1l = "/bb"
SLASH BAGBUDDY2 = "/bagbuddy"
SlashCmdList ["BAGBUDDY"] = function (msg, editbox)

BagBuddy.input:SetText (msg)
ShowUIPanel (BagBuddy)
end

BagBuddy.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

<Button name="BagBuddyItemTemplate" «3
inherits="SecureActionButtonTemplate" virtual="true">
<Size>
<AbsDimension x="37" y="37"/>
</Size>
<Layers>
<Layer level="BORDER">

<Texture name="SparentIconTexture" parentKey="icon"/>
<FontString name="S$parentCount" parentKey="count"
inherits="NumberFontNormal" justifyH="RIGHT" hidden="true">

<Anchors>
<Anchor point="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-5" y="2"/>
</Offset>

262 Partll = Programming in World of Warcraft

</Anchor>
</Anchors>
</FontString>
</Layer>
<Layer level="OVERLAY">
<Texture name="S$parentGlow" parentKey="glow" alphaMode="ADD"
file="Interface\Buttons\UI-ActionButton-Border">
<Size x="70" y="70"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Color r="1.0" g="1.0" b="1.0" a="0.6"/>
</Texture>
</Layer>
</Layers>
<Attributes>
<Attribute name="type2" type="string" value="item"/>
</Attributes>
<Scripts>
<OnEnter function="BagBuddy Button OnEnter"/>
<OnLeave function="BagBuddy Button_OnLeave"/>
</Scripts>
<NormalTexture name="S$parentNormalTexture"
file="Interface\Buttons\UI-Quickslot2">
<Size>
<AbsDimension x="64" y="64"/>
</Size>
<Anchors>
<Anchor point="CENTER">
<Offset>
<AbsDimension x="0" y="-1"/>
</Offset>
</Anchor>
</Anchors>
</NormalTexture>
<PushedTexture file="Interface\Buttons\UI-Quickslot-Depress"/>
<HighlightTexture file="Interface\Buttons\ButtonHilight-Square"
alphaMode="ADD" />
</Button>

<CheckButton name="BagBuddyFilterTemplate"
inherits="BagBuddylItemTemplate" virtual="true">
<Scripts>
<OnEnter function="BagBuddy Filter OnEnter"/>
<OnLeave function="BagBuddy Filter_OnLeave"/>
<OnClick function="BagBuddy Filter_OnClick"/>
</Scripts>
<CheckedTexture file="Interface\Buttons\CheckButtonHilight"
alphaMode="ADD" />
</CheckButton>

Chapter 13 = Responding to Game Events

263

<Frame name="BagBuddy" parent="UIParent" hidden="true">
<Size x="384" y="512"/>
<Anchors>
<Anchor point="CENTER" relativePoint="CENTER"
relativeTo="UIParent"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="Sparent_Portrait" parentKey="portrait"
file="Interface\Icons\INV_Misc_EngGizmos 30">
<Size x="60" y="60"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="7" y="-6"/>
</Anchor>
</Anchors>
</Texture>
</Layer>
<Layer level="OVERLAY">
<FontString name="Sparent_Title" parentKey="title"
inherits="GameFontNormal" text="BagBuggy">
<Anchors>
<Anchor point="TOP">
<Offset x="0" y="-18"/>
</Anchor>
</Anchors>
</FontString>
<FontString name="S$parent Status" parentKey="status"
inherits="GameFontHighlight">
<Anchors>
<Anchor point="CENTER" relativePoint="BOTTOM">
<Offset x="-10" y="150"/>
</Anchor>
</Anchors>
</FontString>

</Layer>
<Layer level="BORDER">
<Texture file="Interface\BankFrame\UI-BankFrame-TopLeft">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-TopRight">
<Anchors>
<Anchor point="TOPRIGHT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotLeft">
<Anchors>

264 Partll = Programming in World of Warcraft

<Anchor point="BOTTOMLEFT"/>
</Anchors>
</Texture>
<Texture file="Interface\BankFrame\UI-BankFrame-BotRight">
<Anchors>
<Anchor point="BOTTOMRIGHT"/>
</Anchors>
</Texture>
</Layer>
</Layers>
<Frames>
<Button name="S$parent_Close" parentKey="close"
inherits="UIPanelCloseButton">
<Anchors>
<Anchor point="TOPRIGHT">
<Offset x="-30" y="-8"/>
</Anchor>
</Anchors>
</Button>
<Button name="BagBuddy PrevButton" parentKey="prev">
<Size x="32" y="32"/>
<Anchors>
<Anchor point="CENTER" relativeTo="BagBuddy"
relativePoint="BOTTOMLEFT">
<Offset>
<AbsDimension x="50" y="150"/>
</0Offset>
</Anchor>
</Anchors>
<Scripts>
<OnClick function="BagBuddy_PrevPage"/>
</Scripts>
<NormalTexture
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Up"/>
<PushedTexture
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Down" />
<DisabledTexture
file="Interface\Buttons\UI-SpellbookIcon-PrevPage-Disabled"/>
<HighlightTexture
file="Interface\Buttons\UI-Common-MouseHilight"
alphaMode="ADD" />
</Button>

<Button name="BagBuddy NextButton" parentKey="next">
<Size x="32" y="32"/>
<Anchors>
<Anchor point="CENTER" relativeTo="BagBuddy"
relativePoint="BOTTOMRIGHT">
<Offset>
<AbsDimension x="-70" y="150"/>

Chapter 13 = Responding to Game Events 265

</0Offset>
</Anchor>
</Anchors>
<Scripts>
<OnClick function="BagBuddy NextPage"/>
</Scripts>
<NormalTexture
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Up"/>
<PushedTexture
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Down" />
<DisabledTexture
file="Interface\Buttons\UI-SpellbookIcon-NextPage-Disabled"/>
<HighlightTexture
file="Interface\Buttons\UI-Common-MouseHilight"
alphaMode="ADD" />
</Button>
<EditBox name="S$parent Input" parentKey="input"
autoFocus="false">
<Size x="400" y="20"/>
<Anchors>
<Anchor point="BOTTOMLEFT">
<Offset x="32" y="100"/>
</Anchor>
</Anchors>
<Scripts>
<OnEscapePressed>
self:ClearFocus ()
</OnEscapePressed>
<OnTextChanged>
BagBuddy_Update ()
</OnTextChanged>
</Scripts>
<FontString inherits="GameFontHighlight"/>
</EditBox>

</Frames>

<Scripts>
<OnLoad function="BagBuddy OnLoad"/>
<OnEvent function="BagBuddy OnEvent"/>
</Scripts>
</Frame>
</Ui>

CHAPTER

14

Tracking Damage with
CombatTracker

You've worked through all of the different aspects of writing an addon while
creating the BagBuddy addon. You've learned how to use the WoW API to
query information from the game client, registered for and responded to game
events, and created widgets with which users can interact. In this chapter,
you'll put all of these skills together to create an addon called CombatTracker.

Defining Specifications

Before sitting down to code, it’s important to understand exactly what an
addon will be expected to do and have a general idea of how it should operate
from the user perspective. What isn’t important at this stage is how you will
implement the addon; the design needs to be decided first.

CombatTracker User Experience
The specification for CombatTracker covers the following details:

1. A frame that can be dragged and moved by the user will be created on
screen.

2. When the player enters combat, the addon will store the current time and
change the frame to display “In Combat.”

3. Each time the player takes damage from an NPC, the frame’s display will
be updated to show the amount of time that has been spent in combat,
the amount of damage that has been sustained, and the incoming damage
per second.

267

268

Part Il = Programming in World of Warcraft

4. When combat has ended, the frame will display final statistics.

5. The frame will be a button and, when clicked, will send the incoming
damage-per-second summary to the player’s party, if he is in one;
otherwise, it will simply be displayed on the screen.

Finding the Right Game Events

First figure out the events for which you will need to register. In this case,
you need to be notified of when the player enters or leaves combat. When in
combat, you need to know when the player takes damage. This section details
the three events that CombatTracker needs to function:

= PLAYER REGEN_DISABLED
B PLAYER REGEN_ENABLED

= UNIT_COMBAT

PLAYER _REGEN_DISABLED

Upon entering combat, a player no longer regenerates health over the course
of time, with the exception of spells, talents, and equipment that provide
specific amounts of health regeneration every five seconds. As a result, the
PLAYER_REGEN_DISABLED event can be used to indicate when the player has
engaged in combat, according to the game client. This event doesn’t necessarily
mean that the player has sustained any damage; it just indicates to the game
client that the player is now considered to be in combat.

From a user interface perspective, this event also enables addon authors to
do any last-minute setup for any addons that use secure templates. You learn
more about secure templates in Chapter 15 but, in short, they allow for addons
to cast spells and target units through a special system that cannot be altered
while in combat. This event gives those addons one last chance to configure
themselves.

PLAYER_REGEN_DISABLED has no arguments included when it fires.

PLAYER REGEN_ENABLED

The pLAYER_REGEN_ENABLED event fires when the player begins normal health
regeneration again. It means the player’s normal health regeneration has
started and is fired consistently when the player exits combat. As a result, it
can be used by an addon to track the player exiting combat (even though the
event isn't named PLAYER_EXIT_COMBAT or something similar). The event has
no arguments included when it fires.

Chapter 14 = Tracking Damage with CombatTracker

269

UNIT_COMBAT

Several events deal with the player sustaining damage, but you will be using
the unIT_coMBAT event. Anytime a unit the player is interested in (such as
party members, raid members and their targets, and so on) has a change in
hit points that relates to combat, this event fires with the following arguments
describing the change:

m unit—The identifier for the unit that experienced the change.

m sction—The type of combat action that happened. Some example values
are the strings HEAL, DODGE, BLOCK, WOUND, MISS, PARRY, and RESIST.

m nodifier—If the action was a combat attack, it could possibly be a
glancing hit, critical hit, or crushing blow. Example values are the strings
GLANCING, CRUSHING, and CRITICAL.

m damage—The amount of damage sustained, or the amount of health
healed.

= jamagetype— The type of damage that occurred, using one of the follow-
ing number values:

m ()—physical damage
m] —holy damage

m 2 —fire damage

m 3 —nature damage
m 4—frost damage

m 5—shadow damage

m 6—arcane damage

Creating the Addon’s Skeleton

Although the entire CombatTracker addon (and most addons, actually) could
be written in just a single Lua file or a single XML file, this implementation
will separate the design and layout of the frames from the code that defines
the addon’s behavior. Create your addon skeleton:

1. In your AddOns directory, create a new directory called CombatTracker.

2. In this new directory create a file called combatTracker.toc, with the
following content:

270 Partll = Programming in World of Warcraft

Interface: 30200
Title: CombatTracker
Notes: Tracks incoming DPS, and how long you spend in combat

CombatTracker.lua
CombatTracker.xml

3. Create an empty file called combatTracker.xml, which will be used to
create the frames.

4. Create an empty file called combatTracker.lua, which will be used to
define the addon’s behavior.

If you exit the game and open the WoW client backup, you should see
CombatTracker listed in the AddOn List along with the description, as shown
in Figure 14-1.

3==-./' CombatTracker

CombatTracker
Tracks incon DPS, and how
long you sp ombat

Figure 14-1: CombatTracker in the AddOn List

Defining CombatTracker's XML Frame

Begin by adding the <ui> element to CombatTracker.xml. Remember, this
should be the outermost element of every XML file:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

</Ui>

Next, add the definition for the main frame. Following the specifications,
this frame needs to be clickable, so it will use the Button widget type. Add the
following code inside the <ui> element:

<Button name="CombatTrackerFrame" parent="UIParent" enableMouse="true" 2
movable="true" frameStrata="LOW">
<Size x="175" y="40"/>
<Anchors>
<Anchor point="TOP" relativePoint="BOTTOM" relativeTo="Minimap">
<Offset x="0" y="-10"/>
</Anchor>
</Anchors>
</Button>

Chapter 14 = Tracking Damage with CombatTracker 271

This code defines a new Button called combatTrackerFrame and defines its
size and placement along with some attributes:

®m name—Declares a name for the frame. When the frame is created, the
global variable with this name will be set to the created frame so it can be
referred to in other code.

m parent—Defines the parent of a frame, used by the Ul system to decide
the scale, opacity, and visibility of a frame. Frame parents are discussed
further in Chapter 10.

= cnableMouse—Enables mouse input for the frame, allowing you to click
it and register for drag events.

= novable—Tells the user’s interface that this frame is movable. This is
simply an on/off switch; you will have to write the code to actually
accomplish the movement on your own.

= frameStrata—Frames in the user interface can be layered so some frames
appear above or below others. The value of this attribute tells the Ul what
strata the frame should be drawn on.

The default placement of the frame will be just below the minimap, but the
user can move it to a more desirable location.

Next give the frame some visible elements, so it can be seen on screen.
For this, you will use a special type of texture called a backdrop to provide a
background and border for the frame.

Defining a Backdrop

A backdrop is a special way to define a background for a frame. They consist
of background files (which are, shockingly, used for the background of the
frame) and edge files (which are used to place a border around the frame).
Add the following backdrop definition within the <Button> element, but after
the </Anchors> tag:

<Backdrop bgFile="Interface\DialogFrame\UI-DialogBox-Background" «3
edgeFile="Interface\DialogFrame\UI-DialogBox-Border" tile="true">
<BackgroundInsets>
<AbsInset left="11" right="12" top="12" bottom="11"/>
</BackgroundInsets>
<TileSize>
<AbsValue val="32"/>
</TileSize>
<EdgeSize>
<AbsValue val="32"/>
</EdgeSize>
</Backdrop>

272 Part Il = Programming in World of Warcraft

This sets up the frame to use the same background and border textures
as the default dialog box (the frame that pops up when you're looting a
bind-on-pickup item). If you're setting the backdrop using Lua instead of XML,
you'll need to call the setBackdrop () method, passing in a table definition
with the same information:

frame: SetBackdrop ({

bgFile = "Interface\\DialogFrame\\UI-DialogBox-Background",

edgeFile = "Interface\\DialogFrame\\UI-DialogBox-Border",

tile = true,

tileSize = 32,

edgeSize = 32,

insets = {
left = 11,
right = 12,
top = 12,
bottom = 11,

Adding a Font String

Now that your frame has a background and border, you need to add a line of
text to display the combat information. Include the following code within the
<Button> after the </Backdrop> tag:

<Layers>
<Layer level="OVERLAY">
<FontString name="$parentText" inherits="GameFontNormalSmall" 3
justifyH="CENTER" setAllPoints="true" text="CombatTracker"/>
</Layer>
</Layers>

The code snippet defines a new graphical layer (at the oveErLAY level) and
creates a new FontString.

This completes the visual definition of the frame, so save the XML file and
log in to the game to see how it looks.

Testing CombatTrackerFrame

Before getting much further into the addon, log in to World of Warcraft to
verify that the XML definition is correct. You should see the minimap with the
new CombatTrackerFrame directly below it, similar to Figure 14-2.

Chapter 14 = Tracking Damage with CombatTracker

273

13:49

CombatTracker

Figure 14-2: CombatTrackerFrame anchored below the minimap

At this point, nothing can be done with the frame because no scripts have
been written to define its behavior. To make the addon fully functional, it
needs scripts to handle clicking, dragging, and handlers for events.

If for some reason you do not see the frame, check the Logs/FramexML.log
file under your World of Warcraft directory. It may contain information about
any errors you have made in creating the file. Alternatively, you can validate
the file using one of the validation tools mentioned in Chapter 7.

Adding Script Handlers to CombatTrackerFrame

The behavior in this addon will be defined in combatTracker.lua, but before
you can write those functions you must refer to them in the frame definition
in CombatTracker.xml. Open the .xml file and add the following section right
after the </Layers> tag in the <Button> definition:

<Scripts>
<OnLoad>
CombatTracker_OnLoad (self)
</OnLoad>
<OnEvent>
CombatTracker_OnEvent (self, event, ...)
</OnEvent>
<OnClick>
CombatTracker_ReportDPS ()
</0OnClick>
<OnDragStart>
self:StartMoving ()
</OnDragStart>
<OnDragStop>
self:StopMovingOrSizing ()
</OnDragStop>
</Scripts>

274 Partll = Programming in World of Warcraft

As mentioned in Chapter 8, each frame type has a number of widget scripts
that can be set with a handler function. Table 14-1 describes the scripts you're
using here (you can find more details about these scripts and the arguments
they accept in Chapter 29, “Widget Reference”).

Table 14-1: Script Handlers Used in CombatTracker

<OnLoad> The basic initialization function for CombatTracker will
be called combatTracker_oOnLoad (). It's called from
the <onLoad> handler on the frame when the frame
has finished initializing. It works only for frames that are
defined in XML.

<OnEvent> The addon will respond to a number of events, so you
must define an onEvent script to handle them. The
CombatTracker OnEvent () function will be
responsible for each of the events. The handling function
will need to know which event it's being passed, so
ensure you are passing the frame self, the event name

event, and the variable set of arguments . . . to the
function.
<OnClick> When the player right-clicks CombatTrackerFrame, the

onC1lick script handler will call the
CombatTracker_ReportDPS () function to print the
current combat status. The status message will be sent
to party chat if the player is in a party, otherwise it will be
printed to the chat frame.

<OnDragStart> The code for allowing a frame to be dragged and placed
is very simple, so the code is written directly in the script
handler rather than in a function defined in
CombatTracker. lua. Later, if you wanted to add
options to the addon, such as allowing the user to lock
the frame in place, you could move this code into the
Lua file to consolidate everything.

Each frame that has the movable attribute set to true
can call the self:startMoving () method, which
causes the frame to follow the mouse. As a result, all
that's required to set up frame movement when dragged
is to call this function.

<OnDragStop> Stopping the frame from moving is a matter of calling
self:StopMovingOrSizing (). This function also
flags the frame as user placed, meaning the next time
the addon loads, the frame will be put in the same place
the user dropped it. This is quite a handy side effect.

Chapter 14 = Tracking Damage with CombatTracker

275

Adding Functions to CombatTracker.lua

To properly calculate the incoming damage, the time spent in combat, and the
average incoming DPS during combat, a few values need to be stored. These
will be created as local variables at the top of combatTracker.lua. Open that
file and add the following lines:

-- Set up some local variables to track time and damage
local start_time = 0
local end_time = 0

local total_time = 0

local total_damage 0

local average_dps = 0

Four more functions must be created to have a fully functional addon:

B CombatTracker_OnLoad (frame)
B CombatTracker_ OnEvent (self, event, ...)
B CombatTracker_ UpdateText ()

B CombatTracker_ReportDPS()

These functions are discussed in the following sections.

CombatTracker_OnLoad(frame)

As you may recall from your work in Chapter 4, the variable name self has a
bit of a special meaning in Lua. When a function inside a table is called using
the colon syntax, the first argument that Lua passes is the table itself with
the name self. In addition, when the World of Warcraft client calls a frame
script, the first argument is called self and points to the frame itself. This can
be confusing, so when you define functions that are called from XML, it is a
good idea to make the variable names more meaningful. In the script handler
for onLoad, the script is given the frame object in the self variable, and will
pass it on to the combatTracker_onLoad () function. The function definition,
however, will name it frame. That way there’s no question about what type of
value it contains.

Add the following function definition to the bottom of combatTracker. lua:

function CombatTracker_OnLoad (frame)
frame:RegisterEvent ("UNIT_COMBAT")
frame:RegisterEvent ("PLAYER_REGEN_ENABLED")
frame:RegisterEvent ("PLAYER_REGEN_DISABLED")
frame:RegisterForClicks ("RightButtonUp")
frame:RegisterForDrag ("LeftButton")

end

276 Partll = Programming in World of Warcraft

This function registers the combat tracker frame for the three events that
need to be watched. It also registers to receive right-click events, along with
drags with the left mouse button.

CombatTracker_OnEvent

The combatTracker_onEvent () function handles three different types of
events, so it will be one large conditional with special code for each event
name. Add the function as follows to the bottom of combatTracker. lua:

function CombatTracker_OnEvent (frame, event, ...)
if event == "PLAYER_REGEN_DISABLED" then
-- This event is called when we enter combat
-- Reset the damage total and start the timer
CombatTrackerFrameText: SetText ("In Combat")
total_damage = 0
start_time = GetTime ()
elseif event == "PLAYER_REGEN_ENABLED" then
-- This event is called when the player exits combat
end_time = GetTime ()
total_time = end_time - start_time
average_dps = total_damage / total_time
CombatTracker_UpdateText ()
elseif event == "UNIT_COMBAT" then
if InCombatLockdown () then
local unit, action, modifier, damage, damagetype =
if unit == "player" and action ~= "HEAL" then
total_damage = total_damage + damage
end_time = GetTime ()
total_time = math.mind(end_time - start_time, 1)
average_dps = total_damage / total_time
CombatTracker_UpdateText ()
end
end
end
end

The following sections explore the events handled by this function as
well as combatTracker_UpdateText (), a function that’s called at the end of
CombatTracker_ OnEvent ().

PLAYER REGEN_ENABLED

The PLAYER_REGEN_ENABLED section of the conditional happens when the
player exits combat, which means it’s time to clean up and display the final
results. The GetTime () function is used to set the end_time variable. It returns
the current value of the in-game timer. The actual value doesn’t matter because

Chapter 14 = Tracking Damage with CombatTracker

277

you're just going to subtract the start time from the end time to give you the
difference (in seconds).

Finally, the combatTracker_UpdateText () function is called to handle the
update of the actual text on the frame. You could do the updating directly in
this function, but the same code will be needed at a later point. Rather than
having the same code in two places, it’s cleaner to make a new function that
does the common work.

PLAYER REGEN _DISABLED

The pLAYER REGEN_DISABLED event fires when the player enters combat, so
it needs to set up the accounting variables to ensure the addon gets a clean
slate for each combat. It simply calls combatTrackerFrameText:SetText () to
change the frame to say “In Combat.” It also sets the total_damage variable
back to 0 and initializes the start_time variable with the current time.

UNIT_COMBAT

Most of the addon’s logic actually happens in the UNIT_coMBAT section, so
it’s a bit larger than the other two. First you check to see if the player is in
combat (by checking the InCombatLockdown () function), so you can ignore any
messages that arrive outside of combat. Because event arguments are passed
to the function as a vararg, you assign them to named variables so they are
more easily accessible.

You're interested only in those events that happen to the player and want
to skip those events in which the player is being healed, so check the unit and
action arguments. If both conditions pass, the current amount of damage is
added to the total, the end time is updated, and the total time and average DPS
are calculated. Because the time might be less than a second (and there is no way
to divide by zero) you use the math.min () function to choose either the time
difference, or 1, whichever is larger. Finally the combatTracker_updateText ()
function is called to update the frame.

CombatTracker_UpdateText()

CombatTracker_UpdateText () is a simple function that updates the status on
the combatTrackerFrame using string. format (). Add the following function
definition to the bottom of combatTracker.lua:

function CombatTracker_UpdateText ()
local status = string.format("$ds / %$d dmg / %.2f dps",
total_time, total_damage, average_dps)
CombatTrackerFrameText:SetText (status)
end

278 Part Il = Programming in World of Warcraft

When run, this format string shows the number of seconds in combat,
followed by the amount of damage taken, and the average incoming DPS for
that combat period.

CombatTracker_ReportDPS()

The combatTracker_ReportDPS () checks calls the GetNumPartyMembers () func-
tion to determine whether or not the player is in a party. If the number is
greater than o, the player is in a party. Add the following function to your

CombatTracker. lua

function CombatTracker_ReportDPS ()
local msgformat = "%$d seconds spent in combat with %d incoming 2
damage. Average incoming DPS was %.2f"
local msg = string.format (msgformat, total_time, total_damage, 3
average_dps)
if GetNumPartyMembers() > 0 then
SendChatMessage (msg, "PARTY")
else
print (msg)
end
end

This function uses a format string to craft the outgoing message, and then
uses GetNumPartyMembers () to decide where to send it. If the player is in a
party, the sendchatMessage () function is used to send the message to the
party; otherwise, the print () function is used to send it to the chat frame so
the player can see it.

Testing CombatTracker

You have completed all the code necessary for a fully functional Combat-
Tracker addon. Load the game and select a character. You should be greeted
with the CombatTracker frame right below your minimap.

Testing is a very important part of addon writing if you plan to release your
addons to the public. When you write a set of features, it's prudent to test
them yourself before you ship the addon to the public to ensure that users
won't get error messages and be reporting them to you after the fact. That sort
of troubleshooting is always more difficult than errors you encounter on your
own. Systematically test each portion of the addon.

Chapter 14 = Tracking Damage with CombatTracker 279

Frame Dragging

By clicking the frame, holding down the mouse button, and dragging your
mouse to another part of the screen, you should be able to move the Combat-
Tracker frame. Figure 14-3 shows it placed beneath the player frame.

Figure 14-3: CombatTracker anchored beneath the player frame

Just testing that the frame starts and stops dragging isn’t enough. Make sure
you can reload your Ul and have the frame be restored to the new position
by running /console reloadui. This is a slash command that reloads all of
the Blizzard User Interface and all custom addon code. It’s quite useful when
making changes during development, or for testing purposes.

.m: Once you've moved the frame from its initial anchored position, you may
need to adjust it any time you switch between windowed and full-screen mode, or
when you change screen resolution. You can re-anchor the frame to the minimap
with the following two slash commands:

/run CombatTrackerFrame:ClearAllPoints()
/run CombatTrackerFrame:SetPoint ("TOP", Minimap, "BOTTOM", 0, -10)

The first command clears any anchors the frame already has, and the second
command re-anchors the frame to the minimap, as was done originally in the
XML file.

Right-Click Reporting: Part |

The addon is set to print a status report or send it to your party chat when
CombatTracker is right-clicked. What happens if the user clicks the frame
before CombatTracker has had a chance to track any data? You can’t assume
your users will wait until they’ve already gone through combat to click, so test
that now.

Luckily, because of the way you initialized the local variables (with 0s), the
game can print a meaningful message, like the one shown in Figure 14-4.

280 Partll = Programming in World of Warcraft

ds spent in bat with 0 incoming damage. Average
g DPS was

Figure 14-4: CombatTracker reporting before entering combat

Testing Combat Tracking

Log in to a character and go find something to fight. Hopefully, it’s something
you won’t have much difficulty killing but whose level is close enough to
yours that it can hurt you. Immediately upon entering combat, you should see
the frame change, as shown in Figure 14-5.

In Combat

Figure 14-5: CombatTracker showing “In Combat.”

After each hit of incoming damage, the frame should be updated to show
the current statistics. If you are fighting something from range, you won't see
the frame update until the mob actually tries to hit you. Figure 14-6 shows
CombatTracker working in combat.

Figure 14-6: CombatTracker showing running statistics

Right-Click Reporting: Part Il

When combat has ended, your frame updates with the final statistics and
remains there until you enter combat again or reload the user interface. There
is one more test that needs to be run on the right-click reporting, and that’s
making sure it displays correct statistics at the end of combat, and that it
properly sends a message to party chat when the player is in a party.

Chapter 14 = Tracking Damage with CombatTracker 281

Figure 14-7 shows CombatTracker reporting before joining a party, as well
as after joining forces with another player.

ibat with 62 incoming dama

in your group:.

Figure 14-7: CombatTracker reporting both in and out of a party

Summary

Creating an addon involves making decisions about the user experience and
scope of the addon, investigating what functions and events are required
to make the addon functional, and writing the addon itself. The process of
deciding how the user will experience your addon and what features make it
into the final product is often the most difficult part of writing an addon.

The next chapter explains the intricacies of frames, widgets, and other
graphics elements in depth.

In This Part

Chapter 15:
Chapter 16:
Chapter 17:
Chapter 18:
Chapter 19:
Chapter 20:
Chapter 21:
Chapter 22:
Chapter 23:
Chapter 24:
Chapter 25:
Chapter 26:

Taking Action with Secure Templates

Binding Keys and Clicks to Addon Code
Creating Slash Commands

Responding to Graphic Updates with OnUpdate
Altering Existing Behavior with Function Hooking
Creating Custom Graphics

Responding to the Combat Log and Threat Information
Creating Scroll Frames

Creating Dropdown Menus

Scanning and Constructing Tooltips

Taking Protected Action in Combat

Creating Unit Frames with Group Templates

CHAPTER

15

Taking Action with Secure
Templates

The design of World of Warcraft mandates that any meaningful action that
can affect the game world, such as casting a spell, using an item, or attacking
an enemy, be triggered by the player clicking a button or pressing a key
bound to that action. This was originally only mentioned in the terms of use,
which forbid any form of automation; but as the game developed, it became
clear that the requirement needed to be enforced in the Lua scripting engine.
This restriction is carried out by a system of trusted and untrusted code,
which prevents addons from taking these actions for the player, as well as a
mechanism called secure templates that allows addons to safely modify how the
player interacts with the game, without enabling automation.

In this chapter, you learn how to create and customize your own buttons that
the player can use to take in-game actions; you also learn what actions your
addons can take directly and which you must assign to a button for the player.
In addition you'll discover how to troubleshoot problems that can occur due
to the differences between trusted (Blizzard) and untrusted (addon) code.

Why Are Secure Templates Necessary?

Although World of Warcraft offers an enormous variety of activities for its
players to engage in, fighting with creatures or other players holds the most
excitement and interest for most players. Combat is the most common activity
in the game, and the most sensitive. Decisions made on a split-second basis
determine whether you win a battleground, defeat a raid boss, or destroy a
quest mob; or whether you lie broken on a lost battlefield, run out of mana

285

286

Part Ill = Advanced Addon Techniques

while healing your tank, or spend time running back to your corpse for “just
one more try.”

While the initial version of WoW matured and addon authors became more
experienced, many addons were created that took action for the players. Some
addons were written to automatically decide what healing spell to cast on
whom, to provide the most effective healing in a party or raid. Other addons
were written that could run the player from one location to another (for
example, running your ghost to its corpse or from city to city).

As these addons became more widespread, WoW designers and developers
became concerned that they actually destroyed the fun of playing the game.
They certainly made victory easier, but players no longer needed to even pay
attention to the game they were playing. Over the course of several patches,
the designers took steps to reduce addons’ capability to make such decisions,
culminating in the patch 2.0 security model.

Under this model, all code thatis supplied with the game is considered secure,
whereas code provided by addons is insecure or tainted. Only secure code can
call certain API functions such as casting a spell or using an item. Moreover,
if insecure code tries to interfere with secure code, its taint will spread to
the secure code and prevent the spell, item, or other secured operation from
working. This stops addons from exploiting the default user interface to bring
back addon automation.

As you'll see, the security model is fairly complex. Needless to say, it would
have been easier for Blizzard to simply eliminate the capability for users to
write custom addons, but there is plenty to be gained by allowing for rich
customization of the user experience. Instead, Blizzard introduced a very
restrictive security model, but offers a number of secure templates that provide
a system for addon authors to take certain approved action, with limits. These
templates are pre-programmed, using attributes to determine what spell to
cast or other action to take, whom to cast it on, and other similar information.
Although addons can change the attribute values without tainting the secure
script’s capability to do its job, they can only do so under controlled conditions
(typically outside of combat), because the secure frames are protected.

Protected Frames

A protected frame is one that is capable of taking restrictive action, as defined by
the developers. During combat, only secure code can create, modify, or control
these frames, preventing addon code from doing things such as placing the
“right”” action button or unit frame under your mouse so the player can just
mindlessly click. However, unlike truly protected functions like castspell (),
these restrictions are lifted outside of the combat, allowing addons to create
new frames, move frames around, and reconfigure attributes.

Chapter 15 = Taking Action with Secure Templates 287

If an addon (or the user) tries to make a restricted change on a frame during
combat, the user interface will display a notification in the chat frame, rather
than popping up a distracting notification. You will learn more about these
“blocked addon”” messages, and the taint log that can be used to troubleshoot
them, later in this chapter.

When a frame is protected, any frame that it is parented or anchored to
is also implicitly protected. This makes sense because otherwise you’d be
able to move or hide the unprotected frame to defeat the restrictions. Luckily
there is an widget method that allows you determine if a frame is protected
(either implicitly or directly): Frame: Isprotected (). The function returns two
values:

m jisprotected—1 if the frame is protected and subject to the restrictions
of protected frames; otherwise nil.

m cxplicit—1 if the frame is explicit; nil if the frame is only protected
implicitly due to a relationship with another frame.

Frame methods that affect positioning, visibility, interactivity, or secure
control are restricted from being called on protected frames during combat.
Here’s a list of those methods:

AllowAttributeChanges Lower SetHorizontalScroll
ClearAllPoints Raise SetParent

Disable SetAllPoints SetPoint

Enable SetAttribute SetScale
EnableKeyboard SetFrameLevel SetToplevel
EnableMouse SetFrameStrata SetVerticalScroll
EnableMouseWheel SetHeight SetwWidth

Hide SetHitRectInsets Show

The protection itself is accomplished by defining an XML template with the
protected attribute set to true. This feature is not exactly useful for our own
purposes; the true power comes to us indirectly via secure templates.

.]m] It is possible to create code that modifies protected frames in combat,
under certain restrictions. WoW 3.0 introduced a system called secure handlers,
which allows you to submit code for secure execution on frames, as long as it
follows the designers’ guidelines on what is permitted in combat; this system is
covered in detail in Chapter 25.

288 Partlll = Advanced Addon Techniques

Controlling Secure Frames Using Attributes

As mentioned in the last section, secure templates are pre-configured using
named attributes. Unlike local or global variables, or keys set in frame tables,
they cannot be tainted. This allows data to be passed from insecure code
(addons) to secure code (secure templates) without compromising security.
Setting attributes on a frame is a restricted action, and insecure code can’t do
it during combat, as we’ve already said.

Frame attribute can be set by using the setattribute () method, or by using
the <attribute> element in XML. For example:

frame:SetAttribute("spell", "Flash Heal")
or
<Attributes>
<Attribute name="spell" type="string" value="Flash Heal"/>
</Attributes>

You can obtain the value of an attribute using the Getattribute () method.
The usage is fairly simple:

value = frame:GetAttribute("spell")

The value of an attribute can be any kind of Lua table, but the name is
always a string. Unlike most Lua conventions, name is not case-sensitive; if you
call frame:SetAttribute("item", "5"), frame:GetAttribute ("ITEM") will
return the string 5.

Whenever a frame is set on a frame, the frame’s onat tributeChanged handler
script is called, allowing code to react to attribute changes. Attributes don’t
carry taint, so the onAttributeChanged script can be used to trigger secure
code in response to an addon setting an attribute. The script is passed the
frame object, the name of the attribute, and the value. Despite attribute names
being case-insensitive, the name argument to an onattributeChanged script
will always be lowercase.

m The choice of the word “attribute” is appropriate, but potentially
confusing, because in XML lingo, “attribute” is the term that describes the
properties given to an element within the element’s start tag (for example,
name="$parentButton", and so on). They are similar in that they associate a
value with a name and a parent object. Where it is important, we will discriminate
them with the terms frame attribute and XML attribute.

Using Secure Templates

Using secure templates doesn’t magically make your code secure. Code that
is created from your addon will always be considered tainted, and won’t be

Chapter 15 = Taking Action with Secure Templates

289

able to defeat the secure restrictions. Secure templates are useful because they
contain a number of pre-written widget scripts that are still secure, and thus
can take restricted action based on attributes.

Although there are several secure templates defined in FramexML\Secure
Templates.xml and FrameXML\SecureHandlers.xml, this chapter focuses on
one of the more widely used templates, secureActionButtonTemplate. The
template definition is very simple, just calling secureactionButton_OnClick
when the button is clicked.

Create your own frame or template that inherits from secureactionButton
Template,and it will securely call secureactionButton_onclick when clicked,
as long as you do not assign your own onclick handler. Each frame can have
only one handler per widget script, so setting a new one would remove the
secure version that actually does the work!

Defining Behaviors for Action Buttons

How are the secure templates programmed using frame attributes? The easiest
way to show how they are used is with an example. Run the following code in
game to create a new secure action button for you to work with:

SABTest = CreateFrame ("Button", "SABTest", UIParent, e
"SecureActionButtonTemplate, UIPanelButtonTemplate2")
SABTest:SetWidth (80)

SABTest:SetHeight (20)

SABTest:SetText ("SABTest")

SABTest:SetPoint ("CENTER", 0, O0)
SABTest:SetAttribute("spell", "Attack")
SABTest:RegisterForClicks ("AnyUp")

Because secure templates provide no visual appearance themselves, you'll
normally need to add some elements to make the button visible. You can do
this by adding layers and texture as per usual, but here you just inherit from a
template that already has visual components.

Everything here should seem familiar, other than the setattribute call at
the end. In this case, you're setting the spell attribute to the string aAttack.
That tells the secure action button’s onclick handler to cast the Attack spell,
which starts or stops the player’s auto-attack, when the button is programmed
to cast a spell.

.m The type tag attribute has a default value of string, and an
overwhelming portion of the frame attributes used by the secure templates are
expected to contain strings, so in practice it is almost always omitted.

Casting a Spell

Once you've run the code, you should have a small, red button (see Figure 15-1)
in the middle of your screen that does nothing when clicked. Although you’ve

290 Partlll = Advanced Addon Techniques

programmed the button to cast Attack when it’s casting a spell, you haven’t
told it that it should be casting a spell.

Figure 15-1: A simple action button

Run the following command:
/run SABTest:SetAttribute("type", "spell")

This corrects the omission by telling the button that when it is clicked it
should try to cast a spell. If you find an enemy and click the button, your
auto-attack should be toggled on or off.

Casting a Beneficial Spell

If you have a character that can cast beneficial spells (healing, cleansing, or
buffing), you can set your button up to cast that spell on yourself. Change the
spell attribute to the beneficial spell (changing Renew to the name of the spell):

/run SABTest:SetAttribute("type", "spell")
/run SABTest:SetAttribute("spell", "Healing Wave")

This tells the button to cast a spell when clicked, and specifies that the
Healing Wave spell should be cast. If you find and target a friendly target, you
can click the button, and the spell should be cast on your targeted unit.

You can specify the unit to target with an action by using the unit attribute.
Run the following:

/run SABTest:SetAttribute("unit", "player")

Now whenever you click the button, the spell will be cast on you. This
illustrates just one of the many ways multiple attributes on the same frame
can interact to bring varied results.

Casting a Harmful Spell

The same principle can be used to cast a harmful spell on a target. Run the
following to change the attributes:

/run SABTest:SetAttribute("spell", "Lightning Bolt")
/run SABTest:SetAttribute("unit", "target")
Looking Under the Hood

So whatis actually going on when you click your button? The code can be found
in FrameXML\SecureTemplates.lua,in.the SecureActionButton_OnClick ()

Chapter 15 = Taking Action with Secure Templates

291

function. It may be a bit difficult to follow along (the buttons are very
powerful), but here are the basic steps:

1. The type attribute is checked to determine which type of action to take.
In this case, your button is set to cast a spell by using the spell type.

2. The spell attribute is retrieved to determine what spell to cast.

3. The unit attribute is checked to see if you're specifying a particular unit
on which to cast the spell.

4. The castspellByName is called securely with the name of the spell and,
optionally, the unit.

This is where the nature of protected frames, protected functions, taint,
and attributes finally come together. Only secure code is allowed to call
CastSpellByName. Because the secureactionButton template is defined in the
FrameXML, itand all of its handlers are secure. The template has the protected
attribute set to true, so any frame that inherits from this template will also be
protected. The setattribute method is protected outside of combat, which
means Blizzard can precisely control when and how the player is allowed to
configure the buttons that take protected action.

Specifying Units to Affect

Many templates can act on units in various ways. For example, quite a few
types of SecureactionButtons do their actions on the specified unit. You
can control the unit directly via the unit attribute, which was shown in the
previous example.

Alternatively, if you usea "unitsuffix" attribute, its value will be appended
to the "unit" attribute of the button’s parent. Chapter 26 shows you how to
use this attribute to create child pet frames for a set of unit frames without
having to manually specify the pet units.

You can also make the button respond to your self-cast modifier by setting
its "checkselfcast" attribute to a true value.

Other Types and Their Uses

If you look at the source for the secureactionButton template, you likely
noticed the table sEcure_acTIons that is defined. Each entry in this table
defines a new type that is recognized by the secure template, and defines a set
of subordinate attributes that further control the button’s behavior.

The following is a list of the type attributes that are accepted by the
SecureActionButton template, and a list of the sub-attributes that further
customize that secure action. Types marked with a (U) respond to the unit
attribute and equivalents, if present.

292 Partlll = Advanced Addon Techniques

actionbar—Used to manipulate your action bar page.

action—Describes how to change the action bar page. A single number
means change directly to that page. A string with two numbers sep-
arated by a comma (for example, "1, 2") will swap between the two
given pages. It will switch directly to the first number if you are on a
page other than the two given. Finally, you can use either "increment"
or "decrement" to go up one page or down one page, respectively. They
will both wrap to the other end if you go too far.

action (U)— Activates an action slot. Subordinate attribute:

action (optional)—The action slot number to use. If you omit this
attribute, the action will be determined by the button’s ID in the
same manner as the default UL In other words, if you have a button
with an ID of 1, the actual action used would depend on your stance,
action bar page, and so on, just like the first button on the main action
bar. See useaction (API) for more information.

pet (U)—Uses one of your pet’s abilities. Subordinate attribute:

action—The pet action index of the ability you wish to use. See
CcastPetAction (API) for more information.

multispell —Configures a multi-cast action slot to use a specific spell.
Subordinate attributes:

action—The multi-cast action slot you would like to configure.
spell —The spell you would like to configure for the given action slot.
spell (U)—Casts the named spell. Subordinate attribute:

spell —The name of the spell to cast. See castspellByName (API) for more
information.

item (U)—Uses the given item. Subordinate attributes (two deprecated
attributes you may notice in the FrameXML code are intentionally
omitted):

item—Specifies the item to use. This attribute can take a number of forms
depending on how you want to access the item:

= 'Name of Item"—Byname.

= 'jtem:12345"—By item ID.

m 13" —By inventory slot number for equipped items.

m 3 12'—By bag and slot number for items in your bags.
macro—Runs a macro. Subordinate attributes:

macro— The macro to run. This can be the numerical index or the name
of a macro to run.

Chapter 15 = Taking Action with Secure Templates 293

macrotext—The text of a macro. Set this to a Lua string containing the
macro you want to run. This text is limited to 1023 bytes (usually
but not always single characters). A "macro" attribute will override a

"macrotext" one.

cancelaura—Removes a buff from the player, including secured buffs such
as druid forms. Subordinate attributes:

index—The number of the buff to remove from the player, in an arbitrary
order.

spell —The name of the buff to be removed. Ignored if index is present.
rank—The rank of buff to remove. Ignored if index is present.

stop—Cancels the target selection cursor (glowing blue hand). No subordi-
nate attributes are used.

target (U)—Manages unit targeting. If the unit attribute is set to none, the
action will clear the player’s target. If the player has a spell that is awaiting
a target (showing the glowing hand), the action will choose the target for
that spell. If the player’s cursor is holding an item, this action will drop
the item on that unit (initiate trade, equip, and so forth). Otherwise, this
action just targets the specified unit.

focus (U)—Focuses on the given unit.
assist (U)— Assists the specified unit.

maintank (U)—Sets the unit as a main tank for the raid. Subordinate
attribute:

action—A string indicating what assignment action should be taken:
m set—Sets the role on the given unit.
m clear—Clears the role from the given unit.
m toggle—Toggle the role for the given unit.
mainassist (U)—Sets the unit as a main assist for the raid.
action—A string indicating what assignment action should be taken:
m set—Sets the role on the given unit.
m clear—Clears the role from the given unit.
m toggle—Toggle the role for the given unit.
click—Securely simulates a click on another button. Subordinate attribute:

clickbutton—The button to click. This must be a direct reference, not the
name of the button.

294 Partlll = Advanced Addon Techniques

attribute—Securely sets an attribute on a frame, allowing one button
to configure another. Useful in combination with state handlers (see
Chapter 25). Subordinate attributes:

attribute-frame—A direct reference (not by frame name) to the frame on
which an attribute will be set. If this is ni1, it defaults to the button
itself.

attribute-name—The name of the attribute to set.
attribute-value—The value to set the attribute to.

If the type attribute is set to something other than one of these predefined
actions, such as “reveal”, the button will check the following places:

M sc]lf:GetAttribute("_reveal")

M cself["reveal"]

If the value stored is a function, it will call the function passing in the
following arguments:

= The button object itself.
m The unit attribute, if set.
m The mouse click that triggered the click handler.

If the value is a string, the secure handler will dispatch the contents of the
string as a secure handler _onclick call, covered in Chapter 25.

This method of function dispatch is used by the default user interface to
display the popup menus for unit frames.

Item Targets

If an action you are taking can target an item instead of a unit—using a poison,
for example—you can use the following attributes to specify what item to
target:

m target-slot—An inventory slot number by itself, or a bag slot number
along with target-bag.

®m target-bag—Specifies a bag number (0—4, right to left on the default bag
bar). You must also include a target-slot attribute.

®m target-item—The name of the item.

o

Using an “item” Type Button

Using the saBTest button you created earlier, run the following commands
in-game to set up some new behavior on your button. You’ll want to run these
tests on a character that has some bandages to spare so you can see the full
effect. Wherever you see Heavy Frostweave Bandage in the following code

samples, rename it to whatever bandages you have available.

Chapter 15 = Taking Action with Secure Templates

295

/run SABTest:SetAttribute("type", "item")
/run SABTest:SetAttribute("item", "Heavy Frostweave Bandage")
/run SABTest:SetAttribute("unit", "player")

The first line tells the button to use an item when it’s clicked. The second
specifies the bandages you want to use. Finally, the unit attribute tells the
button to use the item on the player. If your bandages were in the first slot of
your backpack, you could use an item attribute of "0 1" instead of the name
of the bandage, and it would always use whatever was in that slot.

Because bandages can only be used when you're missing some health, you’ll
want to head out into the wilderness and pick a fight with some easy mob.
There are plenty of other creative ways to reduce your health percentage (such
as un-equipping and re-equipping a piece of stamina gear). Whenever you feel
like bandaging yourself, click the saBTest button and enjoy.

Using an Item with a “macro” Type Button

If you have spent any time in the UI customization community before diving
into addon programming, you should be at least marginally familiar with
macros. One very simple example is a self-use macro. On an action button
this macro will behave exactly like the saBTest example from the preceding
section.

/use [target=player] Heavy Frostweave Bandage
Attaching this macro to the saBTest button is fairly straightforward:

/run SABTest:SetAttribute("type", "macro")
/run SABTest:SetAttribute("macrotext",
"/use [target=player] Heavy Frostweave Bandage")

Notice that even if you still have the unit attribute from the previous
self-bandage configuration, it will be completely ignored. "macro" type action
buttons leave that sort of decision entirely up to the macro itself.

ICTXI3 A thorough treatment of the macro system is beyond the scope of this
book. However, you can find further information in several places. Blizzard
provides an introductory macro guide at
http://worldofwarcraft.com/info/basics/macros.html. Although it does
not currently cover conditional macros, it has been updated with excellent basic
information.

Cogwheel, a member of the WoW Ul community, also created Cogwheel’s Complete
Macro Guide, which currently resides at www.wowwiki.com/Making a_macro. As
far as we know, its creator no longer maintains the page but it remains one of the
most comprehensive guides to WoW macros available, with detailed descriptions
of all the common (and many obscure) slash commands and macro options.

296 Partlll = Advanced Addon Techniques

Making Simple Choices

Writing addons that take protected actions is great, but what you've seen
so far is not very flexible. Sure, you can configure a button any way you
want—while you're out of combat. And that’s the real trick: to make an addon
behave even like the default UI, you have to be able to make certain changes
during combat. A action bar addon needs to change pages when you switch
forms. Unit frames that you can actually click to target need a way to show
and hide themselves.

Covering all of the possible options in this chapter isn’t very practical
(the secure snippets system is covered in Chapter 25), but this section does
introduce you to two of the most frequently used options for secure templates:
modifier keys and mouse buttons.

Working with Modified Attributes

The attributes you've worked with so far are universal. That is, there can
be only one unit attribute set on a given frame. The default user interface
allows you to take different action depending on whether you've right-clicked
or left-clicked a frame. Addons using secure templates can make a similar
distinction, and also add the capability to use modifier keys (Alt, Ctrl, and
Shift) to select the correct action.

Format of a Modified Attribute

If you call the attributes you’ve worked with so far root or unmodified attributes,
then a modified attribute consists of a prefix, followed by the root, followed by
a suffix.

m Prefix—Determines which modifier keys to check. The prefix doesn’t
have to be set, but should have a hyphen (dash) after it if it does.

m Root—The name of the root or unmodified attribute, the object that the
prefix and suffix modify.

m Suffix—The mouse button that can be used to trigger this action. If this
attribute isn’t included, it will default to any mouse button. You can also
specify this explicitly by using an asterisk (*) as a wildcard.

For example, set up your sapTest button with the following attributes (set
up for a Level 2 Priest):

/run SABTest:SetAttribute("type", "spell")

/run SABTest:SetAttribute("spell", "Lesser Heal")

/run SABTest:SetAttribute("unit", "player")

/run SABTest:SetAttribute("shift-typel", "spell")

/run SABTest:SetAttribute("shift-spelll", "Power Word: Fortitude")

This configures the button to cast Lesser Heal on the player when clicked
with the left button, but when Shift+left-clicked, it casts Power Word: Fortitude

Chapter 15 = Taking Action with Secure Templates

297

on the player instead. For the last attribute, the prefix is shi ft, the root attribute
is spell, and the prefix is 1.

The prefix can be any combination of alt, ctrl, and shift, chained together
with hyphens. They must appear in alphabetical order, so the combination of
Alt and Shift would be alt-shift and Alt, Ctrl, and Shift together would be
alt-ctrl-shift. The mouse button is just a number that maps to a specific
mouse button.

Inheritance of Attributes

Attributes have some default inheritance that can make it easier to set things
up. For example if you were to right-click the sapTest button while holding
your Ctrl and Alt keys, it will check for the following "spell" attributes
in order:

1. alt-ctrl-spell2
2. *spell2
3. alt-ctrl-spell*
4. *spell*
5. spell

Remember that an asterisk (*) is used to match any prefix or suffix.

You can also map modifier keys to arbitrary names by using a "modifiers"
attribute on the button. This attribute uses the following format, with items in
brackets (I 1) being optional:

MODIFIER[:name] [,MODIFIER[:namell]...

MODIFIER can be a normal modifier (AT, CTRL, or SHIFT) or a modifier
variable, such as SELFCAST. See IsModifiedclick (API) for details. If no name
is specified, the lowercase version of the modifier will be returned. For example:

SPLITSTACK:split,ALT
This value will give a prefix of "split-" if you are holding down the

stack-splitting modifier or "a1t-" if you are holding the Alt key.

Choosing an Action by Mouse Button

You have most likely guessed that to pick a spell based on a mouse button you
need to specify a suffix. The most basic suffixes are the numbers 1 to 5, which
indicate mouse buttons:

1. Left button
Right button
Middle button
Button 4
Button 5

SARNE S

298 Partlll = Advanced Addon Techniques

m The prefix/suffix system is a bit stricter than you might first assume.
The five attribute variations mentioned earlier create some specific situations
worth noting. For example, although you can use "spell" as a last resort fallback,
"spell2" will match only if you're not holding any modifier keys.

When in doubt, decide whether it is more appropriate for you to use wildcards, or
strict attributes.

Delegating Attribute Responsibility

If you have a number of secure action buttons that are closely related,
perhaps an action bar, modified attributes provide a "useparent" facility to
delegate an attribute to the button’s parent, which makes it easier to apply
configurations to multiple buttons. If secureButton_GetModifiedattribute
does not find a match with one of the five variations, it will check for a
"useparent-root" Or "useparent*" attribute. If it finds one, it will get the
modified attribute from the parent.

For example, the default Ul's action buttons have a "useparent-unit"
attribute. With one simple setting, you can make all of the buttons on the main
bar cast normally with a left-click, or always on yourself with a right-click:

/run MainMenuBarArtFrame:SetAttribute ("*unit2", "player")

Choosing an Action by Hostility

You can customize the “mouse button” in a way that is checked against the
suffix.

Two new attributes allow you to change the nature of the button based
on the nature of the specified unit: "helpbutton", meaning you can cast
beneficial spells on the unit, and "harmbutton", meaning you can attack the
unit. The value of these attributes is a string that will be used for the suffix in
subsequent modified attribute checks. You can continue the previous example
with Shadow Word: Pain and Power Word: Shield by making a single button
that automatically picks between the two:

/run SABTest:SetAttribute("unit", "target")

/run SABTest:SetAttribute ("harmbutton", "nuke")

/run SABTest:SetAttribute ("helpbutton", "heal")

/run SABTest:SetAttribute("*spell-nuke", "Shadow Word: Pain")
/run SABTest:SetAttribute("*spell-heal", "Lesser Heal")

Some targets can be neither helped nor harmed (neutral NPCs, for instance).
In cases like that, the preceding example will do nothing. You must explicitly
set a unit attribute; otherwise helpbutton and harmbutton will be ignored.

It is worth noting that "helpbutton" and "harmbutton" themselves can also
be modified. That way you can create different suffixes depending on which
actual mouse button was used to click the button.

Chapter 15 = Taking Action with Secure Templates

299

Applying Action Buttons in Practice

At this point, all the fundamentals of the secure template system have been
covered. Now that you have a grasp of the various interactions among
attributes, suffixes, protected frames, and taint, you can put it into practice by
making changes to existing action buttons and creating new ones.

Modifying an Existing Frame

The standard behavior of a unit frame is to target its unit when left-clicked. The
target frame also follows this convention, even though targeting your target
is not normally a useful action. You can reclaim some of that “click-space”
by typing the following into WoWLua (if you're over level 8 or so, substitute
whatever sort of bandage you're currently using):

/run TargetFrame:SetAttribute('item', "Linen Bandage")
/run TargetFrame:SetAttribute('shift-type*', 'item')
/run TargetFrame:SetAttribute('ctrl-type*', 'item')
/run TargetFrame:SetAttribute('alt-type*', 'item')

The plain click is left as a target action because it is still useful to take
action on your current target if you have, say, a beneficial spell ready to cast
(your cursor shows the blue glow). But now, when you left-click your target’s
portrait with a modifier down, you’ll bandage your target. Right-clicking
your target still brings up his unit menu, with raid marker options and so
on. That’s because TargetFrame inherits ﬁxnn,SecureUnitButtonTemplate,a
special subspecies of secureactionButtonTemplate designed for unit frames
that sets the *type2 attribute to a menu function.

.m There is a slightly simpler, but less intuitive way to define bandaging as
the behavior on any modified click, and that is to set the 'type' or ' *typel’
attributes to 'item' and the 'type*’ or 'typel' attributes to ‘target'. That
way, the target action is selected only when the click is actually unmodified.

If you have several changes to make to a frame, you may find it useful to
add a setFrameAttributes function like this one:

function SetFrameAttributes(self, attributes)
for name, value in pairs(attributes) do
if type(name) == 'string' then
self:SetAttribute (name, value)
end
end
end
TargetFrame.SetAttributes = SetFrameAttributes

300 Partlll = Advanced Addon Techniques

That enables you to set multiple attributes with an understandable list
format:

TargetFrame:SetAttributes(

unit = 'target', -- this was also preset by the frame definition
type = 'target', -- so was this

["*type2'] = 'menu', -- and this

item = 'Linen Bandage',

['shift-type*'] = 'item',

['ctrl-type*'] = 'item',

["alt-type*'] = 'item'

}

This approach generates a throw-away table; it’s suitable for one-time or
otherwise infrequent setup, but should be avoided for frequent changes.

A Complex Action Button

The last example for this chapter builds a single button from scratch that
can cast one of three spells—depending on what modifier keys are held—on
one of three friendly targets, depending on which mouse button was used
and whether the target was friendly. The example uses priest abilities; feel
free to adjust the attributes to your liking and experiment with different
configurations.

This mini-addon adds an action button to the lower-left region of the screen.
Click it to cast the spell Greater Heal; Shift4-click for Power Word: Shield; and
Ctrl+click for Renew. Moreover, it offers some more options on who to heal
or protect: while it usually casts on your target, right-clicking casts on your
focus, and clicking while you have an enemy targeted automatically casts on
yourself, without changing your target.

Here’s what to do:

1. Create a directory called QuickCasterButton in your Interface\AddOns
directory.

2. Create a file inside this new directory named QuickCasterButton. toc,
containing the following lines:

Interface: 30300

Title: QuickCasterButton

Notes: Casts a variety of helpful spells on different targets
QuickCasterButton.xml

3. Create another file in the same directory named QuickcasterButton.xml,
and open it in a text editor.

Chapter 15 = Taking Action with Secure Templates 301

4. Enter the beginning tags for the Ul definition (required for any addon
XML file) and the button frame:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI .xsd">

This example illustrates one of the most common uses of secureaction
ButtonTemplate, which is to marry it to ActionButtonTemplate via
multiple inheritance; this creates a button that has the “look and
feel” of the stock action buttons pre-built. The commonly used
ActionBarButtonTemplate begins with these two templates, and then
adds functions to keep the buttons” appearance up-to-date with what
they do. In this case, using the templates directly keeps things simple.

5. Enter the anchor code to place the button in the lower left:

<Anchors>
<Anchor point="BOTTOMLEFT" relativeTo="UIParent">
<Offset x="180" y="280" />
</Anchor>
</Anchors>

6. Open the <attributes> tag and define the button as a spell button:

<Attributes>
<Attribute name="type" value="spell" />

7. Define the default spell for the button, as well as spells for Shift4click
and Ctrl+click:

<Attribute name="spell" value="Greater Heal" />
<Attribute name="shift-spell*" value="Power Word: Shield" />
<Attribute name="ctrl-spell*" value="Renew" />

8. Now define the units for the button to affect. nil is usually the same as
"target", but for harmbutton to work in the next step, an actual target
needs to be defined:

<Attribute name="unit" value="target" />
<Attribute name="*unit2" value="focus" />

A very powerful technique is to vary one attribute according to the mod-
ifier and another one according to the button. In this example, the mouse
button clicked specifies the unit to cast on, and the modifiers choose the
spell to cast. In this way, a whole grid of unit-spell combinations can be
created with comparatively few frame attributes.

302 Partlll = Advanced Addon Techniques

9. Define the name of the button you want used when the target is an
enemy, and then define the unit to use when that button is clicked:

<Attribute name="harmbutton" value="self" />
<Attribute name="*unit-self" value="player" />

10. Close the attributes section and start a scripts section so you can do
needed setup on the button:

</Attributes>
<Scripts>

11. Buttons, by default, are only registered for left-clicks when they're created,
so you need to fix that if you want to right-click the button:

<OnLoad>
self:RegisterForClicks ("AnyUp")

12. Because there is no action slot to which the button’s icon will be updated,
you need to set a static texture for its appearance:

_G[self:GetName().."Icon"]:SetTexture (<3
[[Interface\Icons\Spell Holy_ ImprovedResistanceAuras]])

13. The last step is close out the open tags and save the file:

</OnLoad>
</Scripts>
</Button>
</Ui>

Figure 15-2 shows the fully functional QuickCasterButton that you can use
to cast spells.

Figure 15-2: The functional QuickCasterButton

Understanding Taint and Working Safely Around
Secure Code

The secure code system depends on its function being very thorough. Any
attempt by insecure code to interfere with a secure action will cause the
secure action to fail or further spread the taint. Addons that approach or
manipulate secure buttons or other Ul elements depend on a very close
association of secure and contagiously insecure code, and it’s easy to end up
getting the influence of insecure code where it doesn’t belong, causing familiar
elements of the UI to break in new and inventive ways.

Chapter 15 = Taking Action with Secure Templates

303

If you're getting error messages about actions only permitted to the Blizzard
UL or “Interface action failed because of an AddOn” messages are cropping
up in your chat log, it’s important to understand how taint works and
spreads if you're going to try and fix these issues. If you're not familiar
with the protection violation error message, you can reproduce it by running
CastSpellByName ("Attack") using WoWLua, producing the error shown in
Figure 15-3.

WionaiLua k *n blocked from an action only

You can this addon and r

Figure 15-3: Protected function error

Notice that the message references WowLua. When WoW loads a Lua file,
every value created by the addon (functions and other globals) is marked as
such. In this case, the code in WowLua that executes your commands is known
to be tainted. When it tries to access castSpellByName, the WoW game code
refuses to comply. Instead, it throws an error with the name of the addon that
caused the taint.

.]m] The castSpellByName function itself is not blocked for tainted code.
Rather, it is the actual casting of spells that is blocked. For example, if you try to
cast a spell that you do not have, castspellByName will fail silently. Additionally,
you can safely use castSpellByName to open tradeskills.

Enabling Taint Logging

Sometimes the way taint spreads can seem mysterious because of the various
and complex interactions of different parts of the Ul code (addons, macros,
and built-in code). First, run the following command to turn on taint logging:

/console taintLog 1

The taint log shows you a time line of when taint occurs and how the taint
blocks an action. Level 1 only shows taint events if they lead up to a blocked
action. Level 2 records every single occurrence of taint including those that
are completely innocuous (and indeed inevitable). To turn off taint logging,
pass it a zero (0). The following is an example taint log attempting to run
CastSpellByName:

5/28 15:01:43.302 An action was blocked because of taint from WowLua -

CastSpellByName ()

5/28 15:01:43.302 WowLua: 1

5/28 15:01:43.302 pcall()

5/28 15:01:43.302 Interface\AddOns\WowLua\WowLua.lua:217 RunScript ()

5/28 15:01:43.302 Interface\AddOns\WowLua\WowLua.lua:600 Button_Run()

304

Part Ill = Advanced Addon Techniques

5/28 15:01:43.302 Interface\AddOns\WowLua\WowLua.lua:276 Button_OnClick()
5/28 15:01:43.302 WowLuaButton_Run:0nClick()

The first line shows the actual event, the call to castSpellByName that
generated the error message shown in Figure 15-3. The other indented lines
show a stack trace leading up to the event to help you track down the source of
any problems. Upcoming sections take a closer look at some other taint logs.

Taintlogsaresaved as taint . loginthe Logs folder of your WoW installation.
Like chat logs, they are only written to disk when the game exits or the Ul
is reloaded. To see the taint log for your current session, you must manually
reload the Ul and then open the file quickly because WoW sometimes likes to
empty it during gameplay.

Execution Taint

There are two ways to spread taint. One is temporary and only exists when
a particular chain of code is executing. The other is more persistent and the
cause of many headaches. The first is what you experienced in the preceding
example. The taint travels up the call stack from one function to another. For
example, enter the following command in the chat box (not WowLua):

/run WowLua:ProcessLine ("CastSpellByName ('Attack')")

WowLua works by reading each line of text you enter and then running it as
Lua code. With the preceding command, you are manually calling the function
that does this, telling it to attempt to cast the Attack spell. The important point
to note is that the game blames WowLua for the infraction, not the macro
command. Figure 15-4 illustrates the taint path and the state of the blame.

Tainted as a
(fun .. J macro script

2 ;
| ProcessLine | T\?\/Ig\t,\?fuzs

} !

| CastSpellByName | T\f\;g\t,\t’afuzs

Y

(Error)

Figure 15-4: Execution taint path

The taint begins when the macro processes the /run command (remember
that macros fall under the same restrictions as addons). At this point, the taint
is attributed to the macro command. If you were to call castSpellByName
directly, the error would mention “A macro script.” Instead, you call

Chapter 15 = Taking Action with Secure Templates 305

WowLua: ProcessLine, which now receives blame for the taint. The function
executes the code sent, which in turn tries to call castSpellByName. YOou can
also follow this path through the taint log.

5/27 22:06:26.890 An action was blocked because of taint from WowLua -

CastSpellByName ()

5/27 22:06:26.890 CastSpellByName ('Attack') : 1

5/27 22:06:26.890 pcall ()

5/27 22:06:26.890 Interface\AddOns\WowLua\WowLua.lua:177 ProcessLine ()

5/27 22:06:26.890 WowLua: ProcessLine ("CastSpellByName ('Attack')"):1

5/27 22:06:26.890 RunScript ()

5/27 22:06:26.890 Interface\FrameXML\ChatFrame.lua:1826 ?()

5/27 22:06:26.890 Interface\FrameXML\ChatFrame.lua:3332 ChatEdit_ParseText ()
5/27 22:06:26.890 Interface\FrameXML\ChatFrame.lua:3052 ChatEdit_SendText ()
5/27 22:06:26.890 Interface\FrameXML\ChatFrame.lua:3073 «3
ChatEdit_OnEnterPressed()

5/27 22:06:26.890 ChatFrameEditBox:0OnEnterPressed ()

Working from bottom to top, the log begins when you press Enter in the
chat box. Next, it works its way up to Runscript (), which applies the first
taint in the sequence, blaming it on ““A macro script.”” The macro script then
calls wowLua: ProcessLine, which receives blame for the taint.

Execution taint is transient because none of the functions involved is perma-
nently affected in any way. The default UI uses castSpellByName for certain
cases of spell casting. Even after erroneously calling, as shown here, WoW
still behaves correctly. The taint itself goes away as soon as the original /run
command finishes.

Variable Taint

Less forgiving than execution taint, variable taint can permanently (for the
session) affect certain aspects of the built-in code. Variable taint is almost
an extension of execution taint; they both play off of each other, and even
overlap in some ways. Any tainted execution path has the potential to cause
variable taint.

Recall from Part I the ideas of values and references. World of Warcraft
has modified its Lua engine to store a taint flag with every value in the Lua
environment that identifies if the value is tainted, and the addon that caused
the taint. This is how the preceding example determined the blame. Variable
taint is caused when a tainted code path creates a new value or reference. Any
time your code makes a new global variable, function, table, and so on, that
new value is now tainted. Where you begin to run into trouble is when you
start modifying variables used by the default UL Here’s an example in action.
Type the following line into WowLua:

/run NUM_ACTIONBAR_BUTTONS = NUM_ACTIONBAR_BUTTONS

306

Part Ill = Advanced Addon Techniques

Now try to use any ability on your action bar and you will see an
addon blocked messages similar to the one you saw before. The func-
tion ActionButton_CalculateActionin FrameXML\ActionButton.lua uses this
variable to determine which action slot to activate when you press the button.
As soon as the code accesses the tainted value, the execution path becomes
infected with execution taint. This causes an error when the code attempts to
run the Useaction function. The only way to “cure” this condition is to reload
the UL

.m The taint error from setting NuM_acTIoNBAR_ BUTTONS Will probably not
appear if you are using a custom bar mod. The default Ul's action buttons calculate
which action slot to use based on NUM_ACTIONBAR_BUTTONS, the button’s ID (set
via the id XML attribute), and some other pieces of data. Addons’ action buttons
usually do not use IDs, so ActionButton_CalculateAction never runs into the
tainted value.

NUM_ACTIONBAR_BUTTONS could be set to some number directly, but it is
important to realize that the taint is caused simply by the act of assignment
itself. The fact that the value came from a secure variable does not exempt you
from taint.

Another chart is helpful to picture the interactions. Figure 15-5 shows the
series of events that occurs when you click the action button after tainting
NUM_ACTIONBAR_BUTTONS. Again, note that it’s the simple action of reading the
tainted variable that causes the execution path to be tainted.

(OnClick) Secure

) |

|ActionButton_CaIcuIateAction | ?\ﬂ,\%\/ ?{;ﬁ'g,ﬁéﬂg‘ gﬂ%ag;\lnsg

Tainted as
WowlLua

(Error)

Figure 15-5: Code path tainted by a modified variable

Take a look at the resulting taint log:

5/28 15:27:23.454 Global variable NUM_ACTIONBAR_BUTTONS tainted by WowL
ua -

WowLua: 1

5/28 15:27:23.454 pcall ()

5/28 15:27:23.454 Interface\AddOns\WowLua\WowLua.lua:217 RunScript ()

Chapter 15 = Taking Action with Secure Templates

307

5/28 15:27:23.454 Interface\AddOns\WowLua\WowLua.lua:600 Button_Run()
5/28 15:27:23.454 Interface\AddOns\WowLua\WowLua.lua:276 Button_OnClick()
5/28 15:27:23.454 WowLuaButton_Run:0nClick()

5/28 15:27:23.454 Execution tainted by WowLua while reading «3
NUM_ACTIONBAR_BUTTONS - Interface\FrameXML\ActionButton.lua:139 2
ActionButton_CalculateAction()

5/28 15:27:23.454 Interface\FrameXML\SecureTemplates.lua:253 handler ()
5/28 15:27:23.454 Interface\FrameXML\SecureTemplates.lua:460

5/28 15:27:23.454 An action was blocked because of taint from WowLua -
UseAction()

5/28 15:27:23.454 Interface\FrameXML\SecureTemplates.lua:258 handler ()
5/28 15:27:23.454 Interface\FrameXML\SecureTemplates.lua:460

The first “Global variable tainted” event shows the taint being applied
to NUM_ACTIONBAR_BUTTONS. The next “Execution tainted” event, which
was originally triggered by the button’s onclick handler, occurs during
ActionButton_CalculateAction,as anticipated. Finally, useAction is blocked
from executing because the code path was tainted.

| NOTE RS particular taint log illustrates a particular distinction between taint
log levels 1 and 2. Notice that all three events share the same time stamp. At level
1, WoW waits until taint actually causes a blocked action before reporting it. When
the action blocked message is generated, WoW goes back through its taint history
and retrieves the first two events, and all three events are then output to the log. If
you were to click the action button a second time, all three events would be
logged again, even though the first one happened some time ago.

On the other hand, level 2 records each event exactly as it happens. Every global
variable set by an addon generates a tainted message. Every time Blizzard code
reads an insecure variable, it generates an execution tainted message. This makes
level 2 extremely verbose, but it can also be more telling for a given issue.

Creeping Taint

One of the problems you may come across when dealing with taint issues
is the gradual spreading of variable taint. Say you have a tainted variable
used by the default UI (such as the earlier NuM_ACTIONBAR_BUTTONS example).
As explained, as soon as the built-in code accesses this variable, it becomes
tainted. Well, what happens when the tainted execution path then modifies
some other variable? That variable is now afflicted with the same taint that is
affecting the current execution path.

This process can happen repeatedly, often unnoticed, with each new tainted
variable potentially causing even more taint. In this way, your addon can taint
entire subsystems of the UI without modifying more than a single variable.
Not only can it spread far and wide, but the speed of the spreading can be
misleading. Some code in the default Ul runs based on events that are not

308

Part Ill = Advanced Addon Techniques

exactly frequent. One piece of misplaced taint may not cause any problems
until you join a raid group or travel to another continent, for example.

These situations are where the taint logs can really shine. When you receive
an “action blocked” message during development, simply turn on taintlogging
and you can track down the problems. Level 2 is especially helpful in a case like
this because it allows you to see exactly when each variable becomes tainted.

Summary

This chapter covered a lot of ground. By now, you should be acquainted with:

m The basic intent of the secure code system, which is to protect the game
from automation while still enabling customization.

m The concept of protected frames and which of their characteristics are
restricted from changes during combat.

= How frame attributes allow secure code to receive control messages safely
from addon code.

= How taint can propagate from addon code to Blizzard code and cause the
UI to fail, and how to identify and prevent this.

The secure template system uses a wide assortment of specific features—
taint, protected functions and frames, attributes, and so on—to achieve a much
larger goal. It needs to protect the game against too much automation and, at
the same time, allow addons to alter the way you interact in combat. There is
still a lot to cover, but once you understand the basics laid out here, the rest
will flow much more freely.

CHAPTER

16

Binding Keys and Clicks
to Addon Code

Most of the user input discussed so far has revolved around the mouse
and graphical interface elements. Chapter 12 gave you a taste of onclick,
onEnter, and a few other handlers, as well as the Button and Edi tBox widgets.
In Chapter 15, you learned how to change the behavior of action buttons
depending on which mouse button was used and/or which modifier keys
were pressed at the time. This chapter shows you how to interact with the
keyboard and mouse directly, outside the context of UI widgets.

m The only forms of user input the WoW interface recognizes at the time of this
writing are keyboard and mouse. If you want to use alternative means to control
the game, say a gamepad or voice commands, you have to configure the hardware
or software so that they imitate a keyboard or mouse. There is evidence of
possible joystick or gamepad support in a future patch, but nothing is officially
part of the Ul yet.

The key binding system treats both types of input the same way. Each key
or mouse button goes by a particular name. For basic letters, numbers, and
symbols, the name is simply the result of hitting the key with Caps Lock on.
Special keys and mouse buttons have descriptive names like LEFT, NUMPAD3, Or
BUTTONL . For the sake of simplicity, we'll refer to these as keys, which you can
take to mean “’key or mouse button name.” You use the key-binding interface
(accessible from the main game menu) as shown in Figure 16-1 to assign these
various keys to specific actions.

Keys and commands have a many-to-one relationship—you can bind many
keys to one command, but you can’t bind one key to many commands. You

309

310 Partlll = Advanced Addon Techniques

can see this in the screenshot, which has two columns of key buttons for each
command (behind the scenes, you're not limited to two).

Figure 16-1: WoW key binding interface

The commands that appear in the default key binding interface are specified
in FramexML\Bindings.xml. You can also provide a Bindings.xml file in the
root directory of your addon to add custom bindings to the list.

Defining Bindings in XML

The structure of Bindings.xml is very simple. The root element is Bindings,
and each command is represented by a single Binding element. The key
binding interface builds the list of bindings in the same order they appear in
the file. When addons provide a Bindings.xml, their bindings appear at the
end of the list in the order the addons are loaded. Take a look at an entry from
the default user interface:

<Bindings>

<Binding name="TOGGLESHEATH">
ToggleSheath () ;

Chapter 16 = Binding Keys and Clicks to Addon Code

311

</Binding>
</Bindings>

The name attribute, in this case TOGGLESHEATH, sets the name of this particular
action. You use this name with the setBinding() functions later in this
chapter. The key binding interface looks for a global string variable called
BINDING_NAME_name to label the binding in the list. For example, the value
of BINDING_NAME_TOGGLESHEATH iS Sheath/Unsheath Weapon in the English
version of WoW (see Figure 16-1).

Once you bind a key to a command, the code inside the Binding tag
is executed whenever you press the key. In this case, because z is bound
to TOGGLESHEATH, pressing z calls the Togglesheath function, which cycles
through your equipped weapons.

BCTXI3 There are certain situations in which key bindings might not appear to
work correctly, such as when you try to use a keyboard binding while an EditBox
widget has the keyboard focus. Similarly for mouse buttons, any time the cursor is
over a mouse-enabled frame, the frame consumes button clicks for use with
onClick, OnMouseDown, and so on, whether or not the handlers have been
defined for the frame.

Key bindings are consulted only if the keys or buttons aren’t consumed by some
other aspect of the user interface.

Here’s another example from the built-in Bindings.xml that illustrates a
couple more features:

<Binding name="MOVEANDSTEER" runOnUp="true" header="MOVEMENT">
if (keystate == "down") then
MoveAndSteerStart () ;
else
MoveAndSteerStop () ;
end
</Binding>

As with the previous example, this binding includes a name attribute
and a Lua chunk. The new header attribute sets up a heading for the key
binding interface. In this case WoW looks for BINDING_HEADER_<attribute>
to determine the text of the header. You can see in Figure 16-1 that
BINDING_HEADER_MOVEMENT is defined as Movement Keys in the English client.

Of particular note is the runonup attribute, which tells the game to execute the
binding code twice: once when the key is pressed down, and again when
the key is released. The code sample shows that WoW provides a keystate

312 Partlll = Advanced Addon Techniques

parameter of either "down" or "up", allowing you to determine which condition
triggered the execution.

Creating Your Own Binding Actions

Now that you have an idea of the structure of the bindings file, take a moment
to experiment with some bindings of your own. For the next few sections,
you’ll work on an addon called BindingTest. Create a directory under your
Addons directory called BindingTest. Create BindingTest.toc and add the
following to the file:

Interface: 30200
Title: Key Bindings Test
Notes: Demonstrates the usage of Bindings.xml

BindingTest.lua
BindingTest .xml

Create empty BindingTest.lua and BindingTest.xml files; you'll add code
to them later. Finally, create a file called Bindings.xml and input the follow-
ing code:

<Bindings>
<Binding name="BINDING_TEST1" header="BINDING_TEST">
BindingTest_Testl ()
</Binding>
<Binding name="BINDING_TEST2" runOnUp="true">
BindingTest_Test2 (keystate)
</Binding>

</Bindings>

Notice that Bindings.xml is not listed in the table of contents file—WoW
always loads Bindings.xml if present.

If you start up WoW and open the key bindings interface, you should see
something like Figure 16-2.

Notice how there’s an empty space where the header will go, and how
your custom bindings are simply labeled with the action names from
Bindings.xml. To remedy this, open your addon’s Lua file and add the
following global strings:

BINDING_HEADER_BINDING_TEST = "Test bindings for Chapter 16"
BINDING_NAME_BINDING_TEST1 = "Test binding #1"
BINDING_NAME_BINDING_TEST2 = "Test binding #2"

Save the file and reload the user interface using the /reload slash command.
Now when you open the key bindings screen it should look like Figure 16-3.

Chapter 16 = Binding Keys and Clicks to Addon Code 313

Figure 16-2: Key binding interface with blank test bindings

Figure 16-3: Key binding interface with named test bindings

314 Partlll = Advanced Addon Techniques

At this point, you can go ahead and bind keys to these two test bindings.
You'll probably want to use keys that aren’t already bound to something
important to save you a bit of trouble when you get back to actually playing
the game. Because you haven’t defined the functions yet, activating the key
bindings triggers a Lua error. Add these functions to BindingTest.lua and
give them basic behavior as follows:

function BindingTest_Testl ()
print ("Test binding #1 activated")
end

function BindingTest_Test2 (keystate)
if keystate == "down" then
print ("Test binding #2 pressed")
else
print ("Test binding #2 released")
end
end

After reloading the Ul, spend a few moments experimenting with the two
keys you bound. You'll see results similar to Figure 16-4.

® Jlestbinding#2 released
Test binding #1 activated

 lestbinding#2ipressed
Test binding #2ireleased

- lestbinding#Znressed
Testbinding %1 aciivated

— lestbinding i 2ctivated

- Hestbinding #2released

Figure 16-4: Sample output from key bindings

One point worth noting from this screenshot is that more than one binding
can be “in progress” simultaneously. This is illustrated in the last four lines
where Test #2 is pressed, then Test #1 is activated twice, and finally Test #2 is
released. The number of separate keys that you can use at the same time varies
depending on your keyboard hardware and operating system.

Binding Keys to Actions

The key binding interface works fairly well for basic binding control, but it
does have a few limitations. First off, many users complain about the interface
itself because it’s rather difficult to navigate—especially when you start piling
on more and more addons with their additional sections. There’s also the
problem mentioned earlier where only two keys are shown for a given action.

You may choose to bypass the default interface altogether for your addon,
or perhaps you want to make an addon that replaces the key binding interface

Chapter 16 = Binding Keys and Clicks to Addon Code

315

itself with something a bit more flexible. Either way, you'll need to set the key
bindings programmatically.

Building a Simple Binding Ul

To give you an overview of the various binding APIs, create a basic binding
interface for the BindingTest addon. This interface will consist of two buttons,
one for each binding action. You left-click the buttons to add a binding
and right-click to remove a binding. Figure 16-5 shows an example of this
interface in use.

Figure 16-5: Basic key binding interface

To begin, open BindingTest .xml and add the following code:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI .xsd">

<Button name="BindingTestButtonTemplate" inherits= 3
"UIPanelButtonTemplate2" virtual="true">
<Size x="150" y="24"/>
<Scripts>
<OnLoad function="BindingTestButton_OnLoad"/>
<OnClick function="BindingTestButton_OnClick"/>
<OnEnter function="BindingTestButton_OnEnter"/>
<OnLeave function="BindingTestButton_OnLeave"/>
</Scripts>
</Button>

</Ui>

The two buttons will be identical in most respects, so you define a template
from which the buttons will inherit. The onLoad script will initialize the button
with a label and associated binding information based on the button’s ID.
The onclick script will display the bindings frame when clicked, and the
OnEnter/OnLeave scripts will show and hide the tooltip.

316 Partlll = Advanced Addon Techniques

Create a frame to hold the buttons and the buttons themselves by adding the
following code immediately after the template definition, within the ui tag.

<Frame name="BindingTestFrame">
<Size x="1" y="1"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Frames>
<Button name="BindingTestButtonl" 3
inherits="BindingTestButtonTemplate" id="1">
<Anchors>
<Anchor point="BOTTOM" relativePoint="CENTER"/>
</Anchors>
</Button>
<Button name="BindingTestButton2"
inherits="BindingTestButtonTemplate" id="2">
<Anchors>
<Anchor point="TOP" relativePoint="CENTER"/>
</Anchors>
</Button>
</Frames>
</Frame>

The outer frame doesn’t really provide any functionality of its own; it
simply serves to encapsulate the two buttons. If you'd prefer not to have the
buttons directly in the center of the screen, you can anchor BindingTestFrame
elsewhere and the buttons will move with it.

The buttons themselves are anchored such that one sits directly above the
position of BindingTestFrame and the other sits just below.

Finally, you need a frame that can capture keyboard and mouse input so
you can assign the bindings as necessary. You'll use a button widget to take
advantage of the onclick handler. Start off by creating the basic appearance
of the button as follows:

<Button name="BindingTestCaptureFrame" hidden="true" enableKeyboard= 2
"true" frameStrata="DIALOG">

<Size x="175" y="90"/>

<Anchors>

<Anchor point="CENTER"/>

</Anchors>

<Backdrop bgFile="Interface\Tooltips\UI-Tooltip-Background" edgeFile=
"Interface\Tooltips\UI-Tooltip-Border" tile="true">

Chapter 16 = Binding Keys and Clicks to Addon Code

<EdgeSize val="16"/>
<TileSize val="16"/>
<BackgroundInsets left="5" right="5" top="5" bottom="5"/>
<Color r="0" g="0" b="0"/>
</Backdrop>
</Button>

Because this frame pops up in response to clicking one of the two buttons,
it starts off hidden. As soon as you show the frame it captures all key presses
thanks to the enablekeyboard attribute. The backdrop section gives the frame
an appearance similar to a tooltip. Next, add a font string immediately after
the </Backdrop> tag, but before the </Button> tag. This font string will be
used to display instructions to the user. Here’s the code:

<Layers>
<Layer level="ARTWORK">
<FontString inherits="GameFontNormal" parentKey="text">
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="10" y="-10"/>
</Anchor>
<Anchor point="BOTTOMRIGHT">
<Offset x="-10" y="10"/>
</Anchor>
</Anchors>
</FontString>
</Layer>
</Layers>

Finally, add the script definitions after the </Layers> tag:

<Scripts>
<OnLoad function="BindingTestCapture_OnLoad"/>
<OnShow function="BindingTestCapture_OnShow"/>
<OnKeyDown function="BindingTestCapture_OnKeyDown"/>
<OnClick function="BindingTestCapture_OnClick"/>
</Scripts>

The onLoad script initializes the frame. The onshow script changes the text
of the frame to indicate which binding is being changed. The onkeyDown
and onclick scripts are used to capture the keyboard and mouse input,
respectively.

Load the game at this point and you'll see two blank buttons (see Figure 16-6)
in the middle of the screen that don’t do anything interesting when pressed.

318 Partlll

Advanced Addon Techniques

Figure 16-6: Blank binding test buttons

Defining Basic Behaviors

Now it’s time to add the behavior to your Ul Open the addon’s Lua file if it’s
not already open. After the global binding labels at the top of the file, add the
following strings:

local
local
local
local
local
local
Press

Press

BUTTON_CAPTION = "Set Test Binding #%d4d"

TOOLTIP_TEXT1 = "Left-click to add binding"
TOOLTIP_TEXT2 = "Right-click to remove first binding"
TOOLTIP_BINDING_LIST = "Currently bound: |cFFFFFFFF%s|r"
LIST_SEPARATOR = "|r, |cFFFFFFFF"

CAPTURE_TEXT = [[

a key or click this frame to set test binding #|cFFFFFFFF%d|r.

| cFFFFFFFFESC|r to cancel.]]

These strings are used as follows:

m BUTTON_CAPTION—This is the label for the two main buttons.

= TOOLTIP_xxxx— lhese are the text that appears in the tooltip.

m 1.1ST_SEPARATOR—The “’Currently bound” section of the tooltip lists each
key bound to the button’s associated action. This is the separator between
items in the list. Note the use of color codes to make the key names stand
out.

= cAPTURE_TEXT— This is the text for the capture frame.

So you'll be able to see the progress of your work at each step, create stubs
for all of the scripts you defined in the XML by adding the following code to
the end of the Lua file:

function BindingTestButton_OnLoad (self)

end

function BindingTestButton_OnClick(self, button)

end

function BindingTestButton_OnEnter (self)

end

Chapter 16 = Binding Keys and Clicks to Addon Code

319

function BindingTestButton_OnLeave (self)
end

function BindingTestCapture_OnLoad (self)
end

function BindingTestCapture_OnShow (self)
end

function BindingTestCapture_OnKeyDown (self, key)
end

function BindingTestCapture_OnClick(self, button)
end

Start off the addon’s behavior by filling in the Button_onLoad function
as follows:

function BindingTestButton_OnLoad (self)
local id = self:GetID()
self:SetText (BUTTON_CAPTION: format (id))
self.action = "BINDING_TEST"..id
self:RegisterForClicks ("LeftButtonUp", "RightButtonUp")
end

First the function sets the text of the button based on the button’s ID. Next it
stores the name of the associated binding action. Finally, it registers the button
to receive left- and right-clicks. Reload your UI and the buttons should now
look like Figure 16-7.

| Set Test Bincfing 41|
| set Tesi binding #2_]
Figure 16-7: Binding test buttons with labels

Of course, the labels bear false witness because the buttons don’t actually
do anything yet. Fix that by filling in the Button_onclick function:

function BindingTestButton_OnClick(self, button)
if button == "LeftButton" then
BindingTestCaptureFrame.button = self

320 Partlll = Advanced Addon Techniques

BindingTestCaptureFrame:Show()
elseif button == "RightButton" then
-- Binding removal code will go here
end
end

As you can see, a left-click shows the capture frame after initializing it with
the selected button. For now, the right-click behavior is empty. You'll fill that
in later after working with some of the binding APIs.

Before reloading the UI, you'll want to make sure there’s a way to close
the capture frame. Because it captures all keyboard input, you won’t be
able to use any other key bindings until it’s hidden. This means you
won’t be able to bring up the chat box to type /run ReloaduI() or /run
BindingTestCaptureFrame:Hide (). At best, you can click the game menu
button and log out. To prevent this difficulty, add a check for the Escape key
to capture_OnKeyDown:

function BindingTestCapture_OnKeyDown (self, key)

if key == "ESCAPE" then
self:Hide()
return
end
end

Reload the UI and your buttons will now bring up a blank capture frame as
shown in Figure 16-8.

m If you ever find yourself stuck with a keyboard capturing frame and can’t
access the main menu or don’t want to log out completely, you can use a few
tricks to bring up the chat box.

First, check your chat log. If you have any messages from anyone in any channel,
you can click their name to begin a whisper. Similarly, if there are any friendly
characters nearby, you can target them and right-click their portrait to start a
whisper. You can also find whisper targets by bringing up the Who window. Once
you've initiated a whisper, you can use the edit box to type any slash command.

Figure 16-8: Blank binding test capture frame

Chapter 16 = Binding Keys and Clicks to Addon Code

321

You have just a couple more clerical matters to attend to before moving
on to the binding functions. Fill in the capture_onLoad and Capture_OnShow
functions as follows:

function BindingTestCapture_OnLoad (self)
self:RegisterForClicks ("AnyUp")
end

function BindingTestCapture_OnShow (self)
self.text:SetText (CAPTURE_TEXT: format (self.button:GetID()))
end

Now the frame is prepared to respond to any mouse click and also displays
instructions for setting the binding as shown in Figure 16-9.

Figure 16-9: Final binding test capture frame

Using SetBinding()

With the housekeeping tasks out of the way, you can now concentrate on
the bindings themselves. The heart of the binding API is the setBinding ()
function, which associates a key with a binding action:

success = SetBinding("key"[, "action"])

The key parameter is a string representing the desired key press (for example,
SHIFT-F5) and the action parameter is the name of the binding action you
want the key to trigger. If the action is omitted (or nil for clarity) the binding is
removed from the key. setBinding () returns 1 or nil depending on whether
the binding was successfully set.

The capture frame knows what action to use by looking at its button
field, which was set by BindingTestButton_onClick. So the main job of
BindingTestCapture_OnKeyDown is to build the key parameter and call
SetBinding (). Now, oOnKeyDown captures every key individually, even
modifier keys. Because you can’t bind modifier keys, you should ignore them
by adding the following code to the end of the onkeyDown function:

local modifier = key:sub(2)
if modifier == "SHIFT" or

322 Partlll = Advanced Addon Techniques

modifier == "CTRL" or
modifier == "ALT" or
key == "UNKNOWN" then
return
end

When onkeyDown receives a modifier key, it differentiates between keys on
the left and right sides of the keyboard. For example, the left shift key is called
LsHIFT and the right shift key is called rRsuIFT. The first line in the preceding
snippet eliminates a bit of redundancy in the if clause by stripping the first
character off the key. You also check for unknown, which is triggered by keys
that WoW doesn’t recognize (like Scroll Lock and Pause on Windows).

You should also add special treatment for the key normally used to take
screenshots. Otherwise there would be no way to take a screenshot of the
binding. Add the following code immediately after the previous snippet:

if GetBindingFromClick (key) == "SCREENSHOT" then
TakeScreenshot ()
return

end

The funCﬁOH,GetBindingFromClick; defined in FrameXML\UIParent.lua,
returns the action associated with the current key press, if any. If the action
turns out to be SCREENSHOT, this code takes a screenshot and aborts the function.

Once you've eliminated the special cases, you can begin building the
key argument. Although you ignored the modifier keys when they directly
triggered onkeyDown, you need to check their status to apply the appropriate
prefixes to the key. Add this code following the screenshot check:

if IsShiftKeyDown () then
key = "SHIFT-"..key

end

if IsControlKeyDown () then

key = "CTRL-"..key
end
if IsAltKeyDown () then
key = "ALT-"..key
end

Note that the order of these modifier checks is crucial; setBinding only
accepts modifier prefixes in the order ALT-CTRL-SHIFT-. In this snippet,
you're adding them one at a time, as applicable, to the beginning of the
key. If you pressed A with all the modifier keys held down, the key parameter
would progress as follows:

A
SHIFT-A

Chapter 16 = Binding Keys and Clicks to Addon Code

323

CTRL-SHIFT-A
ALT-CTRL-SHIFT-A

Now that you have the key argument built, you can call setBinding () and
close the capture frame. Add these final two lines to the onkeyDown function:

SetBinding (key, self.button.action)
self:Hide()

This code actually calls the binding API and then hides the binding UI.

At this point, the addon does most of what it advertises. If you press one
of the buttons, it brings up the capture frame. Then when you press a key
combination, it sets the binding and hides the capture frame. You should be
able to see the new bindings in the WoW key binding UI, unless you already
had two bindings in place. Even then your binding is still there but the Ulisn’t
designed to show more than two. This addon won’t be so limited. Later you
add functionality to the tooltips that lists all keys bound to the given action.

ICTXL3 if you test out the addon, you may notice that the key bindings don't
survive through a Ul reload. setBinding on its own doesn’t commit any changes
to the server. You can use this to your advantage because you don’t have to be as
careful about overwriting your existing bindings. However, if you open up the
built-in key binding Ul, clicking Okay saves the bindings you created with this
addon. Be sure to hit Cancel instead if you don’t want to save the changes (it will
also revert the changes you did make). You learn more about binding storage in a
later section.

Earlier we mentioned that the key binding API treats mouse clicks and
button clicks in the same way. This means the onclick handler can simply
call onkeyDown with the appropriate mouse button name. Unfortunately, the
names used for mouse click handlers aren’t the same as what the binding APIs
expect, as shown in Table 16-1.

This translation is extremely simple thanks to Lua’s tables. Immediately
before the definition of BindingTestCapture_onclick,add the following code:

local buttonKeys = {

["MiddleButton"] = "BUTTON3",
["Button4"] = "BUTTON4",
["Button5"] = "BUTTONS5"

}

.m You are omitting LeftButton and RightButton because those mouse
buttons have such crucial roles in gameplay that it's usually a bad idea to remove
their bindings. Otherwise you'd be unable to target units in the game world, turn
the camera, or interact with objects such as doors, chests, NPCs, corpses, and so

324 Partlll = Advanced Addon Techniques

on. It’s possible to bind their actions (CAMERAORSELECTORMOVE and
TURNORACTION, respectively) to other keys, but you still have to position the
mouse cursor over the object with which you're trying to interact.

As an exercise, you might consider allowing re-binding of the left and right mouse
buttons. After the binding is made, leave the capture window open and ask for a
new key for the appropriate action.

Table 16-1: Mouse Clicks and Their Corresponding Binding Keys

MOUSE CLICK BINDING KEY

LeftButton BUTTON1
RightButton BUTTON2
MiddleButton BUTTON3
Button4 BUTTON4
Button5 BUTTONS

Now all you need to do is make sure the clicked button is in the table and
pass it to onkeyDown. Fill in BindingTestCapture_onClick as follows:

function BindingTestCapture_OnClick(self, button)
local key = buttonKeys[button]
if not key then
return
end
BindingTestCapture_OnKeyDown (self, key)
end

And with that, your test addon can now capture all the bindings it was
designed to handle.

Working with Existing Bindings

Now that you can add all the bindings you want, it would be help-
ful to implement binding removal. We left a place for this code inside
BindingTestButton_OnClick earlier in the chapter. Edit that function so it
looks like this:

function BindingTestButton_OnClick(self, button)
if button == "LeftButton" then
BindingTestCaptureFrame.button = self
BindingTestCaptureFrame: Show ()

Chapter 16 = Binding Keys and Clicks to Addon Code

325

elseif button == "RightButton" then
local key = GetBindingKey(self.command)
if key then

SetBinding(key, nil)

end
BindingTestButton OnEnter (self)

end

end

The GetBindingkey API function accepts the name of a command and
returns a list of all the keys bound to the action. For this simple interface,
you're only interested in the first one. The code checks to see if there’s a
binding for the button’s command and if so, clears it. The last line in the
new code triggers onEnter to refresh the tooltip, which you will imple-
ment next.

Displaying an Action’s Bindings

As mentioned earlier, the tooltip explains how to use the binding buttons and
shows a list of all keys currently bound to the button’s action. Tooltips are
covered in depth in Chapter 24, but the usage here should be simple enough
to understand. To start, create and show the tooltip when the mouse enters
the button. Add the following code to BindingTestButton_OnEnter:

GameTooltip:SetOwner (self, "ANCHOR_BOTTOMRIGHT")
GameTooltip:AddLine (TOOLTIP_TEXT1)
GameTooltip:AddLine (TOOLTIP_TEXT2)

The first line clears the tooltip and anchors it to the bottom-right corner of
the button. The next two lines add the basic left- and right-click instructions.
Next, build the list of keys with the following code:

local list = {GetBindingKey (self.command) }
for i, key in ipairs(list) do

list[i] = GetBindingText (key, "KEY_")
end

Here you're using GetBindingKey again, but this time you store all the results
in a table. Then you use GetBindingText (defined in FramexML\UIParent.lua)
to translate the key names into more human-readable forms. For instance,
BUTTON3 becomes Middle Mouse. Finish up this function as follows:

GameTooltip:AddLine (
TOOLTIP_BINDING_LIST:format (table.concat(list, LIST_SEPARATOR)),
NORMAL_FONT_COLOR.r,
NORMAIL_FONT_COLOR.g,
NORMAL_FONT_COLOR.Db,

326

Part Ill = Advanced Addon Techniques

)

GameTooltip:Show ()

The first argument to GameTooltip:AddLine is built by joining all the key
names together with LIST_SEPARATOR between them, and then formatting this
into the TOOLTIP_BINDING_LIST string. Because the list can potentially grow
pretty long, the last argument of 1 tells the tooltip to wrap the text of this line.
AddLine has optional color parameters positioned before the wrap flag, so you
need to provide arguments to avoid unintended effects.

m You can find global constants for WoW's standard text colors in
FrameXML\FontStyles.xml.

As I'm sure you've guessed, the last line of the preceding code shows the
tooltip. Now fill in BindingTestButton_oOnLeave as follows to hide the tooltip
after the mouse leaves the button:

function BindingTestButton_OnLeave (self)
GameTooltip:Hide()
end

This addon now has all of its promised functionality. If you test it now you
should be able to see results similar to Figure 16-5.

Understanding Binding Storage

Manipulating bindings is all well and good, but it doesn’t help much if
the changes are only temporary. In this section you explore how to save the
changes you make.

You can save bindings in two different ways: account-wide or char-
acter-specific. Normally the player will choose which one to use via the
checkbox at the top of WoW'’s key binding interface. To find out which set
is currently active you use the function GetCurrentBindingset. This function
returns 1 for account-wide and 2 for character-specific bindings. Once you've
determined which set you want to save, you simply call saveBindings and the
deed is done.

To make the binding test addon save its changes, simply add the following
line after each of the calls to setBinding in BindingTestButton_0OnClick and
BindingTestCapture_OnKeyDown:

SaveBindings (GetCurrentBindingSet ())

Chapter 16 = Binding Keys and Clicks to Addon Code

327

In a more comprehensive binding interface you would need a way to undo
the changes you make with setBinding. WoW’s key binding interface does
this when you hit Cancel. You could add a Save button that delays the saving
of bindings until it’s clicked, and then you can “restore” the saved bindings
by simply loading them:

LoadBindings (GetCurrentBindingSet ())

Binding Keys to Secure Actions

For addons, basic binding commands like you've dealt with so far are only
useful for actions unrelated to combat. They’re fine for things like displaying
a configuration window, reloading the Ul, opening a chat window, and so
on. But as you learned in Chapter 15, your Lua code isn’t allowed to directly
trigger actions resulting in ability /item use or target selection. Because of this
limitation, there is a set of APIs much like setBinding that can trigger various
secure actions:

= success = SetBindingSpell("key"[, "spellname"])—Binds the key
directly to a spell. Be sure the name you provide conforms to the
requirements of cas tSpellByName.

B csyccess = SetBindingItem("key"[, "itemname" or "itemlink"])—
Binds the key to use the given item.

B suyccess = SetBindingMacro('"key"[, macroid or "macroname"])—
Binds to the specified macro. The macro parameters should match the
expectations of RunMacro.

B csyccess = SetBindingClick("key"[, "framename"[, "button"]])—
Click bindings act as if the key press were a mouse click on the specified
frame. The button parameter is passed to the frame’s various mouse
handlers as the name of the mouse button. If you omit this parameter, it
defaults to LeftButton.

As with setBinding, if you provide a key argument but no others, the
binding is removed from that key.

The first two are pretty self-explanatory. Although they’re limited in scope,
they prove useful in many situations. setBindingMacro is a bit more flexible
because macros can perform decision making, take multiple actions, and so
on. However, because macros are highly user-specific and there’s limited
storage, you should use this only if the point of your addon is to interact with
the user’s own macros. If you need a binding to trigger your own complex
behavior, you should implement that behavior in a secure button and use
SetBindingClick.

328 Partlll = Advanced Addon Techniques

Working with Click Bindings

To give you an idea of how click bindings work, run the following script in
WowLua or put it into a new addon:

local testButton = CreateFrame ("Button", "ClickBindingTestButton")
testButton:RegisterForClicks ("AnyUp", "AnyDown")
testButton:SetScript ("OnMouseDown", function(self, button)

print ("OnMouseDown:", button)
end)

testButton:SetScript ("OnMouseUp", function(self, button)
print ("OnMouseUp:", button)

end)

testButton:SetScript ("PreClick", function(self, button, down)
print ("PreClick:", button, (down and "Down" or "Up"))

end)

testButton:SetScript ("OnClick", function(self, button, down)
print ("OnClick:", button, (down and "Down" or "Up"))

end)

testButton:SetScript ("PostClick", function(self, button, down)
print ("PostClick:", button, (down and "Down" or "Up"))

end)

Using either WowLua or a /run command, bind some keys to the button

like the following:
SetBindingClick ("A", "ClickBindingTestButton")
SetBindingClick ("B", "ClickBindingTestButton", "Zebra")

If you press and release B at this point, you should see the following output:

OnMouseDown: Zebra
PreClick: Zebra Down
OnClick: Zebra Down
PostClick: Zebra Down
OnMouseUp: Zebra
PreClick: Zebra Up
OnClick: Zebra Up
PostClick: Zebra Up

As you can see, the binding goes through all the motions that would
normally be associated with a real mouse click. In fact, in an early Burning
Crusade beta when these functions were first implemented, moving the mouse
while holding down a key bound to an action button would drag the ability
off the button!

Chapter 16 = Binding Keys and Clicks to Addon Code

329

Creating Secure Bindings in XML

One problem you may have noticed with these specialized binding func-
tions is that there’s no representation in the key binding UI Luckily these
four functions are simply conveniences. Each one is equivalent to calling
SetBinding with a specially built action of one of these forms:

SPELL spellName

ITEM itemNameOrLink

MACRO macroNameOrID

CLICK frameName:mouseButton

For example, the earlier setBindingClick examples would translate to:

SetBinding ("A", "CLICK ClickBindingTestButton:LeftButton")
SetBinding ("B", "CLICK ClickBindingTestButton:Zebra")

You can use these new actions in Bindings.xml so that they appear in
WoW’s Ul The two example bindings would look like the following;:

<Binding name="CLICK ClickBindingTestButton:LeftButton" runOnUp="true"/>
<Binding name="CLICK ClickBindingTestButton:Zebra" runOnUp="true"/>

Creating the labels for these bindings takes a bit of trickery because variables
can’t have spaces in their names. However, these are global variables, so you
can use any string as an index to the global environment. One way to do this
by setting the key directly in the _G table:

_G["BINDING_NAME_CLICK ClickBindingTestButton:LeftButton"] = e
"ClickBindingTest LeftButton"

_G["BINDING_NAME_CLICK ClickBindingTestButton:Zebra"] = 3
"ClickBindingTest Zebra"

These bindings would now appear in the key binding interface with their
human-readable labels.

Summary

This chapter has provided you with all the tools you need for day-to-day
key binding tasks, from integrating with the built-in binding UI to setting
bindings programmatically. You have also seen some techniques useful for

330 Partlll = Advanced Addon Techniques

building your own binding Uls or perhaps even creating a dedicated addon
to improve on WoW'’s binding interface.

The next chapter shows how to create slash commands for your addons,
adding to the functionality you've already created.

The Code

BindingTest

BindingTest.toc

Interface: 30200
Title: Binding Test
Notes: Demonstrates the usage of Bindings.xml

BindingTest.lua
BindingTest .xml

BindingTest.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

<Button name="BindingTestButtonTemplate" inherits=
"UIPanelButtonTemplate2" virtual="true">
<Size x="150" y="24"/>
<Scripts>
<OnLoad function="BindingTestButton_OnLoad"/>
<OnClick function="BindingTestButton_OnClick"/>
<OnEnter function="BindingTestButton_OnEnter"/>
<OnLeave function="BindingTestButton_OnLeave"/>
</Scripts>
</Button>

<Frame name="BindingTestFrame">
<Size x="1" y="1"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Frames>
<Button name="BindingTestButtonl"
inherits="BindingTestButtonTemplate"
id="1">

Chapter 16 = Binding Keys and Clicks to Addon Code

331

<Anchors>
<Anchor point="BOTTOM" relativePoint="CENTER"/>
</Anchors>
</Button>
<Button name="BindingTestButton2"
inherits="BindingTestButtonTemplate"
id="2">
<Anchors>
<Anchor point="TOP" relativePoint="CENTER"/>
</Anchors>
</Button>
</Frames>

</Frame>

<Button name="BindingTestCaptureFrame" hidden="true" 3
enableKeyboard="true" frameStrata="DIALOG">
<Size x="175" y="90"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Backdrop bgFile="Interface\Tooltips\UI-Tooltip-Background" 3
edgeFile="Interface\Tooltips\UI-Tooltip-Border" tile="true">
<EdgeSize val="16"/>
<TileSize val="16"/>
<BackgroundInsets left="5" right="5" top="5" bottom="5"/>
<Color r="0" g="0" b="0"/>
</Backdrop>
<Layers>
<Layer level="ARTWORK">
<FontString inherits="GameFontNormal" parentKey="text">
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="10" y="-10"/>
</Anchor>
<Anchor point="BOTTOMRIGHT">
<Offset x="-10" y="10"/>
</Anchor>
</Anchors>
</FontString>
</Layer>
</Layers>
<Scripts>
<OnLoad function="BindingTestCapture_OnLoad"/>
<OnShow function="BindingTestCapture_OnShow"/>
<OnKeyDown function="BindingTestCapture_OnKeyDown"/>
<OnClick function="BindingTestCapture_OnClick"/>
</Scripts>
</Button>

</Ui>

332 Partlll = Advanced Addon Techniques

BindingTest.lua

BINDING_HEADER_BINDING_TEST = "Test bindings for Chapter 16"
BINDING_NAME_BINDING_TEST1 = "Test binding #1"
BINDING_NAME_BINDING_TEST2 = "Test binding #2"

local BUTTON_CAPTION = "Set Test Binding #%d"

local TOOLTIP_TEXT1 = "Left-click to add binding"

local TOOLTIP_TEXT2 = "Right-click to remove first binding"
local TOOLTIP_BINDING_LIST = "Currently bound: |cFFFFFFFF%s|r"
local LIST_SEPARATOR = "|r, |cFFFFFFFF"

local CAPTURE_TEXT = [[

Press a key or click this frame to set test binding #|cFFFFFFFF%d|r.

Press |cFFFFFFFFESC|r to cancel.]]

function BindingTest_Testl ()
print ("Test binding #1 activated")
end

function BindingTest_Test2 (keystate)
if keystate == "down" then
print ("Test binding #2 pressed")
else
print ("Test binding #2 released")
end
end

function BindingTestButton_OnLoad (self)
local id = self:GetID()
self:SetText (BUTTON_CAPTION: format (id))
self.action = "BINDING_TEST"..id
self:RegisterForClicks ("LeftButtonUp", "RightButtonUp")
end
function BindingTestButton_OnClick(self, button)
if button == "LeftButton" then
BindingTestCaptureFrame.button = self
BindingTestCaptureFrame: Show ()
elseif button == "RightButton" then
local key = GetBindingKey (self.action)
if key then
SetBinding (key, nil)
SaveBindings (GetCurrentBindingSet ())
end
BindingTestButton_ OnEnter (self)
end
end

function BindingTestButton_OnEnter (self)
GameTooltip:SetOwner (self, "ANCHOR_BOTTOMRIGHT")

Chapter 16 = Binding Keys and Clicks to Addon Code 333

GameTooltip:AddLine (TOOLTIP_TEXT1)
GameTooltip:AddLine (TOOLTIP_TEXT2)

local list = {GetBindingKey (self.action)}
for i, key in ipairs(list) do

list[i] = GetBindingText (key, "KEY_")
end

GameTooltip:AddLine (

TOOLTIP_BINDING_LIST:format (table.concat (list, LIST_SEPARATOR)),
NORMAL_FONT_COLOR.T,

NORMAL_FONT_COLOR.g,

NORMAL_FONT_COLOR.Db,

1

)

GameTooltip:Show ()

end

function BindingTestButton_OnLeave (self)
GameTooltip:Hide ()
end

function BindingTestCapture_OnLoad (self)

self:RegisterForClicks ("AnyUp")
end

function BindingTestCapture_OnShow (self)

self.text:SetText (CAPTURE_TEXT: format (self.button:GetID()))
end

function BindingTestCapture_OnKeyDown (self, key)
if key == "ESCAPE" then
self:Hide()
return
end

local modifier = key:sub(2)

if modifier == "SHIFT"
or modifier == "CTRL"
or modifier == "ALT"
or key == "UNKNOWN" then
return
end

if GetBindingFromClick (key) == "SCREENSHOT" then
TakeScreenshot ()
return

end

334 Partlll = Advanced Addon Techniques

if IsShiftKeyDown () then
key = "SHIFT-"..key

end

if IsControlKeyDown () then

key = "CTRL-"..key
end
if IsAltKeyDown () then
key = "ALT-"..key
end

SetBinding (key, self.button.action)
SaveBindings (GetCurrentBindingSet ())
self:Hide()

end

local buttonKeys = {

["MiddleButton"] = "BUTTON3",
["Button4"] = "BUTTON4",
["Button5"] = "BUTTON5"

}
function BindingTestCapture_OnClick(self, button)
local key = buttonKeys[button]
if not key then
return
end
BindingTestCapture_OnKeyDown (self, key)
end

Bindings.xml

<Bindings>
<Binding name="BINDING_TEST1" header="BINDING_TEST">
BindingTest_Testl ()
</Binding>
<Binding name="BINDING_TEST2" runOnUp="true">
BindingTest_Test2 (keystate)
</Binding>

</Bindings>

ClickBindingTest

ClickBindingTest.toc
Interface: 30200

Title: Click Binding Test
Notes: Demonstrates the use of click bindings

ClickBindingTest.lua

Chapter 16 = Binding Keys and Clicks to Addon Code

335

ClickBindingTest.lua

local testButton = CreateFrame ("Button", "ClickBindingTestButton")
testButton:RegisterForClicks ("AnyUp", "AnyDown")
testButton:SetScript ("OnMouseDown", function(self, button)

print ("OnMouseDown:", button)
end)

testButton:SetScript ("OnMouseUp", function(self, button)
print ("OnMouseUp:", button)

end)

testButton:SetScript ("PreClick", function(self, button, down)
print ("PreClick:", button, (down and "Down" or "Up"))

end)

testButton:SetScript ("OnClick", function(self, button, down)
print ("OnClick:", button, (down and "Down" or "Up"))

end)

testButton:SetScript ("PostClick", function(self, button, down)
print ("PostClick:", button, (down and "Down" or "Up"))

end)

CHAPTER

17

Creating Slash Commands

World of Warcraft players interact daily with slash commands. Whether it’s
/ignore Ikeelyou or a hasty /gquit after ninja looting Kael'thas on your
guild’s first takedown, you're using slash commands.

As an addon author, you'll often find it easier or just plain useful to have
slash commands to either spur your addon to action or to enable configuration.
Generally speaking, it’'s much quicker to write out a quick slash command
system than to have a fully functioning graphical configuration screen.

Creating Basic Slash Commands

WoW provides a fairly straightforward way to implement slash commands.
They require two basic components: a set of global variables for the com-
mands and a handler function in a global table. Here is a quick example:

SLASH_FANCYPRINT1 = "/fancyprint"
SlashCmdList ["FANCYPRINT"] = function (msg)

print ("|cf£11££f11" .. Printed:|r " .. msg)
end

Once you've run that code, type the following in the chat frame’s edit box:

/fancyprint This is my first slash command!

You should see a message printed to the chat frame that says, “This is my
first slash command!”, after a green heading that says “Printed”.

Now take a look at the process that made this possible. WoW stores all the
slash command handlers in a table called s1ashcmdvrist. The table is indexed

337

338

Part Ill = Advanced Addon Techniques

by arbitrary strings determined by the addon author. These indexes are used
to construct global variable names of the following format:

SLASH_INDEXn

In the previous example, the index is FANCYPRINT and the global variable is
sLASH_FANCYPRINT1. When you ran the slash command, WoW started looking
through all the entries in slashcmdList. For each entry in the list, the system
started counting up from 1 and looked at the constructed global variables that
might match. As soon as it looked at sLasH_MESsaGEL and saw the match, it
ran the associated function from s1ashcmdrist, passing all of the text provided
to the command.

This arrangement allows for great flexibility. Type SLASH_FANCYPRINT2 =
"/fp" in WowLua and then try using that slash command with /fp I created
a slash command alias. Again you should see a message pop up with
those words.

As you just saw, incrementing the number in the global variable allows for
multiple slash commands to be aliased to the same handler. This also comes
in handy for localization.

So just to recap, here’s a checklist for creating slash commands:

= Create a handler function that takes a single string parameter.

m Pick a unique index name (ideally something that contains the addon’s
name, to avoid collisions) and add the function to slashCmdList.

m Create one or more global variables named sLASH_INDExn containing the
slash commands.

As you can see, creating slash commands is the easy part. Getting them to do
anything less trivial than the preceding example is another story. Remember
that anything the user types in after the slash command is passed as a single
string to the handler. To do anything useful with it, you'll have to do some
basic string parsing. The rest of this chapter focuses on a few simple techniques.

m The slash command system keeps a cache of the commands you use
during a session, which reduces the impact of macros on game performance. It
also means that if you try to overwrite a sSlashcmdrist entry without reloading
the Ul you need to update the cache. For example, if you use the slash command
you created in WowLua, then make a change to the code and execute the script,
WoW will try to use the original function the next time you run the command.

You can run the following code manually or add it to the end of your script:

wipe (hash_SlashCmdList)

Chapter 17 = Creating Slash Commands

339

This is necessary only if you are making a change to a slash command handler that
you have already defined. It is not necessary when you're first creating your new
command.

The details of the cache are beyond the scope of this chapter, but the general
technique is described in Appendix A. You can also see the command handling
code for yourself in FrameXxML\ChatFrame. lua.

Tokenizing Strings

Tokenization is the process of dividing a string into smaller pieces called tokens
based on certain rules. One of the simplest ways to accomplish this is with
the WoW-specific function string.split (or strsplit). This function splits a
string at occurrences of given delimiters. For example:

string.split(" ", "1 + 3 * 5")

This splits the given string at every space (the delimiter), returning the
tokens "1, "+, "3, "x» and "5".

As the example hints, you can create a simple calculator using this technique.
Create a new addon with just a Lua file or open up WowLua. To keep
the calculator simple, it will recognize only four operators: addition (+),
subtraction (—), multiplication (*), and division (/). Furthermore, there will be
no order of precedence of operations. In other words, 1 4+ 3 * 5 = 20, not 16.

The operations themselves are contained in a table indexed by the operator.
Enter the following code into WowLua or the new addon you created:

local operators = {
["+"] = function(a, b)

return a + b

end,

["-"] = function(a, b)
return a - b

end,

["*"] = function(a, b)

return a * b

end,

["/"] = function(a, Db)
return a / b

end

}

Each operator simply accepts two numbers and returns the result of the
operation. Because all the operations proceed in order of occurrence, your main

340 Partlll = Advanced Addon Techniques

calculation function can simply iterate through the returns of string.split as
follows:

local function calculate (numberl, ...)
for i = 1, select("#", ...), 2 do
local operator, number2 = select (i, ...)
numberl = operators[operator] (numberl, number2)
end

return numberl

end

The first number is placed into the variable number1. The loop begins by
retrieving the first operator and the second number. Then it calls the appro-
priate operator function with the two given numbers and assigns the new value
to number1. Each time through the loop it picks a new operator and second
number, and performs the calculation. Once it passes the last parameter, the
function returns the final value of number1.

Now all that’s left is to create the slash command to split the message and
print the result of the calculation:

SLASH_SIMPLECALC1l = "/calculate"

SLASH_STIMPLECALC2 = "/calc"

SlashCmdList ["SIMPLECALC"] = function (message)
print (calculate(string.split (" ", message)))

end

Run the script or load the addon and you should be able to use the slash
commands as expected. Here are some examples:

/calculate 1 + 3 * 5
20

/calc 3 * 2 + 4 / 5.5
1.8181818181818

/calc 4

4

Obviously this is functional, but it has a couple of pitfalls. Because the string
is split at every occurrence of the space character, it’s as if there is an empty
string between any two consecutive spaces. For example:

/calculate 3 + 4
Error: attempt to call field '?' (a nil value)

With the extra space between the 3 and the +, the string is split into the
tokens "3v, »v, 4 wgv This means the calculate function tries to use "

Chapter 17 = Creating Slash Commands 341

as an index to the operators table, which is obviously an error. A similar
problem occurs if you omit a space:

/calc 344 * 5
Error: attempt to perform arithmetic on local 'a' (a string value)

Here the string is tokenized into "3+4", "*,and "5". The calculate function
tries to call the multiplication operator with "3+4" as one of the numbers, again
an obvious error.

Although these drawbacks affect the usability of this calculator addon,
splitting on spaces is still sufficient for many purposes. Later in this chapter
you'll use this technique again but in a much more powerful way. For now,
let’s relax the syntax for the calculator addon.

Tokenizing with Patterns

Parsing strings is a topic that can fill a volume in its own right. Many different
techniques exist depending on the complexity of your rules. Entire computer
languages have been designed specifically to describe the syntax of other lan-
guages. Although a full treatment is obviously beyond the scope of this book,
we can at least show you some of the tricks Lua brings to the table.

Chapter 6 provided a glimpse of Lua patterns that enable you to look for
specific arrangements of characters within a string. Now you’ll use them to
identify individual components of the calculator commands.

Setting Up the Patterns

First you should put the syntax of the commands into more definite terms.
The format for these commands is as follows:

number [operator number [operator number [...]]

This gives you the overall structure you need to follow when parsing the
string. Later you design the parsing functions to follow this general pattern.
Next you need to break down the format of each component. Operators are
simply one of the four operator characters. Numbers are a bit more complex:

[sign] [digits] [decimalldigits

From here, you can easily construct the patterns for each component. To
keep the code flexible, you won’t use a specialized pattern for the operators.

342 Partlll = Advanced Addon Techniques

Instead you’ll simply match any single character and check whether it’s in the
list of operators. This means the pattern is simply a single period (.).

Table 17-1 shows the subpatterns that are used to create the final pattern of
"[+-12%d*%.?%d+" (see Chapter 6 for details).

Table 17-1: Number Subpatterns

sign (optional) [+-17?
digits (optional) sd*
decimal (optional) $.?
digits (required) $d+

Now add the following code above any of the existing functions:

local NUMBER_PATTERN = " "%s* ([+-]1?%d*%.?%d+)"
local OPERATOR_PATTERN = " " %s*(.)"
local END_PATTERN = "~ %s*S$"

Because the calculator will allow any amount of whitespace between num-
bers and operators, you put the target pattern inside parentheses to make it a
capture and precede it with a check for the optional whitespace: %s*. Notice
that you specify the beginning of the string immediately before the whitespace
(). If this weren't in there, the pattern might skip over invalid syntax until it
finds a piece of valid syntax. Consider the following example:

/calculate 5 + should error here 5
10

After processing the plus sign, your code would try to match the number
pattern against the string * should error here 5". Without the start-of-string
check, the pattern will find a match at the end of the string: " 5", completely
ignoring the extraneous words.

You'll also notice that we’ve added a pattern called END_PATTERN to handle
any extra space at the end of the command.

Preparing for the Tokenization

One helpful side-effect of doing in-depth parsing is the ease with which
you can check for errors. In this calculator addon two possible errors exist:
missing/invalid number or unrecognized operator. Add the following error
strings after the patterns you just created:

local NUMBER_ERROR = "No valid number at position %d4d"
local OPERATOR_ERROR = "Unrecognized operator at position %d: '$s'"

Chapter 17 = Creating Slash Commands

343

Errors are indicated by a flag called errorstate, which is set by a custom
error function. Add the following code immediately before the calculate
function:

local errorState = false
local function reportError (message)
print (message)
errorState = true
end
Now edit the calculate function to look like the following;:

local function calculate (numberl, ...)
if errorsState then

return
end
for i = 1, select("#", ...), 2 do
local operatorFunction, number2 = select(i, ...)

numberl = operatorFunction (numberl, number2)
end

return numberl
end

If you're already in an error state, then you just return and do nothing. The
last change you need to make before diving into the heart of the string parsing
is to clear the error state before calling the calculate function, and replace the
string.split call with the new tokenize function you’ll be creating;:

SlashCmdList ["SIMPLECALC"] = function (message)
errorState = false
print (calculate(tokenize (message)))

end

Parsing the Formula

The calculator formulas start off with a number and then are an optional
repetition of operator/number pairs. Your main tokenize function will pick
up the first number and then call a second recursive function, getpairs, to...
well ... get the subsequent pairs.

Add the tokenize function before the s1ashcmdList entry with the following
code:

local function tokenize (message)
local _, finish, number = message:find (NUMBER_PATTERN)
if not number then
reportError (NUMBER_ERROR: format (1))
return
end

344 Partlll = Advanced Addon Techniques

The first line runs string. find to look for the first number in the formula
(remember every string has the string table as its metatable). If it doesn’t
find a number, it prints the error and returns. Finish the function with the
following code:

finish = finish + 1
if message:match (END_PATTERN, finish) == "" then
return number
else
return number, getpairs (message, finish)
end
end

The finish variable contains the position of the last character in the found
number. In other words, if the formula is ““102 + 5/, finish would be 3,
corresponding to the 2 in 102. The first line of this code increments finish by
one to indicate the start of the rest of the message.

Next it looks for END_PATTERN in the message, starting at the new location.
If it matches, tokenize returns the number it found. Otherwise it returns the
number and calls getpairs to parse the rest of the message. Begin this function
just above tokenize:

local function getpairs(message, start)
local _, operatorFinish, operator = message:find(OPERATOR_PATTERN, 3
start)
local operatorFunction = operators[operator]
if not operatorFunction then
reportError (OPERATOR_ERROR: format (start, operator))
return
end

As you can see, this checks for a valid operator and triggers an error if
it’s not recognized. Next, search for a number from the position just past the

operator:
operatorFinish = operatorFinish + 1
local _, numberFinish, number = message:find (NUMBER_PATTERN, 2
operatorFinish)

if not number then
reportError (NUMBER_ERROR: format (operatorFinish))
return

end

And finally, finish the function just like tokenize:

numberFinish = numberFinish + 1

if message:match (END_PATTERN, numberFinish) then
return operatorFunction, number

else

Chapter 17 = Creating Slash Commands

345

return operatorFunction, number, getpairs(message, numberFinish)
end
end

After reloading, you can see the earlier errors are now fixed, and bona fide
errors have sane messages:

/calculate 3 + 4

7

/calc 3+4 * 5

35

/calc 3+ 4 +

No valid number at position 7

/calc 3 + 4 & 9

Unrecognized operator at position 7: &'

Using a Command Table

Some addons provide a single slash command with multiple, possibly nested
subcommands. For example, to show the GUI for Omen, you would use the
following command:

/omen gui show

You can easily create this kind of functionality with a relatively simple
parsing system that uses a table to represent the command hierarchy. The
parser you develop here uses a table indexed with the name of the commands.

Each entry in the table is a string, a function, or a table. If the command is a
string value, it is printed as-is. If the command is a function, the parser calls
the function with the rest of the slash command’s message. If the command is
a table, the parser treats it as another command table and processes the rest
of the message against it. If the command isn’t found, the parser looks for an
entry called “help” and processes it as usual.

Go ahead and create a new addon with just a Lua file and enter the following
example table:

local testCommandTable = {

["gui"]l = {
["width"] = function(width)
print ("Setting width to", width)
end,
["height"] = function (height)
print ("Setting height to", height)
end,
["show"] = function()

print ("Showing")

346 Partlll = Advanced Addon Techniques

end,
["hide"] = function()

print ("Hiding")

end,
["help"] = "GUI commands: width <width>, height <height>, show,
hide"
},
["data"] = {
["load"] = function(profile)
print ("Loading profile:", profile)
end,
["save"] = function(profile)
print ("Saving profile: ", profile)
end,
["reset"] = function()

print ("Resetting to default")

end,

["help"] = "Data commands: load <profile>, save <profile>, reset"
I
["help"] = "CommandTable commands: gui, data"

As you can see, this is a very concise way of defining a wide range of
functionality. That is, once you get the engine out of the way. Begin the
command processing function with the following code:

local function DispatchCommand (message, commandTable)
local command, parameters = string.split(" ", message, 2)
local entry = commandTable[command:lower ()]
local which = type(entry)

The first line of the function splits the message at the first space. Notice the
extra argument of 2, which tells string.split to return a maximum of two
strings, limiting the number of splits.

The next line retrieves the entry from the given command table, then the
function determines what type of entry it is. The rest of the function is
essentially a restatement in Lua of our earlier description:

if which == "function" then
entry (parameters)

elseif which == "table" then
DispatchCommand (parameters or "", entry)
elseif which == "string" then

print (entry)
elseif message ~= "help" then
DispatchCommand ("help", commandTable)
end
end

Chapter 17 = Creating Slash Commands

347

Now all you need to do is tie it together with a slash command:

SLASH_COMMANDTABLEl = "/commandtable"
SLASH_COMMANDTABLE2 = "/cmdtbl"
SlashCmdList ["COMMANDTABLE"] = function (message)

DispatchCommand (message, testCommandTable)
end

And voila! Twenty-one lines of code later and you have a powerful slash
command handler that uses a simple table for configuration. Here is some
sample output:

/cmdtbl gui show

Showing

/commandtable data

Data commands: load <profile>, save <profile>, reset
/cmdtbl GUI width 13

Setting width to 13

Summary

In this chapter you learned the basics of slash commands and how to get
a barebones command up and running. You also examined a set of tips
and tricks you can use to make your code more flexible and cleaner. Slash
commands aren’t flashy, and in some circles they get a bad rap, but they're
powerful, flexible, and, if implemented correctly, elegant. One very powerful
aspect of slash commands versus graphical configuration interfaces is that
slash commands can be used in macros, allowing users to change their settings
on-the-fly using buttons on their action bars.

The Code

SlashCalc
local NUMBER_PATTERN = " " %s* ([+-]12%d*%.?2%d+)"
local OPERATOR_PATTERN = " “%s*(.)"
local END_PATTERN = "~ %s*S$"
local NUMBER_ERROR = "No valid number at position %d4d"
local OPERATOR_ERROR = "Unrecognized operator at position %d: '%$s'"

local errorState = false

348 Partlll = Advanced Addon Techniques

local function reportError (message)
print (message)
errorState = true

end

local operators = {

["+"] = function(a, b)
return a + b

end,

["-"] = function(a, b)
return a - b

end,

["*"] = function(a, b)
return a * b

end,

["/"] = function(a, b)
return a / b

end

local function calculate (numberl, ...)
if errorState then

return

end

for i = 1, select("#", ...), 2 do
local operatorFunc, number2 = select(i, ...)
numberl = operatorFunc (numberl, number2)

end

return numberl
end

local function getpairs(message, start)
local _, operatorFinish, operator =
message: find (OPERATOR_PATTERN, start)
local operatorFunction = operators|[operator]
if not operatorFunction then
reportError (OPERATOR_ERROR: format (start, operator))
return

end

operatorFinish = operatorFinish + 1

local _, numberFinish, number = message:find (NUMBER_PATTERN, 2

operatorFinish)
if not number then
reportError (NUMBER_ERROR: format (operatorFinish))
return
end

Chapter 17 = Creating Slash Commands 349

numberFinish = numberFinish + 1
if message:match (END_PATTERN, numberFinish) then
return operatorFunction, number
else
return operatorFunction, number, getpairs(message, o
numberFinish)
end
end

local function tokenize (message)
local _, finish, number = message:find (NUMBER_PATTERN)
if not number then
reportError (NUMBER_ERROR: format (1))
return
end
finish = finish + 1
if message:match (END_PATTERN, finish) == "" then
return number
else
return number, getpairs(message, finish)

end
end
SLASH_SIMPLECALC1 = "/calculate"
SLASH_SIMPLECALC2 = "/calc"
SlashCmdList ["SIMPLECALC"] = function (message)
errorState = false

print (calculate (tokenize (message)))
end

CHAPTER

18

Responding to Graphic Updates
with OnUpdate

Although most code written in World of Warcraft is event-based, in certain
situations code should be run more frequently (possibly based on time).
Although there is no simple API method to accomplish this in World of
Warcraft, you can use onUpdate scripts to fill these needs.

For example you can use onupdate scripts to do the following;:

m Delay code by a set amount of time.
= Group events that fire rapidly together into a single batch to process.

m Run code repeatedly, with time in between.

This chapter introduces the graphic update system that drives onupdate
scripts, and leads you through creating simple addons to implement each of
these scripts.

Understanding Graphic Updates

A standard measure for graphics performance in a game like World of Warcraft
is your framerate, which is measured in frames per second (FPS). The graphics
engine redraws the screen that many times to show changes to the interface
and the game world. You can view your framerate (see Figure 18-1) by
pressing Ctrl+R.

Every time the screen is redrawn, the onupdate script fires for any frame that
is visible (even if it has no graphical components). In addition, the arguments
to the script tell you how much time has passed since the last screen refresh.
Together, these can be used to make a very primitive (but effective) timer.

351

352 Partlll = Advanced Addon Techniques

FPS:64.1

Figure 18-1: Framerate being displayed in-game

Delaying Code Using OnUpdate

Say you have a function, such as one that says a random witty phrase, that
you want to run in the future. You can write a helper function that uses an
onupdate script to run code in the future. Run the following code in-game:

if not DelayFrame then
DelayFrame = CreateFrame ("Frame")
DelayFrame:Hide ()

end

function Delay(delay, func)
DelayFrame. func = func
DelayFrame.delay = delay
DelayFrame: Show ()

end

DelayFrame:SetScript ("OnUpdate", function(self, elapsed)
self.delay = self.delay - elapsed
if self.delay <= 0 then
self:Hide()
self. func()
end
end)

This code defines a new function called pelay () that takes a time in seconds,
and a function to be run. It sets up the pelayFrame and when the correct
amount of time has passed it calls the function. The following defines a little
bit of code that uses this function to send taunting messages during combat:

if not TauntFrame then
TauntFrame = CreateFrame ("Frame")
end

local tauntMessages = {
"Is that the best you can do?",
"My grandmother can hit harder than that!",
"Now you're making me angry!",
"Was that supposed to hurt?",
"Vancleef pay big for your head!",
"You too slow! Me too strong!",

Chapter 18 = Responding to Graphic Updates with OnUpdate

353

TauntFrame.CHANCE = 0.5 -- Chance that a message will happen
TauntFrame.DELAY = 3.0 -- Maximum delay before a message is sent

local isDelayed = false

local function sendTauntMessage ()
local msgId = math.random(#tauntMessages)
SendChatMessage (tauntMessages [msgId], "SAY")
isDelayed = false

end

TauntFrame:RegisterEvent ("UNIT_COMBAT")
TauntFrame:SetScript ("OnEvent", function(self, event, unit, action, ...)
if unit == "player" and action ~= "HEAL" and not isDelayed then
local chance = math.random(100)
if chance <= (100 * self.CHANCE) then
local delayTime = math.random() * self.DELAY
Delay (delayTime, sendTauntMessage)
isDelayed = true
end
end
end)

First this code creates a frame so it can register events, and then it defines
a small table of taunting messages. Next, two simple configuration variables
are created and stored within the new frame. A function is created to actually
handle the choosing and sending of messages.

When the player is hit in combat and there isn’t already a delayed message
waiting to be sent, you generate a random number between 1 and 100. If
this number is less than or equal to 100 times the configured chance, the
sendTauntMessage () function is scheduled for a random time in the future.
Figure 18-2 shows this addon in action.

Figure 18-2: Taunt messages being sent during combat

The chance for the message to trigger, as well as the delay, can be con-
figured while the code is running by changing TauntFrame.cHancE and
TauntFrame.DELAY to new values. You can experiment to find a balance
that is good for you.

354 Partlll = Advanced Addon Techniques

Grouping Events to Avoid Over-Processing

The following simple bit of code watches the player’s inventory and warns
him when it falls below a certain threshold. You can use the BAG_upDATE event
to watch for changes to the player’s bags.

if not BagWatchFrame then
BagWatchFrame = CreateFrame("Frame")
end

BagWatchFrame.WARN_LEVEL = 0.2
BagWatchFrame.message = "You are running low on bag space!"
BagWatchFrame. fullMessage = "Your bags are full!"

local function bagWatch_OnEvent (self, event, bag, ...)
local maxSlots, freeSlots = 0, O

for idx = 0, 4 do
maxSlots = maxSlots + GetContainerNumSlots (idx)
freeSlots = freeSlots + GetContainerNumFreeSlots (idx)
end

local percFree = freeSlots / maxSlots
local msg

if percFree == self.percFree then
-- Don't warn the user at the same level more than once
elseif percFree == 0 then
msg = BagWatchFrame.fullMessage
elseif percFree <= self.WARN_LEVEL then
msg = BagWatchFrame.message
end
if msg then?
RaidNotice_AddMessage (RaidWarningFrame, msg, 2
ChatTypeInfo["RAID_WARNING"])
end
self.percFree = percFree
end

BagWatchFrame:RegisterEvent ("BAG_UPDATE")
BagWatchFrame:SetScript ("OnEvent", bagWatch_OnEvent)

This code is set to warn the player when he has less than 20% of his bag space
free. It uses the GetContainerNumSlots () and GetContainerNumFreeSlots ()
functions to determine how much space each bag has, and how much is free.
When the percentage of free slots is less than BagwatchFrame . WARN_LEVEL, the
code calls RaidNotice_AddMessage () to add a message to the raid notice frame.
Figure 18-3 shows the addon warning as the player fills his last two slots.

Chapter 18 = Responding to Graphic Updates with OnUpdate

355

Figure 18-3: Free slot warning displayed in the RaidWarningFrame

There is a problem with this code that can be seen when using the Equipment
Manager. The Equipment Manager is a system that allows you to save multiple
gear sets, and switch them with a single button. That’s accomplished by rapidly
equipping (or un-equipping) items as necessary. The Equipment Manager is
disabled by default, but can be enabled on the Controls menu under Interface
Options.

Depending on your latency to the server, the number of items you are
equipping or un-equipping, and the number of slots you have free in your
bags, you may find this code warning you multiple times for the same
equipment change. That is because the BAG_UPDATE event is firing more than
once in a short period of time. You can use an onupdate to help fix this problem,
as you see in the next section.

Grouping Multiple Events

The original code can be altered to not immediately trigger the bag scan, but
instead to schedule it for some time in the future using an onupdate. Edit the
code as follows, noting the highlighted differences from the previous version:

if not BagWatchFrame then
BagWatchFrame = CreateFrame ("Frame")
end

BagWatchFrame.THROTTLE = 0.5

BagWatchFrame .WARN_LEVEL = 0.2

BagWatchFrame.message = "You are running low on bag space!"
BagWatchFrame. fullMessage = "Your bags are full!"

local function bagWatch_ScanBags (frame)
local maxSlots, freeSlots = 0, 0

for idx = 0, 4 do
maxSlots = maxSlots + GetContainerNumSlots (idx)
freeSlots = freeSlots + GetContainerNumFreeSlots (idx)
end

local percFree = freeSlots / maxSlots
local msg

if percFree == frame.percFree then

356 Partlll = Advanced Addon Techniques

-- Don't warn the user at the same level more than once
elseif percFree == 0 then
msg = frame.fullMessage
elseif percFree <= frame.WARN_LEVEL then
msg = frame.message
end
if msg then
RaidNotice_AddMessage (RaidWarningFrame, msg, 2
ChatTypeInfo["RAID_WARNING"])
end
frame.percFree = percFree
end

BagWatchFrame:RegisterEvent ("BAG_UPDATE")
local counter = 0
BagWatchFrame:SetScript ("OnUpdate", function(self, elapsed)
counter = counter + elapsed
if counter >= self.THROTTLE then
bagWatch_ScanBags (self)
counter = 0
self:Hide()

end

end)

BagWatchFrame:SetScript ("OnEvent", function(self, event, ...)
BagWatchFrame:Show()

end)

Rather than calling the bag scan function (which has been renamed) directly,
the onEvent handler just shows BagwatchFrame, causing the onupdate script to
fire. Once the configured amount of time has passed (in this case 0.5 seconds),
the bag scan will occur. This means that even if several BAG_UPDATE events fire
within that half-second period, the scan will only be run once.

Repeating Code with OnUpdate

You can also use onupdate scripts to run code repeatedly in order to perform
some periodic calculation. For example, you could alter the CombatTracker
addon you created in Chapter 14 to update the frame every second or so
during combat, giving you a running average instead of only displaying at
the end.

Add the following function to the end of combatTracker. lua:

local throttle = 1.0

local counter = 0

function CombatTracker_OnUpdate(self, elapsed)
counter = counter + elapsed
if counter >= throttle then

Chapter 18 = Responding to Graphic Updates with OnUpdate

357

CombatTracker_UpdateText ()
counter = 0
end
end

Finally, you should set the onupdate script when the player enters combat,
and clear it when the player leaves combat. Under the PLAYER_REGEN_ENABLED
condition in CombatTracker_oOnEvent (), add the following:

frame:SetScript ("OnUpdate", nil)
Within the PLAYER_REGEN_DISABLED condition, add this line:
frame:SetScript ("OnUpdate", CombatTracker_OnUpdate)

Now as long as you are in combat the calculation will be updated every
second.

Considering Performance with OnUpdate Scripts

Remember that the code in your onupdate handler is called on every screen
update. If the screen refreshes at 60 frames per second, then your script will
be called 60 times per second. As a result you should be sure to consider
performance when writing your functions. Don’t over-scrutinize your code
into some monster, but be aware that a poorly written onupdate script can affect
the frame rate of the client. In particular you should consider the following:

m The game client runs code sequentially. As a result, all onupdate scripts are
run before the client continues to process events or update the graphics.

m [f your function does not need to run every screen refresh, you can use a
throttle to introduce a delay.

m [ocal variables are faster than global variables, so you can squeeze out a
bit of extra performance by using them.

Summary

This chapter discussed using onupdate scripts to introduce delays or run code
periodically. You created a number of small addons that use onupdate scripts
to perform various tasks.

The next chapter introduces you to function hooking, and using a combi-
nation of an onupdate timer and function hooking to alter the default user
interface.

CHAPTER

19

Altering Existing Behavior
with Function Hooking

Most addons are designed as self-contained additions to the default user
interface. These addons make use of the provided API and the frames and
functionality in the default user interface. Sometimes, however, it makes sense
to alter the existing behavior of the UL One way that can be accomplished
is known as function hooking. This chapter introduces the concept of function
hooking, including specific rules to follow and pitfalls to avoid.

What Is Function Hooking?

“Hooking a function” is mostly just a fancy way of saying ““changing the
behavior of a function.” Like any other Lua variable, you can overwrite a
function value with a new one of your creation. Then, any time code tries to
call the function, it will use yours instead. More specifically, though, func-
tion hooking means that the original function still runs, at least when a function
hook behaves properly.

Function hooks are used to alter the behavior of an existing function in one
of the following ways:

= Altering the arguments to or the return values from the original function.
m Preventing the original function from running.

m Taking extra action each time the function is called.

359

360 Partlll = Advanced Addon Techniques

The following code, for example, adds a timestamp to any messages that are
added to the default chat frame via the chatFramel : AddMessage () function:

local origAddMessage = ChatFramel.AddMessage

function ChatFramel.AddMessage(self, text, ...)
local timestamp = date("$X")
text = string.format("%$s %s", timestamp, text)
return origAddMessage (self, text, ...)

end

The first code line takes the function referenced by chatFramel.AddMessage
and stores it in the local variable origaddMessage. Then, a new function is
created in its place. The new function gets the current time of day and adds
it to the text argument. Finally, it calls the original function origaddMessage,
passing it the modified text.

There are a couple important points to note in the example. First, the new
function takes a variable number of arguments. The purpose of this is twofold.
Selfishly, it allows you to only pay attention to the first couple of parameters.
More importantly, though, it prevents the function from breaking expected
behavior. If the number or order of parameters ever changes in the default
UI's AddMessage function, as long as the text remains in the same position,
your hook will still operate as expected, and will play nicely with other code
that uses it.

The other point to note is that the results of origaddMessage are returned as
the last step. That may seem a bit redundant because at the time of this writing
AddMessage does not return anything. However, like the use of vararg, this
practice future-proofs your function in case the default UI begins expecting a
return value. In general if you need to hook a function, someone else may also
and you should be prepared to make your replacement act like the original
function as much as possible.

Modifying Return Values

There are two basic types of function hooking. The preceding example is
what’s known as a pre-hook, indicating that the hook takes its primary action
before triggering the original function. This is directly visible in the code with
the call to (and return from) origaddMessage as the last step.

A post-hook, on the other hand, does its business after the original function
returns. That can allow you to change return values from the function, altering
the behavior of any code that calls it. You can, of course, combine the two
techniques, although the differentiation will prove useful when you start
dealing with secure hooks.

Chapter 19 = Altering Existing Behavior with Function Hooking

361

Post-hooks can be a bit trickier to get right using the preceding techniques.
First you must call the original function and store the results so you can alter
them before finally returning them. Your first inclination may be to store them
in a table, but that is difficult to do properly when the function can return ni1
values.

The following sections show two different methods of getting around this
limitation when creating a function hook. These examples both work as a sim-
ple “piggy bank” for World of Warcraft. The GetMoney () function is hooked
and the result is altered. When you open your backpack, the amount of gold dis-
played will be different than the actual amount you have on hand. The amount
of the adjustment will be controlled by the global variable savep_money, which
will be subtracted from the real amount of money you have.

These examples won’t prevent you from spending the money in your
invisible store; in fact, if your character has less than sAvED_MONEY money
(1 gold in the preceding example), your backpack display may show a nonsense
value because the money frames aren’t designed to show negative values.

Using a Variable Argument Function

In reality you only care about the first return from the GetMoney () function
because at the moment it only has one. You can create a pair of functions that
allows easy access that value while still being able to return any others that
may be added in the future.

SAVED_MONEY = 10000
local origGetMoney = GetMoney

local function newGetMoney (realMoney, ...)
return realMoney - SAVED_MONEY,
end

function GetMoney(...)
return newGetMoney (origGetMoney (...))
end

First you define the new variable savep_MONEY, and store a reference to the
original GetMoney () function. Next you create a helper function that will take
in the returns from the original function, altering the first one by subtracting
SAVED_MONEY from it, and returning the rest. You then create the new global
function GetMoney (), which calls the helper, passing in the results of calling
the original.

Using Utility Functions capture() and release()

The following method could potentially use a bit more memory and be less
efficient, but provides an easy way to handle storing the return values of a

362 Partlll = Advanced Addon Techniques

function so they can be examined and possibly altered. The trick is centered
on replacing nil values with a special marker value so the normal table
processing functions work. The capture () function is defined as follows:

function capture(...)
return { select("#", ...), ...}
end

capture () captures the results in a table, but adds the number of arguments
to the first slot in the table. That way, when the release function needs to return
the results, it can consult that value to ensure it returns all of the arguments.
The release function is defined as follows:

function release(tbl, index)
local size = tbl[1]
index = index or 2
if index <= size then
return tbl[index], release(tbl, index + 1)
end
end

Releasing the arguments is a bit more difficult, but still straightforward. First,
the function takes a second argument that defaults to 2, ensuring that when the
developer calls release (), he’ll get everything starting with the second slot
(remember that the number of arguments stored is in the first slot). You check
to make sure the index is in the right range, and begin returning the results.

These functions can then be used as follows:

SAVED_MONEY = 10000
local origGetMoney = GetMoney

function GetMoney(...)
local result = capture(origGetMoney(...))
result[1l] = result[l] - SAVED_MONEY
return release(result)

end

Although both of these methods may seem overly complex, they will give
you the most future-proof code. Function hooking is not something that is used
regularly in writing addons, and care must be taken when it is being used.

Hooking Widget Scripts

Hooks are often used when dealing with frame scripts. For example, your
addon may want to react to the click of some button in the default UI while

Chapter 19 = Altering Existing Behavior with Function Hooking

363

still allowing the button to behave normally. Consider the Abandon Quest
button in the Quest Log that enables you to drop a quest from your log. It
currently pops up a confirmation dialog but doesn’t give any specific warning
when a quest is already complete.

The first step in a frame script hook is to use the Getscript method to
retrieve the function currently used by the script handler:

local origOnClick = QuestLogFrameAbandonButton:GetScript ("OnClick")

The Getscript () method returns either a reference to the function handler,
or nil if no handler is currently set. This is equivalent to the first line of each
of the last two examples.

ITLYITILTA Always check to see if a script is already set before replacing it, even
if the frame you're hooking doesn’t normally specify one. Another addon may be
interested in the same button you are, and blindly replacing the script would break
that other addon. If there is no original function, you can skip that step in your
new function — but always check.

Next you need to create the replacement function:

local msg = "*** WARNING! YOU ARE ABOUT TO ABANDON A COMPLETED QUEST ***"

local function newOnClick(...)
local questIndex = GetQuestLogSelection()
local completed = select (7, GetQuestLogTitle (questIndex))
if completed then
RaidNotice_AddMessage (RaidWarningFrame, msg, 3
ChatTypeInfo["RAID _WARNING"])
end

if origOnClick then
return origOnClick(...)
end

end

The code to check and warn in this situation is relatively simple. First, you
use the GetQuestLogSelection() function to get the current selected quest
index, and then use GetQuestLogTitle() to determine whether you have
completed it yet. If so, it prints the warning and then dispatches the call to the
original handler function.

Now that you have the replacement function, you need to set it as the new
onClick handler for the frame:

QuestLogFrameAbandonButton:SetScript ("OnClick", newOnClick)

364 Partlll = Advanced Addon Techniques

Hooking a Function Securely

As Chapter 15 showed, mucking around with variables that are used by the
default UI can cause any number of problems due to taint. You may need to
hook a (seemingly benign) function for your addon, but if it's used in any
secure code paths, the taint can have far-reaching effects.

Most times, you can accomplish your task without changing its behavior.
For this purpose, WoW provides a hooksecurefunc function that creates a
taint-free post-hook. Because the hook runs after the original function, you
cannot change the original function’s behavior. Furthermore, any returns from
your hook are discarded so you cannot change the behavior of code that calls
the hook. The signature for hooksecurefunc is as follows:

hooksecurefunc([table,] functionName, hookFunction)

Note that you can only hook functions with global names or that are
members of a table. For example, the following code prints a message every
time you press an action button or otherwise trigger Useaction.

hooksecurefunc ("UseAction", function(slot, unit)
ChatFramel :AddMessage (format (
"You used action %d on %s",
slot, unit or "<no unit>"
))
end)

To hook a table method securely, simply add the table as the first argument.
For example, say you want to be notified when any code calls the show method
on a frame.

Hooking the show method on a frame is a bit different from responding
to the onshow widget script. For example, if the frame is already shown and
an addon calls the show method, this hook will respond, whereas the onshow
script will not fire.

The following code prints a message any time you try to show someFrame:

hooksecurefunc (someFrame, "Show", function(self)
ChatFramel : AddMessage ("Attempting to show someFrame")
end)

In both of these examples that you are much freer with regard to parameters
and returns. Because the returns are discarded and changing any arguments
has no effect on the rest of the code path, you can arrange your function in
whatever way makes the most sense.

Chapter 19 = Altering Existing Behavior with Function Hooking

365

Hooking Scripts Securely

Reacting to a widget handler call without changing its behavior is actu-
ally simpler than the “normal” hook method you saw earlier. Analogous
to hooksecurefunc, every widget has a HooksScript method that achieves
essentially the same result. Your new hook will be called with all the same
arguments after the original script, and any returns will be discarded. For
example, the following will safely hook the onclick handler of your player
frame, keeping track of each time the button is clicked:

clickCounter = 0
PlayerFrame:HookScript ("OnClick", function()
clickCounter = clickCounter + 1
print (clickCounter, "clicks and counting...")
end)

This hook only applies to the specified button (to capture every secure
button click, use hooksecurefunc on SecureActionButton_OnClick instead).
You don’t even need to worry about checking if a script is already set;
HookScript will handle that for you!

Deciding When to Hook

Although function hooks are undoubtedly a useful tool, they do have a
few important caveats. These range from performance issues to the potential
breakage of elements in the default Ul or other addons. In many cases, function
hooking is unnecessary, and there are less obtrusive alternatives.

Understanding the Hook Chain

To fully appreciate some of the problems that can arise from sloppy hooking,
think for a moment what would happen if two addons hooked the same
function. Take the GetMoney example from earlier. When any piece of code
calls GetMoney, it first activates the hook from your addon, and then your
addon calls the original function. If another addon comes along and hooks it
again, another link is added to the hook chain. The hook chain is simply a way
to visualize the interaction between the two addons and the base function. In
this example it looks like the following;:

Other Addon — Your Addon — Built-in GetMoney

Secure hooks (via hooksecurefunc and HookScript) don't really follow the
same chain analogy. Instead, they’re more like a key ring where each hook is a

366 Partlll = Advanced Addon Techniques

key. After the function does its business, the secure hook system goes through
each hook one by one, executing them independently. This does not make
them immune to the following problems, though.

You Can’t Rely on Order

Your addon has no way of knowing the order in which the hooks take place.
If the other addon is loaded before yours, the hook chain would look like this
instead:

Your Addon — Other Addon — Built-in GetMoney

Never rely on your addon being in a certain place in the chain. The order
of addon loading is controlled entirely by the game engine. You can buy a
little bit of leeway with dependencies and such, but that requires knowing in
advance the name of every addon that might interfere. If you find yourself
in a situation where the order matters, you should probably re-evaluate the
overall design of your addon.

There Is No “Unhook”

Another issue the hook chain brings to the table is that it's dangerous to
“unhook’” a function. With the earlier hook chain, if you were to remove your
hook by running GetMoney = origGetMoney, you would also be removing the
hook from the other addon because your origGetMoney was stored before the
other addon got a chance to hook it. More fundamentally, secure hooks are
impossible to remove; the API simply does not have any facility for it.

If you do need to unhook a function, it’s best to simply check a flag in your
hook and change the flag whenever you need to apply or remove the hook. Of
course, that leads to the next potential problem.

Hooking Hits Performance

Each hook on a given function adds a new layer of function calls. In
pseudo-code, that looks like this:

LastHook (...)
AnotherHook (.. .)
SecondHook (.. .)
FirstHook(...)
OriginalFunction(...)
return ...
return ...
return ...
return ...

At each new level, Lua has to copy the arguments so that it can call the
next function, and then copy the return values as they come back out. With

Chapter 19 = Altering Existing Behavior with Function Hooking

367

secure hooks, the calls are not nested like that, but there’s still just as much
data copying going on. Most of the time, this doesn’t cause any noticeable
problems. However, if you hook a function that is called many times per
frame, you may create a perceptible drop in the performance of the client.

Finding Alternatives

We don’t want to scare you away from hooking completely; it definitely has
its time and place. However, you should consider possible alternatives first to
avoid these problems. Table 19-1 contains some common scenarios in which
your first instinct might be to hook, along with possible alternatives. Don’t
hesitate to ask for help from the Ul community either. With a wider experience
base, you may end up with new ideas that help your entire addon function
more efficiently.

Table 19-1: Hooking Alternatives

POTENTIAL HOOK ALTERNATIVE

onshow of a frame from the default Create a new frame with its own onShow

Ul or another addon handler as a child of the target frame. Any
time the target frame is shown or hidden,
yours will be, too. Removing your hook is
as simple as re-parenting your frame.

MerchantFrame_OnShow to Register for the MERCHANT _SHOW event
respond to opening a vendor and process the merchant data on your
window own. Unregister the event to unhook. This

also prevents any conflicts if the user has
a custom merchant frame.

SetAttribute to track attribute Set or hook the onAttributeChanged

changes on a frame script instead. The nature of the widget
handler fits the purpose of the hook
better than the method.

Designing an Addon: MapZoomOut

MapZoomOut is a simple addon that, whenever the player changes the zoom
of the minimap, starts a timer that returns the map to full zoom after 20 seconds.
This ensures that the player can change the zoom temporarily, but that the
map always reverts to the full size (to help with things like tracking and
tradeskills).

Specifying the behavior:

m When the minimap zoom is changed via the setZoom () method, a timer
will begin.

368 Partlll = Advanced Addon Techniques

m When the timer reaches 20 seconds, the zoom will be changed until it is
fully zoomed out again.

Implementation details:

= The Minimap:Setzoom(zoomLevel) method is used to change the zoom of
the minimap.

= The minimum zoom level is 0, which is fully zoomed out.

= The maximum zoom level can be obtained by calling Minimap:
GetZoomLevels ().

= The two minimap zoom buttons (the plus and minus) use the setZzoom()
method to change the zoom level.

= When the minimap zoom buttons are used, they include logic to enable
or disable themselves (so the zoom-out button is disabled when you are
at zoom level 0).

m The current zoom level can be obtained using the GetZoom () method.
m To start the timer, the setzoom () method will need to be hooked.

MapZoomOut won’t require an .xm1 file, so create the basic addon directory
and then add Mapzoomout . toc using the following content:

Interface: 30200
Title: MapZoomOut

Notes: Zooms the map out to the full level after a given time

MapZoomOut . lua

Creating a Timer Frame

Create a new file called MapZoomout . 1ua, and add the following line to the top
of the file:

local timerFrame = CreateFrame ("Frame")

This creates a frame with no global name and assigns it to a local variable so
it can be used later in the file. It will trigger the timer with onupdate.

Initial Setup

Add these lines to the bottom of the MapZoomout. lua file, creating a variable
to store the delay amount for the timer, a variable for the timer counter, and a
reference to the original Minimap:Setzoom() function:

local DELAY = 20
local counter = 0
local origSetZoom = Minimap.SetZoom

These local variables will be used later in the file to check the timer, as well
as to call the original setzoom function.

Chapter 19 = Altering Existing Behavior with Function Hooking

369

Create the Function Hook

The new function is simple; it just calls timerFrame:show() and changes the
counter to 0 to reset the timer. It then calls the original setZoom function
to change the zoom level. Add this function definition to the bottom of
MapZoomOut. lua:

function Minimap.SetZoom(...)
-- Show the timer frame, starting the timer
timerFrame: Show ()
counter = 0

-- Call the original SetZoom function
return origSetZoom(...)
end

The function parameters or returns are simply passed to the original function
using ..., and the results are returned to the calling function. This ensures
that the function will operate well with whatever calls it, because it augments
behavior rather than altering the original function.

Writing the Timer Code

The timer is a bit more complex than the earlier example simply for
aesthetic reasons. The easy way to write this addon would be to call
origSetZoom(Minimap, 0) when the timer expires, but this causes a pretty
large change in the minimap and doesn’t look all that pleasing. Instead, this
function will zoom out step by step, producing a more gradual zoom.

Add the following code to the bottom of MapzZoomout . lua:

local function OnUpdate (self, elapsed)
-- Increment the counter variable
counter = counter + elapsed

if counter >= DELAY then
-- Check current zoom level
local z = Minimap:GetZoom/()
if z > 0 then
origSetZoom (Minimap, z - 1)
else
-- Enable/Disable the buttons
MinimapZoomIn:Enable ()
MinimapZoomOut :Disable ()
self:Hide ()
end
end
end

370 Partlll = Advanced Addon Techniques

The beginning of the timer is the same, incrementing the counter and
checking it against the delay. Inside the conditional, you store the current
zoom level in local variable z so it can be referenced. If the minimap is
currently zoomed in (z > 0), the map is zoomed out by one level, but the
counter isn’t reset. That ensures the timer’s payload will run on the next frame
update as well. This alone accomplishes the gradual zoom-out rather than the
single frame change.

Finally, once the minimap is zoomed all the way out, the MinimapZoomIn
button is enabled, and the Minimapzoomout button is disabled. Then the timer
frame hides itself so its onupdate won’t be called again.

Final Setup

The last step is setting the onupdate script for timerFrame, and then deciding
what to do when the addon first loads. Because the user may load the game
with the minimap already zoomed in, the code will check to see if it should
start the timer or hide it to begin with (so it doesn’t run).

Add the following code to the bottom of your Mapzoomout . Lua file:

timerFrame:SetScript ("OnUpdate", OnUpdate)

if Minimap:GetZoom() == 0 then
timerFrame:Hide ()

end

Testing MapZoomOut

As with any addon you create, test the functionality to ensure it works properly
with no side effects. In this case, test the following:

m Using the zoom-in button, zoom in to each level, and verify that the map
is zoomed out after DELAY seconds each time.

m Manually call the Minimap:SetzZoom() function by running /script
Minimap:SetZoom(3). The addon should detect the change, and begin
the timer even though the buttons weren’t pushed.

Summary

Function hooking can be a useful tool in a programmer’s box, but it comes
with a hefty instruction booklet and set of warnings. In particular, follow these
principles when creating function hooks:

m Use the same parameters and returns.
m Call the original function and maintain the hook chain.

= Don’t alter the order or meaning of arguments or returns, because other
functions may rely on them.

Chapter 19 = Altering Existing Behavior with Function Hooking

371

= Don’t depend on your hook being in a certain place in the chain. This also
means you should never unhook a function.

m [ook for alternatives first. Hooking may not always be the best solution.

In addition, special care must be taken when hooking Blizzard scripts and
functions because certain actions are restricted to the default user interface.

The Code

MapZoomOut

MapZoomOut.toc

Interface: 30200
Title: MapZoomOut
Notes: Zooms the map out to the full level after a given time

MapZoomOut . lua

MapZoomOut.lua

local timerFrame = CreateFrame ("Frame")
local DELAY = 20

local counter = 0

local origSetZoom = Minimap.SetZoom

function Minimap.SetZoom(...)
-- Show the timer frame, starting the timer
timerFrame: Show ()
counter = 0

-- Call the original SetZoom function
return origSetZoom(...)
end

local function OnUpdate(self, elapsed)
-- Increment the counter variable
counter = counter + elapsed

if counter >= DELAY then
-- Check current zoom level
local z = Minimap:GetZoom/()
if z > 0 then
origSetZoom (Minimap, z - 1)
else
-- Enable/Disable the buttons

372 Partlll = Advanced Addon Techniques

MinimapZoomIn:Enable ()
MinimapZoomOut :Disable ()
self:Hide()
end
end
end

timerFrame:SetScript ("OnUpdate", OnUpdate)

if Minimap:GetZoom() == 0 then
timerFrame:Hide ()

end

CHAPTER

20

Creating Custom Graphics

When creating addons for World of Warcraft, you can often build your frames
using only the default Blizzard artwork, icons, and buttons. However, if your
addon requires something more specific, it can be created using any major
graphics editor. This chapter details the major steps needed to create a custom
texture for WoW in the GNU Image Manipulation Program (GIMP), Adobe
Photoshop CS, and Corel Paint Shop Pro X.

Common Rules for Creating Graphics

Graphics (or textures) in WoW have a few specific requirements they must
meet for them to be loaded and rendered in-game as part of a custom UL

= The height and width of the texture must be a power of two, although
they do not have to be the same power of two. This means 32x256 and
512x512 are both valid, but 50x128 is not. In addition, textures are limited
to a maximum of 512 pixels in either dimension. If you have a larger
graphic, you can break it into tiles and use multiple Texture objects to
display it.

m The graphic must be saved in either BLP or TGA format. BLP is a
proprietary format that Blizzard uses internally, and there are no official
tools that allow these files to be easily created or edited. TGA files can be
read and written in most major graphics editors.

373

374 Partlll = Advanced Addon Techniques

m Textures should be saved with an 8-bit alpha channel along with the
24-bit color data. This allows for both partial and full transparency in
textures.

m Graphics files must reside in an addon’s directory to be accessible to the
game client.

The GIMP

Creating a texture with transparency is relatively simple in the GIMP because
of the way it handles the alpha channel. The trick is creating the image with
a transparent background, and paying particular attention when creating the
various elements of the image.

Create a New Image
To create a new image with the GIMP:

1. Select File & New in the main GIMP window.

2. In the window that appears (see Figure 20-1), enter the width and height
of your image. Keep in mind that you don’t need to fill the entire space,
but both the height and width must be a power of two.

| Craate a Hew lmage %]

Templatis -
Image Sice
Width: 120 =
Hegight: | &4 = pinale i
@B

T2 i, FiOS eoker

= Bibranced Oplions

¥resolwion: 72000 = I

¥ resolutsor; 72000 = pizelsfin
Colorgpace: RGE cobar e
Eull waih Transpaeney o

Commant: ’meme-.« with The GIMP

() (o (oo)0

Figure 20-1: GIMP’'s New Image dialog

Chapter 20 = Creating Custom Graphics

375

3. Expand the Advanced Options section of the New dialog.

4. Ensure RGB color is selected for the Colorspace.

5. Set Fill With to Transparency, so the new base image is fully transparent.
6. Click OK.

Adding Graphical Components

A new window opens showing the base transparent image (see Figure 20-2).
You can add any graphical components to this image, including layers.
Unfortunately, I'm just a simple programmer and lack any and all graphical
manipulation skills, so I can’t give you too many pointers. This example creates
a very simple custom button.

= Untitlod. 10 RGH, 1 layer) 12600 =0

File Edit Select View lmage Layer Tooks

3

.-[w sl 2008] [Fackgpeand (74008 |

Figure 20-2: Editing window for new transparent image in the GIMP

Figure 20-3 shows a newly created custom icon, combining a simple border
graphic and a picture of my dog Daisy. This image is 64x64 and has transparent
edges (specifically for the rounded corners).

f’iﬁﬁi’&"ﬁ”ﬁﬁ?ﬁm
Eile
=]

Edit Select Wiew lmage Laye
n.."

LI_EI_LLJ_LLL]_ELLLLLLLJ_E!LLLLLI]@

0 (e el | 300% e s aer (1]

Figure 20-3: New custom icon created in the GIMP

376 Partlll = Advanced Addon Techniques

Saving Textures

Aslong as the graphic was created with a transparent background, you should
be able to save it without any issues. Save the new image using the following
steps:

1. Merge all the layers before attempting to save because TGA does not sup-

port layers. This step isn’t necessarily required but makes the subsequent
steps easier.

2. Select File = Save.

3. In the Save dialog, name your file with a .TGa extension and click the
Save button.

4. Anoptions dialog pops up (shown in Figure 20-4). Check both checkboxes
and click OK. This compresses the image in a lossless way (so it loses no
quality) but creates a smaller file size.

| v s THA | %]
I 1
[E1|ELE comprassion

| [F] Cirgginy at bottam laik

| Halp || Cancal |[(o]0]

Figure 20-4: Save as TGA dialog in the GIMP

Personally, I find that creating images in the GIMP the easiest, because the
only trick is ensuring the image is the right size with a transparent background.

Adobe Photoshop

Creating a texture in Photoshop is similar to creating one in the GIMP, but the
interface is quite a bit different. The same basic steps apply, the image creation
and saving being the most important.

Create a New Image

To create a new image with Photoshop:

Open Photoshop and select File = New.

The New dialog opens (see Figure 20-5).

Change the height and width to your desired dimensions.

Ensure the Background Contents dropdown has Transparent selected.

SANESEE .

Click OK to create the new image.

Chapter 20 = Creating Custom Graphics

377

[How %]
Baa: | Lititied-1 T
Presat: | Custom ""
L gave traset.,, |
it | A ek |
Hoh: | 64 poists ~]
= | [ogecental.
Bemodution: | 72 piakfinch V|
Color Mode: | 7150 Coler | EER] v |
Eochound Contorts: | Trargurl x| e
&) Arvarced 120K

Figure 20-5: Adobe Photoshop file creation dialog

Adding Graphical Components

Create the graphic as required (you're the one familiar with Photoshop here),
but take care to follow these rules:

m Make sure there isn’t a Background layer in your document when you
are ready to save.

m Jf you need to merge visible layers, use Merge All, but don’t flatten
the image. Flattening the image gives it a background, which loses the
transparency information.

Transparency in Adobe Photoshop is different than in GIMP. In particular,
you won't see an alpha channel created by default in the Channels window.
The transparent background means nothing when the image is flattened and
saved. To achieve transparency, you must create the alpha channel.

Creating an Alpha Channel

When your image is complete and ready to save, run the following steps to
create an alpha channel:

1. Merge the visible layers so you have a single layer containing the
nontransparent portions of your image.

2. Select the layer in the layers palette.
3. Open the Select menu and select Load Selection.

4. You will be prompted with a dialog box (see Figure 20-6), but the default
options should be correct. Click OK. This selects each pixel in the current
layer that isn’t transparent.

378 Partlll = Advanced Addon Techniques

[cavers = | hanneis [Fathe | oz
|N,..m.| A | Opacity 1|m.ﬂ

Lok [0 o =+ B Rl 100w |k

:' E Layer Froperties...

DBlanding Options...

Luld Tramsparency Mask

Subtract Transparency Mask
Intersect Transparency Mask

Ho Thumnbaails

Small Thumbnails
Medivnm Thumbnails
Large Thumbnalls

Clip Thwmboails to Layor Bownds
« Clip Thumbnails to Document Bounds

Figure 20-6: Load Selection dialog

5. In the Channels window, there is a small icon that will ““Save Selection
As Channel” (see Figure 20-7). Click it, creating an alpha channel based
on the selection.

Figure 20-7: Save Selection As Channel button in the Channels window

The new 8-bit alpha channel gives you different levels of opacity for animage
with more forgiving transparency. Now that the transparency information is
stored in a channel, you can flatten the image if you’'d like (although there
is no compelling reason to do so).

Saving an Image

Once the alpha channel is created, saving the image is a matter of selecting
File = Save As. The Save As dialog provides several options (shown in
Figure 20-8).

Chapter 20 = Creating Custom Graphics

379

Fils e [s con g vl Save
Fonmal; Vg " TG VIAICE VST “'l |EI
Save Dptions
Save;
[#] alpha Channets
iy

Coln;

[#]Lise Lower Case Extersion

& Fiba rrvurth L Lawwd a2 o wopry wilh Ui cubechion

Figure 20-8: Options in Photoshop’s Save As dialog

You can choose any name you’d like for the image, but ensure the file
format is set to Targa (*.tga) and that the filename ends in the .tga exten-
sion. If your image has layers, the As A Copy option will be automatically
selected, and the Layers option will be deselected with an error warning
next to it. This simply means that TGA doesn’t support layers, so the image
will be flattened before saving. Ensure that Alpha Channels is selected.
Click Save.

A final TGA options dialog (see Figure 20-9) opens to allow you to select the
color resolution and add compression to the image. Select 32 bits/pixel, and
check the box for Compress (RLE).

[Targa Options | %]
Regohition
123 16 it fpkenl

o

(=3 22 hitsjpend | Cancel

[¥] Compress (RLE)

Figure 20-9: Targa Options dialog

Once the image is saved, it can be copied into your WoW installation and
tested.

Paint Shop Pro

Paint Shop Pro is similar to Adobe Photoshop in most respects, particularly in
the way it handles transparency. As a result, you'll need to take similar steps
to ensure the transparent images you create are saved correctly.

380 Partlll = Advanced Addon Techniques

Creating a New Image
To create a new image with Paint Shop Pro:

1. Select File =» New.

2. The New Image options dialog (see Figure 20-10) opens. Specify the
dimensions of your image.

| Haw Image %]
! Presets: |
| - tmage Dumangions
5 With & ::V Liraks §
$ Hegit ;|54 2wl
Resohtion s [72000 Sl [putifinets o]
| Image Chee artrratics

() paster Backround L
(I wctor Background g
(it Mkl Background. [

Color depth s | R - B biesfchanned |
Cokor

E-Truwlnd.

Memary Reguered: 4 Elvbes
Dimerranns: M ¥ 64 Preeks

| (e mr—

Figure 20-10: Corel Paint Shop Pro New Image dialog

3. Select a Raster Background with a color depth of RGB - 8 bits/channel.
4. Check the Transparent box to give your image a transparent background.

5. Click OK.

Adding Graphical Components

Create your image as you usually do in this application, ensuring that you
don’t use the Flatten Image option. You will need the transparent background
to make certain the alpha channel is created correctly.

Chapter 20 = Creating Custom Graphics

381

Creating an Alpha Channel

Once your image is created, use the following steps to create an alpha channel
for transparency:

1. Select Layers = New Mask Layer = From Image (see Figure 20-11). This
will create a new mask layer consisting only of the pixels in your image.

T Objects Selections Window Help

Hew Haster Layer... v L oo airt *.\"_ Toom in
Mew Mector Layer...
Hizwr Arl Meadia Layor...
New Layer Group...

Nowr Mask | ayar ¥ Hida A0 Shift+y

Mew Adjustment Layer L Shaw All

Duplicate Hlde Seleaian
Dglete Show Selaction
Bropenies...

Figure 20-11: New Mask Layer menu option

2. In the Add Mask From Image dialog (see Figure 20-12), select Source
Opacity in the Create Mask From section to ensure the new alpha channel
is created using the transparency you defined when creating the image.

‘A Mask From lmage o
Senmce v,
inaget.]
Create mack liom
I':.-Sl;um‘ &
Hrin
(23 A e 2800 vakue [_'_]
[} Bruurn opacity
| Trveeit matk deta

Figure 20-12: Add Mask From Image dialog box

3. Click OK. This adds a new layer mask to your image.
4. Select Layers = Load Save Mask = Save Mask to Alpha Channel.

5. A dialog box displays, allowing you to preview the image transparency
and giving you an opportunity to name the new channel. Click OK.

382 Partlll = Advanced Addon Techniques

Your image now has a proper alpha channel that can be used to save the
image with transparency.

Saving an Image
Follow these steps to save an image in Paint Shop Pro:

1. Select File = Save As.

2. In the dialog that appears, choose TGA Truevision targa (*.tga) as the
image format, and name your image.

3. Click the Options button.

4. In the Save Options dialog box (see Figure 20-13), select a 24-bit image
and compression for your image.

5. Click OK to exit the options dialog.

Save Options L%
R
VB his
16 ks
(1 24 hita

Crenpurazion
[} Comprossnd

2 Urcomgeesed
ok][Concel][Hop | _

Figure 20-13: Targa options in Paint Shop Pro

6. Click Save.

7. If you still have layers in your image, you may get a warning dialog (see
Figure 20-14) telling you that the image will be merged and then saved.
Click Yes.

[Paint Shop Pro ¥ "y

L] Because of the limitations of the specified file format (and possibly 1he save options you've
H'z) selected), the saved file will be limited to a mergad image. Wauld you ke ta continua?

L yes [[8 |

Figure 20-14: File format limitations dialog in Paint Shop Pro

Chapter 20 = Creating Custom Graphics

383

Testing Your Texture

To test the new texture, you need to fully exit World of Warcraft and add
a small custom addon to house the image. (You could instead add it to an
existing addon, but that exercise is left to the reader, when appropriate.)

1. Create a folder TconTest underneath your Addons directory.
2. Add afile TconTest. toc with the following contents:

Interface: 30200
Title: IconTest
Notes: Simple icon test addon

IconTest.xml

3. Add a file TconTest . xml with the following contents. Change paisyIcon
to the name of your icon filename.

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI .xsd">
<Button name="IconTest" parent="UIParent">
<Size x="64" y="64"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture name="$parentIcon" 2
file="Interface\AddOns\IconTest\DaisyIcon" setAllPoints="true"/>
</Layer>
</Layers>
</Button>

</Ui>

4. WoW doesn’t require you to specify extensions when loading textures; it
will try to load both a .BLP and a . TGa automatically.

5. Copy your icon file to the TconTest directory.

6. Load up World of Warcraft and hope you don’t have any errors in your
XML.

If you have created the texture correctly, it should appear in the center of
your screen (see Figure 20-15).

If you’ve made any errors, you might experience one of two symptoms: no
button appears, or you see only a solid green box.

384 Partlll = Advanced Addon Techniques

Figure 20-15: Custom texture being viewed in-game

No Button Appears

If you see no button at all, double-check your XML definition, and ensure you
have no errors in your FramexML. log file. You can also use a web browser to
check that your XML document is well-formed. Ensure that your test addon
appears in the AddOn listing. Did you make sure to exit WoW before you
added the new files?

A Green Box Appears

When there is an issue loading a given texture in World of Warcraft, the texture
will be colored solid green (see Figure 20-16). Typically, this is a result of a
typo on the filename being used for the texture.

Figure 20-16: Solid green texture, indicating an error

Depending on how the texture was created (from an XML definition or
through a Lua function call), a number of issues could result in a green texture
being displayed.

XML Texture Definition

A texture created in XML may have one of the following issues:
m The file doesn’t exist.
m The graphic was saved incorrectly.
m The filename was not specified correctly.

m Filenames in XML should only have single backslashes between
directories.

Chapter 20 = Creating Custom Graphics

385

m Filename path separators must be backslashes, even on a Mac OS X
or UNIX system, because of the way the client loads and parses the
filenames.

Lua Texture Definition

When troubleshooting texture errors in Lua, the following issues may exist:

m The file doesn’t exist.
m The graphic was saved incorrectly.
m The filename was not specified correctly.

m Backslashes in filenames must be escaped (using a double backslash).
Alternatively, you can use long string notation to specify the filename:

[[Interface\AddOns\YourAddOnName\Path\To\Texture]]

m Filename path separators must be backslashes, even on a Mac OS X
or UNIX system, because of the way the client loads and parses the
filenames.

Summary

Every graphical editor has differences and settings that are necessary to create
an image with partial transparency for use in World of Warcraft. The GIMP
enables you to create your image and simply save it as a TGA file, whereas
both Photoshop and Paint Shop Pro require you to create an alpha channel
based on a mask or selection.

CHAPTER

21

Responding to the Combat Log
and Threat Information

Following the Burning Crusade expansion for World of Warcraft, a new system
was introduced to allow addons to get detailed information about the combat
events happening around the player. The system allows for very powerful
addons that can record and display combat log information. This chapter
introduces you to the complex combat log system through the creation of an
addon called CombatStatus.

Understanding the Combat Log

The combat log is one of the most complex systems in World of Warcraft,
which is understandable considering how much of the game is actually based
around combat. An addon can use two events to get combat log information,
COMBAT_LOG_EVENT and COMBAT_LOG_EVENT UNFILTERED. The first event is used
by the actual Blizzard_CombatLog addon to display filtered events, and the
second will fire for any combat event regardless of whether or not it matches
the currently set filters. Most addons will use the unfiltered event to ensure
that players get an opportunity to see each event.

Event Arguments

Each combat event is guaranteed to have at least eight arguments that describe
the different actors involved in the combat event. Not all events will have two
actors (a source and a destination) because that information isn’t necessarily

387

388 Partlll = Advanced Addon Techniques

available. The standard arguments to the event appear in the following
order:

timestamp—Thisis a server-based timestamp of when the event occurred,
with millisecond precision. If you are logging events or comparing events
between clients, this can help with matching different events up with
each other.

combatEvent—More than forty different combat events might be sent as
a combat log event and this argument helps to distinguish between these
different sub-events. Example sub-events are UNIT_DIED, SPELL_STOLEN,
and swinc_DaMAGE. There’s more information about the different combat
events in the next section.

sourceGUID—Each unit (or other entity) involved in a combat log event
is distinguished by a GUID (Globally Unique IDentifier). These values
exist for all entities—including those which cannot be referenced by
unitID—and always specifically identify the entity to which they refer—
even for cases where multiple units share the same name. This allows
addons to keep track of individual actors in combat regardless of such
factors. Further explanation of GUIDs is provided later in this chapter.

sourceName—Because the combat log is most interested in displaying the
name of the actor, it makes sense to include that in the event arguments.
This is the name of the source actor for the given combat event.

sourceFlags—This field contains information about the actor, such as
whether it is a non-player character, a pet, or some other type of object.
In addition the flags contain information about the relationship between
the player and the actor, such as whether or not it was the player’s target
at the time the event occurred.

destGuID—The same information as sourcecUID for the destination actor.
destName—The same information as sourceName for the destination actor.

destFlags—The same information as sourceFlags for the destination
actor.

There are normally additional event arguments, but they change depending
on the type of combatEvent.

Combat Sub-Events

To determine the particular arguments and information being passed in a
combat log event, you must examine the combatEvent argument. Currently
forty-eight different types of sub-events might occur, but even sub-events can
be split further into a prefix and a suffix.

Chapter 21 = Responding to the Combat Log and Threat Information

389

Combat Event Prefix

The event prefix indicates the type of the event, such as whether it involves
physical damage like an auto-attack, a ranged attack, spell, or damage to
a building or structure in-game. The additional arguments will be after the
initial eight arguments that come with the COMBAT_LOG_EVENT_UNFILTERED.

m syiiNG—This prefix is encountered for any auto-attack damage. No addi-
tional arguments are sent for this type of event prefix.

= RANGE—AnNy ranged attacks, such as auto shot, shoot bow/gun/
crossbow /wand, and throwing, will use this prefix, which sends the spell
information as additional arguments. The spell information is passed in
additional arguments: spel11d, spellName, and spellSchool.

m spenL—This prefix is used for all spellcast events, as well as other types of
non-periodic spell actions. The spell information is passed in additional
arguments; spellld, spellName, and spellSchool.

m ENVIRONMENTAL—This prefix is used for damage caused by the environ-
ment, such as when a player touches a bonfire, is immersed in lava, falls
from great height, or begins to drown. The type of environmental damage
is passed as an additional argument: environmentType.

Bit Fields and Spell Schools

Throughout the combat log, bit fields are used for arguments where more than
one setting might be set in a single argument. The term bit field comes from the
binary representation of numbers, where a number is made up of a number
of bits. Table 21-1 shows the basic spell schools with their numeric values and
binary representation.

Table 21-1: Spell Schools and Numeric Representations

SPELL SCHOOL NUMERIC VALUE BINARY REPRESENTATION
Physical 1 00000001
Holy 2 00000010
Fire 4 00000100
Nature 8 00001000
Frost 16 00010000
Shadow 32 00100000
Arcane 64 01000000

Frostfire 20 00010100

390 Partlll = Advanced Addon Techniques

You can see that the binary values are non-conflicting and as a result they
can be combined. The spell school for Frostfire Bolt (20) combines the value
for Frost (16) and Fire (4). More importantly, we can get the component values
back out of the combined number using bitwise operations. Try the following
within WoW:

> print(bit.band (20, 16))
16

> print(bit.band (20, 4))
4

> print(bit.band (20, 8))
0

As a matter of fact, there’s only one way to build the number 20 by adding
the basic spell schools together. Even if you were to add the physical, holy, fire,
and nature schools together, you would only get to 15. You could try adding
the physical holy and frost schools together but that only gets you to 19. This
is a special feature of bit masks that are built in this way.

To compare bit fields, you can utilize the three major bitwise operations:

= and—The bitwise and of two numbers is a resulting number where each
bit is set to 1 only if the same bit is set to 1 for the two input numbers.
This function is available as the bit.band () function.

m or—The bitwise or of two numbers is a resulting number where each bit
is set to 1 if either of the input bits is set to 1. This function is available as
the bit.bor () function.

m xor—The bitwise xor of two numbers is a resulting number where each
bit is set to 1 if exactly one of the two input bits is set to 1. This function
is available as the bit.bxor () function.

In practice, you will very rarely use anything other than bitwise and because
it allows you to see if a given bit flag is set for a given number. In the preceding
examples, you take the number 20 (which is 00010100 in binary representation)
and compare it to 16 (00010000), 4 (00000100), and 8 (0001000).

All you have to do is check the resulting number to see if it’s greater than 0
(that is, if there are any bits set). You experiment more with bit masks later in
this chapter.

Combat Event Suffix

The rest of the combat event following the prefix indicates the remaining argu-
ments to the combat event. The arguments will start following any additional
arguments from the prefix portion of the combat event. The particular order

Chapter 21 = Responding to the Combat Log and Threat Information 391

will make more sense when you look at complete events put together. The
following is a list of valid suffix types:

= paAMAGE and BUILDING_DAMAGE—Used to indicate damage to the destina-
tion actor. If the damage was done to a building rather than a normal
unit, the BUILDING_DAMAGE event will fire instead of pamMaGE. The following
additional arguments are included:

= amount —The amount of damage inflicted.

= overkill—A number, zero or more, indicating how much overkill
damage was inflicted (that is, how much extra damage was done
beyond the amount required to kill/destroy the target).

= school—The school of the inflicted damage, that is, whether the
damage was physical, caused by fire, and so on.

m resisted—A number, zero or more, indicating how much damage
was resisted due to magical resistance attributes.

= blocked—A number, zero or more, indicating how much damage was
blocked due to a physical shield.

= absorbed—A number indicating how much damage was absorbed by
a spell or ability, or nil.

= critical—1 if the damage inflicted was a critical hit, otherwise ni1.

= glancing—1 if the damage inflicted was a glancing blow, other-
wise nil.

= crushing—1 if the damage inflicted was a crushing blow, other-
wise nil.

m v1SSED and PERIODIC_MISSED—Used to indicate that an attack missed in
some way. The following arguments are included:

= nissType—One of the following strings, indicating the type of miss
that occurred: ABSORB, BLOCK, DEFLECT, DODGE, EVADE, IMMUNE, MISS,
PARRY, REFLECT, and RESIST.

®m amountMissed—The amount of damage that missed.

m casT_START—This combat event is only fired for the speLL prefix, and
indicates the start of a spell cast. This only fires for spells with a cast time.
No additional arguments are included.

m casT_succEss—This combat event is fired for any type of spell cast
including channeled and instant cast spells. It indicates that the spell was
cast successfully. No additional arguments are included.

392 Partlll = Advanced Addon Techniques

m casT_FAILED— This combat event is fired whenever a spell cast has failed
for some reason. The following additional argument is included:

= failedType—A message indicating why the spell cast failed.

= HEAL, PERIODIC_HEAL, and BUILDING_HEAL—One of these combat events
fires when a healing effect occurs. Depending on whether the spell is a
periodic effect, a heal on a building, or a one-shot heal on a unit, one of
these three events will fire. The following arguments are included:

= amount —The amount of healing that occurred.

®m overhealing—A number, zero or greater, indicating the amount of
healing that occurred beyond that required to bring the target to full
health.

= absorbed—A number indicating the amount of healing that was
absorbed.

m critical—1 if the heal was a critical heal, otherwise nil.

= ENERGIZE and PERIODIC_ENERGIZE—Energize events occur when an actor
gains health, mana, or some other type of power through some abil-
ity or item. Depending on whether the spell is a periodic effect or
a one-shot effect, one of these two events will fire. For example, the
ENERGIZE event fires when the Death Knight “‘Butchery” effect is trig-
gered, giving the player 20 extra runic power. The following arguments
are included:

= amount —The amount of power gained.

= powerType—The type of power that was gained. It can be one of the
following values:

m -2 —Health

= o—Mana

m] —Rage

m 2 —Focus (pets)
m 3 —FEnergy

m 4 —Pet happiness
= 5 —Runes

= ¢—Runic power

m 1 EECH and PERIODIC_LEECH—When one actor “steals” a resource from
his target, such as when using the Viper Sting or Drain Mana spells, one
of these events will occur. Depending on whether the spell is a periodic

Chapter 21 = Responding to the Combat Log and Threat Information 393

effect or a one-shot effect, one of these two events will fire. The following
arguments are included:

= amount—The amount of power gained.

= powerType—The type of power that was gained. See the listing for the
ENERGIZE suffix.

m cxtraAmount —The extra amount of power that was gained as a bonus of
the spell. For example, Viper Sting awards 300% of the power leeched.

= prRAIN and PERIODIC_DRAIN—When one actor drains a resource from his
target, one of these events will occur. Depending on whether the spell is
a periodic effect or a one-shot effect, one of these two events will fire. The
following arguments are included:

= amount —The amount of power gained.

= powerType—The type of power that was gained. See the listing for the
ENERGIZE suffix.

= oxtraAmount—The extra amount of power that was gained as a bonus
of the spell. For example, Viper Sting awards 300% of the power
leeched.

Spell-Only Suffixes
The following combat suffixes only fire for the spELL prefix:

m syMmMoN—Fires when an actor summons an NPC such as a totem or
non-combat pet. No additional arguments are included.

m rESURRECT —Fires when a player is resurrected. No additional arguments
are included.

m cREATE—Fires when a new object is created (as opposed to summoned
NPCs), such as a hunter’s pet or mage portal. No additional arguments
are included.

m 1NsTAKILL—Fires when a spell instantly kills an actor. No additional
arguments are included.

= TNTERRUPT—Fires when a spell is interrupted. The first set of spell
arguments (from the prefix) will be the ability that was responsible for
the interruption. The following arguments are included:

m oxtraSpellID—The numeric identifier for the spell that was
interrupted.

= cxtraSpellName—The name of the spell that was interrupted.

= oxtraSchool—The school of the spell that was interrupted.

394 Partlll = Advanced Addon Techniques

m ExTRA_ATTACKS—Fires when an actor does additional damage through
extra attacks, such as those granted by Windfury Weapon or the Thrash
Blade proc. The following argument is included:

= amount —The number of extra attacks granted by the ability. The actual
damage is listed as additional entries in the combat log.

= DURABILITY_DAMAGE— This event fires when a spell or ability causes dam-
age to an actor’s items. For example, Nefarion’s hunter call in Blackwing
Lair or Ragnaros” Melt Weapon ability, which reduce the durability of the
player’s items.

= DURABILITY_DAMAGE_ALL—This event fires when a spell or ability causes
damage to all of an actor’s items.

= AURA_APPLIED—Fires when an aura is applied to an actor. The following
argument is included:

= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

= AURA_APPLIED_DOSE—Fires when a stackable aura is applied to an actor,
such as Lifebloom or Penance. The following arguments are included:

m suraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

= amount— The number of doses applied.

m AURA_REFRESH—Fires when an aura is refreshed with a new application.
The following argument is included:

= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

= AURA_REMOVED—Fires when an aura is removed from an actor. The fol-
lowing argument is included:

= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

= AURA_REMOVED_DOSE—Fires when a dose isremoved from a stackable aura,
such as Lifebloom or Penance. The following arguments are included:

= suraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

®m snount— The number of doses removed.

m AURA_BROKEN—Fires when an aura has been broken by damage. The
following argument is included:

= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

Chapter 21 = Responding to the Combat Log and Threat Information 395

= AURA_BROKEN_SPELL—Fires when an aura has been broken by a spell. The
following arguments are included:

m extraSpellID—The numeric identifier for the spell that was broken.
= cxtraSpellName—The name of the spell that was broken.
= cxtraschool—The school of the spell that was broken.

= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

m prspEL—Fires when an aura is dispelled. The following arguments are
included:

= oxtraSpellID—The numericidentifier for the spell that was dispelled.
= cxtraSpellName—The name of the spell that was dispelled.
®m coxtraschool—The school of the spell that was dispelled.

= suraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

= pISPEL_FAILED—Fires when an aura fails to be dispelled. The following
arguments are included:

= cxtraSpellID—The numeric identifier for the spell that was dispelled.
= oxtraSpellName—The name of the spell that was dispelled.
m cxtraschool—The school of the spell that was dispelled.

= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.

m sToLEN—Fires when an aura is stolen. The following arguments are
included:

m cxtraSpellID—The numeric identifier for the spell that was stolen.
= cxtraSpellName—The name of the spell that was stolen.
m oxtraSchool—The school of the spell that was stolen.
= auraType—A string indicating the type of the aura. Observed values
are BUFF and DEBUFF.
Special Combat Events

The following combat events do not follow the prefix/suffix conventions and
therefore must be considered individually:

= pAMAGE_SHIELD—Fires when a shield causes damage to an actor. To
process this event you can use the same arguments for the spELL prefix,
with the additional arguments from the paMaAGE suffix.

396 Partlll = Advanced Addon Techniques

DAMAGE_SPLIT—This occurs when damage is split among multiple targets.
To process this event you can use the same arguments for the spELL prefix,
with the additional arguments from the paMaAGE suffix.

DAMAGE_SHIELD_MISSED—Fires when a shield causes damage to an actor,
but that damage misses in some way. To process this event you can use
the same arguments for the speLL prefix, with the additional arguments
from the MIsSED suffix.

ENCHANT_APPLIED—Fires when an enchantment is applied to an item. The
following arguments are passed:

®m spellName— The name of the enchantment.
®m itemID— The numeric identifier of the item.
®m i temName— The name of the item that was enchanted.

ENCHANT REMOVED— Fires when an enchantment is removed from an item.
The following arguments are passed:

m spellName—The name of the enchantment.

m itemID—The numeric identifier of the item.

m i temName— The name of the item that was enchanted.
PARTY_KILL—Fires when a member of your party kills a unit.
UNIT_DIED— Fires when a unit dies.

UNIT_DESTROYED—Fires when a unit is destroyed.

Unit GUIDs

All units in World of Warcraft have a globally unique identifier. From the
details posted by Blizzard on the WoW Forums:

An NPC has a single GUID from spawn until death or despawn. When it
respawns, it gets a new GUID.

Pets and totems get a new GUID every time they are summoned.
NPC and pet GUIDs can be recycled after server or instance restart.

Player GUIDs are unique and persist as long as the player is on a given
server.

The combat log automatically sends the GUID for the source and destination
unit for each event. In addition, you can query the GUID for a specific unit
using the unitGuID () function. Recently a new function was added, allowing
you to query class, race, and sex information about another player unit using

Chapter 21 = Responding to the Combat Log and Threat Information

397

his GUID. The GetplayerInfoByGUID() function takes in a GUID argument,
and returns the following:

®m localizedClass—The name of the unit’s class in the client’s current
locale.

= classFilename—A non-localized tokenidentifying the unit’s class (which
can be used for looking up other class identifiers, such as color values in
the RATD_cLASS_COLORS table).

m]ocalizedRace—The name of the unit’s race in the client’s current locale.
®m raceFilename—A non-localized token identifying the unit’s race.

m sex—A number identifying the unit’s gender: 1 for neuter or unknown,
2 for male, or 3 for female.

Format of GUIDs

Due to the large amount of items that require GUIDs, they are quite large
numbers. In fact, the numbers are bigger than the numbers that Lua can hold in
their number values. As a result, the GUIDs are stored and returned as strings.
For example "0x0100000002aB26D5" is the GUID of one of my characters.

Internally, parts of the GUID are bit fields as well. For example, you can
determine whether or not the entity behind a GUID is a player, NPC, or pet.
To do this, you need to convert your GUID string to a number and take the
mask of the upper portion:

function GUIDToType (guid)
local typeMask = 0x00F
local upper = tonumber (guid:sub(1l, 5))
local type = bit.band(upper, typeMask)

if type == 0 then

print ("GUID " .. guid .. " is a player")
elseif type == 3 then

print ("GUID " .. guid .. " is an NPC")
elseif type == 4 then

print ("GUID " .. guid .. " is an NPC")
end

end

GUIDToType (UnitGUID ("player"))

Other information is embedded in the GUID for most units but isn’t used
for our purposes. GUIDs do provide you with a way to get information about
entities in your combat log which cannot be identified by a unitID, but note
that the format of such information may be subject to change.

398 Partlll = Advanced Addon Techniques

Unit Flags

The final argument that is sent for the source and destination is a set of flags.
These flags indicate the following information about each entity:

m The type of the entity as one of the following: object, guardian, pet, NPC,
or player.

m Whether the entity is controlled by a player or is an NPC.
= The entity’s reaction to the player (that is, friendly, hostile, or neutral).

m The relationship between the player and the entity’s controller. This rela-
tionship can be the player, the player’s party, the player’s raid, or an
outsider.

m [f the entity is a raid target, main tank, main assist, or the player’s focus
or target unit at the time the message is received.

You use bitwise operations to get this information.

COMBATLOG_OBJECT_TYPE_MASK

To obtain the type of an object, you can use the global variable coMBaTLOG_
OBJECT_TYPE_MASK. You then compare the resulting value with one of the
following global variables:

COMBATLOG_OBJECT_TYPE_MASK
COMBATLOG_OBJECT_TYPE_GUARDIAN

]
|
= COMBATLOG_OBJECT_TYPE_PET
B COMBATLOG_OBJECT_TYPE_NPC
|

COMBATLOG_OBJECT_TYPE_PLAYER

For example, to check if the entity with given unit flags is a pet, you can use
the following code:

local typeFlags = bit.band(unitFlags, COMBATLOG_OBJECT_TYPE_MASK)
local isPet = typeFlags == COMBATLOG_OBJECT_TYPE_PET

COMBATLOG_OBJECT_CONTROL_MASK

You can utilize this mask to determine if a player or an NPC currently controls
an entity. These flags do properly update when entities are mind controlled,
allowing you to distinguish between an ally of yours attacking the enemy
and an ally of yours attacking you under duress. The valid results for these
flags are:

B COMBATLOG_OBJECT_CONTROL_NPC

= COMBATLOG_OBJECT_CONTROL_PLAYER

Chapter 21 = Responding to the Combat Log and Threat Information

399

COMBATLOG_OBJECT_REACTION_MASK

The reaction of an entity is a bit misleading—you might think that if an enemy
is attacking you or one of your allies they would show up as hostile. Instead,
the reaction indicates the predisposition of an entity toward the player. As a
result, one of the yellow-colored mobs in the game that won’t automatically
attack you will show up as having a neutral reaction to you even if it’s
fighting you!

The valid results for these flags are:

B COMBATLOG_OBJECT_REACTION_HOSTILE
B COMBATLOG_OBJECT_REACTION_NEUTRAL

B COMBATLOG_OBJECT_REACTION_FRIENDLY

COMBATLOG_OBJECT AFFILIATION_MASK

An object’s affiliation indicates its relationship to the player. The possible
results start with the closest to the player (that is, something that is owned by
the player) and move out to outsiders (entities that are not part of the player’s
raid or party). Possible results are:

= COMBATLOG_OBJECT_AFFILIATION_OUTSIDER
= COMBATLOG_OBJECT_AFFILIATION_RAID

= COMBATLOG_OBJECT_AFFILIATION_PARTY

= COMBATLOG_OBJECT_AFFILIATION_MINE

The numeric values of the global variables starts with 1 for MINE and
increases toward ouTsIDER with 8. Although we recommend against relying
on the numeric values of these variables rather than using the global constants,
the ordering of the values isn’t likely to change in the future without notice.
You could therefore check to see that something is either owned by you or
someone in your party by checking that the result is less than or equal to
COMBATLOG_OBJECT_AFFILIATION_PARTY.

COMBATLOG_OBIJECT SPECIAL_MASK

The special flags are used to indicate if the entity has some special way to be
distinguished, from the player’s perspective. An entity might have no special
flags set, giving the result:

=™ COMBATLOG_OBJECT_NONE
The flags might indicate that the entity has one of the eight raid icons on it:

B COMBATLOG_OBJECT_RAIDTARGETS

= COMBATLOG_OBJECT_RAIDTARGET7

400 Partlll = Advanced Addon Techniques

COMBATLOG_OBJECT_RAIDTARGET6
COMBATLOG_OBJECT_RAIDTARGETS
COMBATLOG_OBJECT_RAIDTARGET4
COMBATLOG_OBJECT_RAIDTARGET3
COMBATLOG_OBJECT_RAIDTARGET2

COMBATLOG_OBJECT_RAIDTARGETL

The entity might have been set as a Main Tank or Main Assist:

COMBATLOG_OBJECT_MAINTANK

COMBATLOG_OBJECT_MAINASSIST

In addition the flags could indicate that the entity was the player’s target or
focus at the time the event arrived (although it may have since changed):

COMBATLOG_OBJECT_FOCUS

COMBATLOG_OBJECT_TARGET

Using CombatLog Object_IsA

There is a utility function that can make working with combat log flags a bit
easier. It takes in a set of unit flags and a “filter”” mask. If the unit matches the
given mask, it returns 1; otherwise it returns nil. These predefined filters are
as follows:

COMBATLOG_FILTER_EVERYTHING—Any entity.
COMBATLOG_FILTER_FRIENDLY_UNITS—Entity is a friendly unit.
COMBATLOG_FILTER_HOSTILE_PLAYERS—Entity is a hostile player unit.
COMBATLOG_FILTER_HOSTILE_UNITS—Entity is a hostile non-player unit.
COMBATLOG_FILTER_ME—Entity is the player.

COMBATLOG_FILTER_MINE—Entity is a non-unit object belonging to the
player; for example, a totem.

COMBATLOG_FILTER_MY_PET—Entity is the player’s pet.
COMBATLOG_FILTER_NEUTRAL_UNITS—Entity is a neutral unit.

COMBATLOG_FILTER_UNKNOWN_UNITS—Entity is a unit currently unknown
to the WoW client.

Chapter 21 = Responding to the Combat Log and Threat Information

401

Writing CombatStatus

As an example of how the combat log can be used to get detailed information
about combat in World of Warcraft, you will create an addon called Com-
batStatus. The initial version will show the damage per second and heals per
second for your party, including pets.

The addon is structured with the following observations in mind:

= You can take advantage of unit flags to make capturing all of your

party’s events easier. In particular, you can check for COMBATLOG_OBJECT_

AFFILIATION_PARTY to get the relevant events.

m Because combat data arrives with GUID information rather than unitIDs,
you’ll need to make sure you store and index all data using GUIDs. This
will ensure that you don’t lose any information if the order of unitIDs
change.

m A player might have more than one pet (for example, druids and their
treant pets, or shaman elemental totems). Rather than trying to consider
them individual pets, you can just collapse them into a single “pet”” unit
for each of your party members. You can use the sPELL_suMmoN combat log
event to detect new units coming into play so we can track their GUIDs.

Creating the Basic Addon Structure

In your Addons folder, create a new directory called CombatStatus. Inside,
create a new file called combatstatus.toc with the following contents:

Interface: 30300
Notes: Provides a DPS meter for your party

CombatStatus.lua
CombatStatus.xml

Although you aren’t using any XML templates in this addon currently, it’s
better to create the file now in case you choose to add some at a later time. Create
anew CombatStatus.xml file and add the basic <ui> element declaration:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

</Ui>

402 Partlll = Advanced Addon Techniques

To add the frame declaration and a system for initialization that you’ll
expand on in later sections, create a new file combatstatus.lua with the
following contents:

local CombatStatus = CreateFrame ("Frame", "CombatStatus", UIParent)

function CombatStatus:OnEvent (event, ...)
if event == "PLAYER_LOGIN" then
self:Initialize()
end
end

-- Begin initialization section
-- Set the event handler so it can drive everything else
CombatStatus:SetScript ("OnEvent", CombatStatus.OnEvent)

if IsLoggedIn() then
CombatStatus:Initialize()
else
CombatStatus:RegisterEvent ("PLAYER_LOGIN")
end

The bulk of this code should seem familiar to you, but the section at the
bottom might seem a bit odd. As you've seen throughout the book, a number of
API functions don’t operate properly before the pLAYER_LOGINevent. Normally
you would just register for the pLAYER_LOGIN event, but when an addon is
flagged as load-on-demand it might be loaded after that event has already
tired. So you check the IsLoggedin() API function to see if that event has
already passed, and if so, you call the initialization function directly.

As you add new functions to this addon, make sure to add them before the
initialization section at the bottom (beginning with the setscript call), but
after the frame creation on the first line. Due to the complexity of this addon,
you will want to wait until the addon is finished before you test because some
functions reference others that are not yet defined.

Initializing CombatStatus

The setup for your addon will occur in the Initialize() method. There
you will set up the data tables, register for events, and create the dis-
play components of the addon. Add the following initialization function
to CombatStatus.lua. It’s not necessary to include the comments in your
version of the code, but that is entirely up to you.

function CombatStatus:Initialize()
self.combat_time = 0 -- The amount of time in combat
self.party_damage = {} -- Store the party's DPS

Chapter 21 = Responding to the Combat Log and Threat Information

403

self.party_heals = {} -- Store the party's heals
self.pet_guids = {} -- Store GUID mappings for pets
-- This is a metatable that returns 0 for any non-set values. It will

-- allow us to use table entries without having to check them first
local zero_mt = {
_ _index = function(tbl, key)
return 0

end,

setmetatable (self.party_damage, zero_mt)
setmetatable(self.party_heals, zero_mt)

-- This table will be used to store snapshots of the data every few
-- seconds, allowing us to calculate DPS and HPS over a smaller

-- period of time. It will be indexed by unitid and each value will
-- be a table that returns 0 for default and holds the damage in the
-- damage field, and the heals in the heals field.

self.snapshots = {}

local emptytbl_mt = {
__index = function(tbl, key)
local new = setmetatable({}, zero_mt)
rawset (tbl, key, new)
return new
end,

setmetatable(self.snapshots, emptytbl mt)
self.player_guid = UnitGUID("player")

self:RegisterEvent ("PARTY_MEMBERS_CHANGED")
self:RegisterEvent ("UNIT_PET")

self:RegisterEvent ("COMBAT_LOG_EVENT_UNFILTERED")
self:RegisterEvent ("PLAYER_REGEN_ENABLED")
self:RegisterEvent ("PLAYER_REGEN_DISABLED")

self:CreateFrames ()
self:UpdateFrame ()
end

You define a number of entries in the frame’s table to store the state of
the addon. The first variable will allow you to track the amount of time the
player has been in combat. This allows you to take the total amount of damage
done, and divide it by the total amount of time spent in combat to get a unit’s
DPS. You store the damage and heals in separate tables (although you could
certainly conceive of different ways of doing this). You also need a place to

404

Part Ill = Advanced Addon Techniques

store a mapping from pet GUID to owner GUID to ensure you can properly
handle pets.

You create a new metatable that returns 0 for any non-set values. This
allows you to avoid having to check if a value in the table is set before you
try to add anything to it. In the case of the damage tables, you can do the
following:

self.party_damage[guid] = self.party_damage[guid] + damageAmount

instead of:

local oldvalue = self.party_damagel[guid] or 0
self.party_damage[guid] = oldvValue + damageAmount

It may be a minimal gain, but it’s also less prone to error. The snapshots
table is used to store periodic snapshots of the damage so you can display a
running average of everyone’s DPS. The table will be indexed by GUID and
the value is a table that contains two entries (health and heals) that both default
to 0. You use a metatable to create these tables automatically in the same way
you have the prior metatable default to 0.

Finally, you register for the following events:

= PARTY MEMBERS_CHANGED— Use this event to see when the composition of
the player’s party changes. This enables you to re-scan the pet mappings
and update the frame.

m ynIT_PET—This event fires when a unit’s pet status changes, such as
when a Warlock or Hunter summons or dismisses a pet. This won’t cover
the cases where temporary pets are summoned; you'll catch those in
another way.

= COMBAT_LOG_EVENT_UNFILTERED—DBecause this addon is all about collect-
ing information from the combat log, naturally you need to register for
this event. This event is likely to fire very frequently so you will want
to take precautions to ensure you don’t do anything computationally
intensive in response to it.

= pIAYER_REGEN_DISABLED—Likewise, this event fires when the player
enters combat.

= pLAYER_REGEN_ENABLED— This event indicates that the player is no longer
in combat, so you can use it to swap between your two different
states.

Finally, you call the createFrame () method to create the status bars. Then
you call the updateFrame () method to actually run the update function. For
now, these methods don’t exist, but they will be filled in later.

Chapter 21 = Responding to the Combat Log and Threat Information 405

Updating Pet Mappings
The strategy you're going to take with pets is to map the pet GUID to the
owner GUID, so multiple pets get collapsed into a single amount of damage.

Add the following function that will take a unitID and update the GUID map
for that unit’s pets:

function CombatStatus:UpdatePets (unit)
local petUnit

if unit == "player" then

petUnit = "pet"
else

petUnit = unit:gsub("(party) (%d)", "%$lpet%2")
end

if petUnit and UnitExists (petUnit) then
local guid = UnitGUID(unit)
local petGUID = UnitGUID(petUnit)
self.pet_guids[petGUID] = guid .. "pet"
end
end

To look up information about pets you need to use the unitID for the pet,
but you're only given the unitID for the owner. For party members these IDs
are partypetl, partypet2, partypet3, and partypet4. You can use a simple
substitution using patterns to transform partyl into partypet1, as shown in
the preceding code.

You need to cover the special case of the player’s pet, which is just the
unitID “pet.” Once you have the correct unitID, you check to see if the unit
exists and if so you get the GUID. Rather than doing a direct mapping from
the pet GUID to the owner GUID, you do a mapping from the pet GUID to the
owner GUID with the string “pet” added to the end.

If you didn’t add this string you would need to store the pet’s damage in
another table (because the damage table is indexed by GUID). Otherwise, you
would no longer be able to distinguish between the pets and the original unit
itself.

Storing Damage and Healing Information

You're using the COMBAT_LOG_EVENT_UNFILTERED to get information about your
party’s damage and healing, so you need a function that extracts the right
information from the various possible events. Create the following function in
CombatStatus.lua:

local damageEvents = {
SWING_DAMAGE = true,

406 Partlll = Advanced Addon Techniques

RANGE_DAMAGE = true,
SPELL_DAMAGE = true,
SPELL_PERIODIC_DAMAGE = true,
DAMAGE_SHIELD = true,
DAMAGE_SPLIT = true,

local healEvents = {
SPELL_HEAL = true,
SPELL_PERIODIC_HEAL = true,

function CombatStatus:ProcessEntry(timestamp, combatEvent, srcGUID, 2
srcName, srcFlags, destGUID, destName, destFlags, ...)
if damageEvents[combatEvent] then
local offset = combatEvent == "SWING_DAMAGE" and 1 or 4
local amount, overkill, school, resisted, blocked, absorbed = 3
select (offset, ...)

-- Check if this is a pet, and if so map the pet's GUID to the party
-- member's GUID using the mapping table.
if self.pet_guids[srcGUID] then
srcGUID = self.pet_guids[srcGUID]
end
self.party_damage[srcGUID] = self.party_damage[srcGUID] + amount
elseif healEvents[combatEvent] then
local amount, overhealing, absorbed = select (4, ...)
self.party _heals[srcGUID] = (self.party_heals[srcGUID] or 0) + 3
(amount - overhealing)
elseif combatEvent == "SPELL_SUMMON" then
-- A unit of ours has summoned a new pet/totem. Here we map the
-- new GUID to the party member's with the string "pet" added.
-- This way we can use a single table to store damage for all units
self.pet_guids[destGUID] = srcGUID .. "pet"
end
end

Because you are only concerned about events that are caused by damage or
events that are caused by healing you can use a lookup table to know whether
to continue processing. If the incoming event doesn’t match one of the entries
in the table, the function just returns.

If you look at the prefix/suffix information earlier in this chapter, you'll see
that swING_paMAGE is the only damage event that doesn’t contain information
about the spell that caused the damage (because it’s caused by auto-attacking).
The first line of the damage event processing block sets a variable called of fset
that is used to select () the right arguments from the arguments that were
passed in. If you're on a SWING_DAMAGE event the offset is set to 1, otherwise
it’s set to 3.

Chapter 21 = Responding to the Combat Log and Threat Information

407

You then select the amount of damage and other relevant information from
the arguments. You check the pet GUID mapping table to see if you need to
convert the pet GUID to the owner’s GUID. Then, you store the damage into
the damage table.

Heals are even easier because you don’t have to worry about pet’s healing
(for the purposes of this addon, we’re choosing not to track pet heals). You
don’t want to count overhealing, however, which is what happens when,
for example, a heal lands for 6000 healing but the target is only missing
3000 damage. In this case, the API will show 3000 overhealing, so you subtract
this from the amount healed.

The spELL_suMMON event indicates that someone in your party has sum-
moned a new pet (such as a totem or a druid’s treants). When this happens
and you don’t have the unitID, you just update the GUID mapping table
directly.

Taking “Snapshots” of Damage and Healing

Every few seconds you are going to take a snapshot of the current damage and
healing, allowing you to calculate averages over every few seconds rather than
only being able to display overall stats. Add the following function definition
to Combatstatus. lua:

local units = {"player", "pet", "partyl", "partypetl", "party2", "partypet2", 3
"party3", "partypet3", "party4d", "partypetd"}
function CombatStatus:TakeSnapshot ()
-- This function loops through all the valid unit ids and stores
-- the current DPS or HPS so we can later subtract it.
for idx, unit in ipairs(units) do
local guid = UnitGUID(unit)

if guid then
if self.pet_guids[guid] then
guid = self.pet_guids[guid]
end

self.snapshots|[guid] .damage = self.party_ damage[guid]
self.snapshots[guid] .heals = self.party_heals[guid]
end
end
end

Because you need to loop over the unitIDs in both the update and the
snapshot functions, you create a table that has each of the unitIDs you're
concerned with. For each unit, you look up the GUID and if it's a known pet
GUID you translate it using your mapping table. Then you update the entry
in the snapshots table with the current damage and healing information.

408 Partlll = Advanced Addon Techniques

Writing an OnUpdate Function

Youneed a simple timer to handle the periodic updates to the damage and heal-
ing information. Add the following function definition to combatstatus. lua:

local counter = 0
local throttle = 5.0
function CombatStatus:OnUpdate (elapsed)
counter = counter + elapsed
if counter >= throttle then
counter = 0
self:UpdateFrame (throttle)
self:TakeSnapshot ()
end
end

Every five seconds when the frame is shown, the frame will be updated and
then a new snapshot will be taken. If you took the snapshot first, then everyone
would always show 0 dps because it would have nothing to compare against.
You pass the throttle argument to the update function, so it knows what
time period to divide the damage by.

Responding to Events

You need to glue everything together by responding to the events you have
registered for. Replace the onEvent function with the following version:

function CombatStatus:OnEvent (event, ...)
if event == "COMBAT_LOG_EVENT_ UNFILTERED" then

-- Check to see if the source of the event is someone within the

-- circle of our party

local srcFlags = select (5, ...)

if bit.band(srcFlags, COMBATLOG_OBJECT_AFFILIATION_MASK) > &
COMBATLOG_OBJECT_AFFILIATION_PARTY then

return
end
self:ProcessEntry(...)

elseif event == "PARTY_ MEMBERS_CHANGED" then
for 1 = 1, GetNumPartyMembers () do
local unit = "party" .. 1

self:UpdatePets (unit)

end

if not self.in_combat then
self:UpdateFrame ()

end

elseif event == "UNIT_PET" then
local unit =
self:UpdatePets (unit)

Chapter 21 = Responding to the Combat Log and Threat Information

409

elseif event == "PLAYER_REGEN_DISABLED" then
self.in_combat = true
self.combat_start = GetTime()
counter = 0 -- Reset the OnUpdate counter
self:TakeSnapshot ()
self:SetScript ("OnUpdate", self.OnUpdate)

elseif event == "PLAYER_REGEN_ENABLED" then
self.in_combat = false
self.combat_time = self.combat_time + GetTime() - self.combat_start

self:SetScript ("OnUpdate", nil)
self:UpdateFrame ()
elseif event == "PLAYER_LOGIN" then
self:Initialize()
end
end

The different sections of this function are explained in the following section.

COMBAT _LOG_EVENT _UNFILTERED

The coMBAT_LOG_EVENT_UNFILTERED event will happen the most often, so you
want to ensure that it can be processed quickly. You put it at the top of the
event handler and only pass it to the processing function when the event
originates from an entity in the player’s party.

PARTY_MEMBERS_CHANGED

When the composition of the player’s party changes, you need to scan and
update the pet GUID mappings. Whenever the PARTY_MEMBERS_CHANGED event
fires, you loop through each of the party units and call the updatepets ()
method, passing in the unit. Then, if the player isn’t currently in combat, you
update the frame. You don’t force an update when the player is in combat just
because you already know it'll update when the onupdate triggers.

UNIT_PET

When a unit summons a pet, the unIT_PET event will fire, with the first
argument being the unitID. As a result, you just call your Updatepets ()
function, passing in the unitID.

PLAYER REGEN _DISABLED

You'll need some way to track whether or not the player is in combat. You
could use the IncombatLockdown () function, but instead this addon uses the
PLAYER_REGEN_DISABLED event to set a flag on the frame. At the same time,
you also store the current time in the combat_start variable (so you can later
subtract it to get elapsed time). Then you take a snapshot to ensure you have
a point for comparison, and set the onupdate script so it will start triggering.

410 Partill = Advanced Addon Techniques

PLAYER REGEN_ENABLED

The pLAYER_REGEN_ENABLED event will fire when the player leaves combat, and
as a result the logic in this section is much the reverse of entering combat.
You turn the combat flag off, and update the total amount of combat time by
subtracting the current time from the start time. Next you clear the onupdate
function and update the frame, which will show the total stats instead of the
rolling average.

Creating the Frame Display

As an initial example, the display for this addon will be series of text strings
that contain the damage and healing information. Eventually, you'll want to
expand it to use status bars instead of text strings. Create your createFrames ()
function:

function CombatStatus:CreateFrames ()
self:ClearAllPoints ()
self:SetPoint ("TOP", MinimapCluster, "BOTTOM", 0, -15)
self:SetWidth(300)
self:SetHeight (150)

self.rows = {}
for i = 1, 10 do
local row = self:CreateFontString(nil, "OVERLAY", 2
"GameFontHighlight")
row: SetText ("Blah")
self.rows[i] = row

if 1 == 1 then
row:SetPoint ("TOPLEFT", 0 ,0)
else
row:SetPoint ("TOPLEFT", self.rows[i-1], "BOTTOMLEFT", 0, 0)
end
end
end

The frame is anchored directly below the minimap cluster and consists of 10
different font strings.

Updating the Frame Display

The actual calculations are accomplished in the updateFrame () method. Add
this method to your file anywhere below the Takesnapshot () method, because
it uses the units table defined just before that function.

function CombatStatus:UpdateFrame (elapsed)
for idx, unit in ipairs(units) do

local row = self.rows[idx]

Chapter 21 = Responding to the Combat Log and Threat Information

411

if UnitExists(unit) then
local guid = UnitGUID (unit)
if self.pet_guids|[guid] then
guid = self.pet_guids[guid]
end

local dps, hps

if elapsed and elapsed > 0 then
-- We are being called from the OnUpdate so we compare
-- against the snapshot rather than calculating the
-- total DPS and HPS

dps = (self.party damagel[guid] - self.snapshots[guid].damage) 2
/ elapsed

hps = (self.party_heals[guid] - self.snapshots[guid].heals)
/ elapsed

elseif self.combat_time > 0 then

dps = self.party damagel[guid] / self.combat_time
hps = self.party_heals[guid] / self.combat_time
else
dps = 0
hps = 0
end

-- Actually update the frame with the new values here
local name = UnitName (unit)
local dpstext = self:ShortNum(dps)
local hpstext = self:ShortNum(hps)
row:SetFormattedText ("[%s] DPS: %s, Heal %s", name, dpstext,
hpstext)
row: Show ()
else
row:Hide ()
end
end
end

The overall strategy here is to loop over each of the unitIDs and check to
see if the unit exists. If so, you fetch the GUID, translating it to a pet GUID if
necessary. Then you have two different sets of calculations. If the elapsed value
it set, it indicates the amount of time that has passed since the last snapshot.
In this case, you divide the difference between the current damage and the
snapshot by the elapsed time. Otherwise, you take the total damage and divide
by the total time in combat.

You use a utility function you're going to write to convert the numeric DPS
into a shorter version. Finally, you set the text string to display the heal per
second and damage per second. Define the shortNum () method:

function CombatStatus:ShortNum (num)
local large = num > 1000

412 Partlll = Advanced Addon Techniques

return string.format ("%$.2f%s", large and (num / 1000) or num,
large and "k" or "")
end

This function takes in a number and if it’s greater than 1000, converts it to
a shorter form. This function will turn the damage 3337 into 3.34k, making it
much easier to read and compare.

Future Additions

In its current form, CombatStatus is very primitive. Instead of showing status
bars (or some other, flashier way of displaying the data), it uses simple
formatted font strings. There are blank spaces left when units don’t exist and
it’s not customizable in any way. Think about a few enhancements you might
want for this basic addon, and consider releasing your own updated version!

Summary

This chapter introduced the combat log event system, including how to
distinguish between the different combat events. You learned the different
prefixes and suffixes that make up different events, including the arguments
that differ between them. You created an addon that can track the damage and
healing of your party both as a running average and total average. The next
chapter shows you how to create scroll frames for displaying your data.

CHAPTER

22

Creating Scroll Frames

When creating a custom user interface, you may have a need to display data
that is too large for a reasonably sized window. World of Warcraft allows you
to create frames that can scroll both horizontally and vertically, giving you
more flexibility in the display of your data. This chapter shows you how to
create two different types of scroll frames that are used throughout the default
user interface.

A scrollFrame is used to allow horizontal and vertical smooth scrolling of
data that is too large for the containing frame. In the default user interface,
the Quest Log uses a scroll frame when the quest description is too long for
the window (see Figure 22-1). This type of scroll frame allows for smooth
pixel-by-pixel scrolling of the contents.

A faux scroll frame is, as the name suggests, a way to simulate a scroll frame
without actually using one. The Auction House uses this technique to display
a list of auctions, shown in Figure 22-2. Because each row of the listing has the
same size, only enough rows are created to show a single page of the listing
instead of creating one for every single item.

As the user scrolls through the listing, the rows are updated to display
different elements of the list. For certain applications this method is more
efficient than trying to create a set of frames for every single row of the listing.

The inner workings of a scroll frame are very complex, so suffice it to say
that the user interface first has to render the contents, and then render the
scroll frame to contain it. This can be very inefficient, and you should avoid
using scroll frames in tense situations, such as combat.

This chapter first shows you how to create actual scroll frames, and then
introduces the basics of creating FauxScrollFrames.

413

414 Partill = Advanced Addon Techniques

Scroll frame Scroll bar

: '._1 know what thie)

e
- they wear, amd 1°H e
an

Figure 22-1: Quest Log scroll frame not scrolled (left) and scrolled (right), showing more
of the quest text.

= P

L &% &% L1 a9 o &% Loy =

19
L
@
L

Lo
L

T
o

T® 5
i@
ER
L

F

Figure 22-2: Auction House using a FauxScrollFrame

Using Scroll Frames

A scroll frame comprises the scrolling frame itself (the frame actually doing
the visual clipping of its contents) and the scroll child (a frame that contains
the contents). The scroll child can be a frame, a button or any other frame

Chapter 22 = Creating Scroll Frames 415

type. Although the scroll frame provides an API for scrolling horizontally and
vertically, it does not provide any scroll bars on its own.

You can experiment with scroll frames by creating a new addon skeleton
called scrollFrameTest, so you have a place to put the test code for this
chapter. Create scrollFrameTest . toc with the following contents:

Interface: 30300
Title: ScrollFrameTest
Notes: Test addon for scroll frames

ScrollFrameTest .xml
ScrollFrameTest.lua

Next, create the basic frame definition within Scrol1FrameTest .xml:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<ScrollFrame name="ScrollFrameTest">
<Size x="150" y="150"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture setAllPoints="true">
<Color r="0.0" g="0.0" b="0.0"/>
</Texture>
</Layer>
</Layers>
</ScrollFrame>
</Ui>

This definition creates a 150x150 frame in the center of the screen with a
black background.

Adding a Scroll Child

The actual contents of the frame are defined within the <scrol1lchild> element
when using XML, or set with the setscrollchild () method when using Lua.
Add the following section to ScrollFrameTest.xml immediately after the
</Layers> tag:

<ScrollChild>
<Frame>
<Size x="250" y="250"/>
<Layers>
<Layer level="ARTWORK">
<Texture file="Interface\Icons\Spell_ Shadow_DemonicFortitude">

416 Partlll = Advanced Addon Techniques

<Size x="100" y="100"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
</Texture>
</Layer>
</Layers>
</Frame>

</ScrollChild>

The <scrollchild> element should contain exactly one frame (or frame
derivative) that contains the contents of the scroll frame. This child frame can
be any size, but it will be visually clipped to the size of the <scrollFrame>
element. As a matter of fact, the horizontal and vertical scroll ranges are
defined by the size of this child frame.

Load the game and you should see an image in the center of your screen
similar to that shown in Figure 22-3.

Figure 22-3: ScrollFrameTest

Manipulating a ScrollFrame

Like any other specific type of frame, a scrollFrame has different methods
and handler scripts available. For example, the following methods can be used
on scroll frames:

m GetHorizontalScroll () —Returns the current scroll value of the hori-
zontal scroll component.

B GetVerticalScroll () —Returns the current scroll value of the vertical
scroll component.

m SetHorizontalScroll () —Sets the scroll value of the horizontal scroll
component.

m setVerticalScroll () —Sets the scroll value of the vertical scroll compo-
nent.

W GetHorizontalScrollRange () —Returns the maximum scroll range for

the horizontal scroll component.

Chapter 22 = Creating Scroll Frames

47

W GetVerticalScrollRange () —Returns the maximum scroll range for the
vertical scroll component.

®m UpdateScrollcChildrect () —Updates the virtual size of the scroll child.
This function should be called when the contents of the scroll frame are
changed.

You can use these methods to center the image, using the following scripts
in-game:

/run ScrollFrameTest:SetHorizontalScroll (-50)
/run ScrollFrameTest:SetVerticalScroll (50)

Note that the horizontal scroll requires a negative value to scroll the child to
the right, whereas vertical scroll takes a positive number to scroll the child up.
This is consistent with the way coordinates in the user interface work, where
(0,0) is the bottom-left corner of the screen. Figure 22-4 shows the frame when
adjusted using these commands.

Figure 22-4: ScrollFrameTest scrolled 50 pixels to the left and 50 pixels up.

Adding Scroll Bars

As you have seen, creating a scroll frame is simple, but isn’t very helpful to
your users if they have to use slash commands to scroll the frame. This section
shows you an easy way to create a scroll bar using the siider frame type.

Add the following to scrollFrameTest.xml, after the </Layers> tag and
before the <scrollchild> tag. The particular order is important if you are
validating your XML file, since the schema requires any sub-frames to be
defined before the scroll child.

<Frames>
<Slider name="ScrollFrameTest_HSlider" orientation="HORIZONTAL"
minValue="0" maxValue="100" defaultValue="0" valueStep="1">
<Size x="150" y="25"/>
<Anchors>
<Anchor point="TOP" relativePoint="BOTTOM" 3
relativeTo="ScrollFrameTest"/>
</Anchors>

418 Partlll = Advanced Addon Techniques

<Scripts>
<OnValueChanged>
ScrollFrameTest:SetHorizontalScroll (-1 * self:GetValue())
</OnValueChanged>
</Scripts>
<ThumbTexture name="S$parentThumbTexture"
file="Interface\Buttons\UI-ScrollBar-Knob">
<Size x="25" y="25"/>
</ThumbTexture>
</Slider>
<Slider name="ScrollFrameTest_VSlider" orientation="VERTICAL"
minValue="0" maxValue="100" defaultValue="0" valueStep="1">
<Size x="25" y="150"/>
<Anchors>
<Anchor point="LEFT" relativePoint="RIGHT" 3
relativeTo="ScrollFrameTest"/>
</Anchors>
<Scripts>
<OnValueChanged>
ScrollFrameTest:SetVerticalScroll (self:GetValue())
</OnValueChanged>
</Scripts>
<ThumbTexture name="S$parentThumbTexture"
file="Interface\Buttons\UI-ScrollBar-Knob">
<Size x="25" y="25"/>
</ThumbTexture>
</Slider>
</Frames>

These two XML definitions create two sliders with a range between 0
and 100, because the child frame is exactly 100 pixels larger than the scroll
frame in either dimension. When the sliders are moved, the horizontal or
vertical scroll is updated on the scroll frame. These simple scroll bars use
the UT-scrollBar-Knob graphic for the slider “thumb’” graphic, and could be
extended to use the border and backgrounds from those scroll bars, as well.

Figure 22-5 shows the scroll frame operating in-game.

Figure 22-5: ScrollFrameTest scroll frame, with scroll bars.

Chapter 22 = Creating Scroll Frames

419

Now the frame can also be adjusted via the sliders, using the setvalue()
method, as in the following commands:

/run ScrollFrameTest_HSlider:SetValue(50)
/run ScrollFrameTest_VSlider:SetValue (50)

Creating Faux Scroll Frames

A faux scroll frame is a bit more complex to make because it must be tailored
to the specific need. For example, you typically create a template and then a
series of entries to make a single page. This section shows you how to create a
line of icons onscreen that can be scrolled through in order to display all valid
macro icons for selection. The API functions used here are the following:

W GetNumMacroIcons () —Returns the number of available macro icons.

m GetMacroIconInfo (index) —Returns the texture for the selected macro
index.

This addon displays six icons side by side, and the slider is used to scroll
between the available icons. Begin by creating an addon skeleton called
MacroIconTest,ananHﬁngthefOHOMdnginﬂ)MacroIconTest.toc

Interface: 30300
Title: MacroIconTest
Notes: Test addon for a faux scroll frame

MacroIconTest.lua
MacroIconTest.xml

Create MacroIconTest.xml with the following contents:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<Button name="MacroIconTest_IconTemplate" virtual="true">
<Size x="32" y="32"/>
<NormalTexture name="S$parentIcon" setAllPoints="true"/>
<HighlightTexture alphaMode="ADD"
file="Interface\Buttons\ButtonHilight-Square"/>
</Button>
</Ui>

This simple XML template is used to create each of the icon slots. It defines a
default texture, as well as a highlight texture to give a bit more visual feedback.
Insert the following XML before the </ui> tag to create a set of icons:

<Frame name="MacroIconTest">
<Size x="192" y="32"/>
<Anchors>

420 Partill = Advanced Addon Techniques

<Anchor point="CENTER"/>
</Anchors>
<Frames>
<Button name="S$parentIconl" inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
</Button>
<Button name="S$parentIcon2" inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" «2
relativeTo="$parentIconl"/>
</Anchors>
</Button>
<Button name="S$parentIcon3" inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" 3
relativeTo="SparentIcon2"/>
</Anchors>
</Button>
<Button name="S$parentIcond4" inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" 3
relativeTo="$parentIcon3"/>
</Anchors>
</Button>
<Button name="S$parentIcon5" inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" 3
relativeTo="$parentIcond"/>
</Anchors>
</Button>
<Button name="S$parentIcon6" inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" «2
relativeTo="$parentIcon5"/>
</Anchors>
</Button>
</Frames>
</Frame>

If you jump into the game at this point, you'll have an invisible set of boxes
that can be moused over (the highlight texture will still show) but that don’t
actually display anything. Jump to MacroIconTest.luaand add the following
function:

function MacroIconTest_UpdateIcons (startIcon)
local name = "MacroIconTestIcon"

for i=1,6 do
local texture = GetMacroIconInfo(startIcon + (i - 1))

Chapter 22 = Creating Scroll Frames

421

local button = getglobal (name .. i)
button:SetNormalTexture (texture)
end
end

This function accepts a single argument, namely the index of the icon
that should be displayed first. It then loops through the six different icon
buttons and changes their texture accordingly. The loop assumes the first icon
is numbered 1, because the GetMacroIconInfo() function makes the same
assumption.

m Not all data is available immediately within the game client. For example,
the number of icons and the texture information about each macro icon isn’t
available until after the client has been partially initialized. Generally, this
information is available after the PLAYER LOGIN event, which is fired just before
the client begins displaying the 3-D world. Some functions may need to be delayed
until after this event to work properly.

Add the following behavior scripts to the MacroIconTest frame by putting
the following section immediately after its </Frames> tag:

<Scripts>
<OnLoad>
self:RegisterEvent ("PLAYER_LOGIN")
</OnLoad>
<OnEvent>
if event == "PLAYER_LOGIN" then
GetNumMacroIcons ()
MacroIconTest_UpdateIcons (1)
end
</OnEvent>
</Scripts>

Here you register for the pLAYER LOGIN event, and when that event
fires, the onEvent script calls GetNumMacroIcons(), and then calls the
MacroIconTest_UpdateIcons () function to update the icon display. When
guild banks were introduced, the macro icon system was changed so icon
information isn’t available until the GetNumMacroIcons () function has been
called at least once, hence the call here. Load the game client, and you should
see something like that shown in Figure 22-6 in the center of your screen.

Figure 22-6: MacrolconTest frame

422 Partlll = Advanced Addon Techniques

Test the update function by running some of the following macros:

B /run MacroIconTest_UpdateIcons(15)
B /run MacroIconTest_UpdateIcons(180)

B /run MacroIconTest_UpdateIcons (-1)

Notice that in the last example, rather than an error the first two icons are
shown as blank.

Adding Scroll Bars

As in the previous example, a slider can be used to scroll through the list of
icons. Add the following to your MacroIconTest.xml file after the </Frame>
tag from the main frame:

<Slider name="MacroIconTest_HSlider" orientation="HORIZONTAL">
<Size y="25"/>
<Anchors>
<Anchor point="TOPLEFT" relativePoint="BOTTOMLEFT" =
relativeTo="MacroIconTest"/>
<Anchor point="TOPRIGHT" relativePoint="BOTTOMRIGHT"
relativeTo="MacroIconTest"/>
</Anchors>
<Backdrop edgeFile="Interface\Buttons\UI-SliderBar-Border"
bgFile="Interface\Buttons\UI-SliderBar-Background" tile="true">
<EdgeSize>
<AbsValue val="8"/>
</EdgeSize>
<TileSize>
<AbsValue val="8"/>
</TileSize>
<BackgroundInsets>
<AbsInset left="3" right="3" top="6" bottom="6"/>
</BackgroundInsets>
</Backdrop>
<ThumbTexture name="S$parentThumbTexture"
file="Interface\Buttons\UI-ScrollBar-Knob">
<Size x="25" y="25"/>
</ThumbTexture>
</Slider>

This creates a slider bar with a backdrop and border to make it look a bit
more like a scroll bar. Add the scripts section to the slider by putting the
following after the </Backdrop> tag and before the definition of the thumb
texture:

<Scripts>
<OnLoad>
local max = GetNumMacroIcons ()

Chapter 22 = Creating Scroll Frames

423

self:SetMinMaxValues (1, max - 5)
self:SetValueStep(1.0)
self:SetValue(l)

</OnLoad>

<OnValueChanged>
MacroIconTest_UpdateIcons (value)

</OnValueChanged>

</Scripts>

The resulting addon is shown in Figure 22-7, including the scroll bar with
border and background.

Figure 22-7: MacrolconTest addon showing various macro icons

Scrolling with the Mouse Wheel

As an extra method of scrolling the icons, you can add support for scrolling
with the mouse wheel. This involves setting an onMousewheel script. Add the
following to the <scripts> section of the MacroIconTest frame (not the slider):

<OnMouseWheel>
MacroIconTest_OnMouseWheel (self, delta)
</OnMouseWheel>

Then add this function to MacroIconTest. lua:

function MacroIconTest_OnMouseWheel (self, delta)
local current = MacroIconTest_HSlider:GetValue ()

if (delta < 0) and (current < GetNumMacroIcons()) then
MacroIconTest_HSlider:SetValue(current + 1)
elseif (delta > 0) and (current > 1) then
MacroIconTest_HSlider:SetValue (current - 1)
end
end

This function definition just piggybacks onto the slider bar’s min and max
values to ensure it doesn’t go outside those boundaries. You should now be
able to scroll the frame using both the slider and the mouse wheel.

Problems with Slider Precision

You may notice that if you scroll using slash commands or the mouse wheel,
you can scroll through the icons one-by-one. If you try to use the slider instead,

424 Partlll = Advanced Addon Techniques

you can’t really tell how many icons are scrolling on each step. That’s because
there are more than a thousand icons to be displayed, and the slider widget
only has so much precision when working with the mouse.

You could fix this by changing the step value for the slider. In this case,
change it to 3, so the slider will move in steps of 3. Unfortunately, if you change
the precision of the slider, the mouse wheel can no longer scroll icon-by-icon.
You may never run into this issue, but here’s the change you would make to
allow this (altered lines are highlighted):

<OnLoad>
local max = GetNumMacroIcons ()
self:SetMinMaxValues (1, max - 5)

self:SetValueStep(3.0)

self:SetvValue (1)
</OnLoad>

Summary

A visual scroll frame is a smooth, pixel-by-pixel scroll frame that can be used
to display contents that are too large for the parent window. Scroll frames of
this nature are used in the default user interface in the Quest Log, and within
the edit box in the macro window.

A faux scroll frame uses a set number of frames to display a list of rows
or columns by changing offsets using the scroll bar. These scroll frames don’t
change visually when you scroll through them; rather, they redraw the rows
with different information. These pseudo scroll frames are used in the Auction
House, Friends list, and several other places in the default user interface.

The Code

ScrollFrameTest

ScrollFrameTest.toc

Interface: 30300
Title: ScrollFrameTest
Notes: Test addon for scroll frames

ScrollFrameTest .xml
ScrollFrameTest.lua

ScrollFrameTest.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/

Chapter 22 = Creating Scroll Frames

425

http://wowprogramming.com/FrameXML/UI.xsd">
<ScrollFrame name="ScrollFrameTest">
<Size x="150" y="150"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Layers>
<Layer level="BACKGROUND">
<Texture setAllPoints="true">
<Color r="0.0" g="0.0" b="0.0"/>
</Texture>
</Layer>
</Layers>
<Frames>
<Slider name="ScrollFrameTest_HSlider" «3
orientation="HORIZONTAL"
minvValue="0" maxValue="100" defaultvValue="0" valueStep="1">
<Size x="150" y="25"/>
<Anchors>
<Anchor point="TOP" relativePoint="BOTTOM" 3
relativeTo="ScrollFrameTest" />
</Anchors>
<Scripts>
<OnValueChanged>
ScrollFrameTest:SetHorizontalScroll (-1 *
self:Getvalue())
</OnValueChanged>
</Scripts>
<ThumbTexture name="S$parentThumbTexture"
file="Interface\Buttons\UI-ScrollBar-Knob">
<Size x="25" y="25"/>
</ThumbTexture>
</Slider>
<Slider name="ScrollFrameTest_VSlider" orientation="VERTICAL"
minvValue="0" maxValue="100" defaultvValue="0" valueStep="1">
<Size x="25" y="150"/>
<Anchors>
<Anchor point="LEFT" relativePoint="RIGHT" «2
relativeTo="ScrollFrameTest"/>
</Anchors>
<Scripts>
<OnValueChanged>
ScrollFrameTest:SetVerticalScroll (self:Getvalue())
</OnValueChanged>
</Scripts>
<ThumbTexture name="S$parentThumbTexture"
file="Interface\Buttons\UI-ScrollBar-Knob">
<Size x="25" y="25"/>
</ThumbTexture>
</Slider>

426 Partlll = Advanced Addon Techniques

</Frames>
<ScrollChild>
<Frame>
<Size x="250" y="250"/>
<Layers>
<Layer level="ARTWORK">
<Texture 3
file="Interface\Icons\Spell_ Shadow_DemonicFortitude">
<Size x="100" y="100"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
</Texture>
</Layer>
</Layers>
</Frame>
</ScrollChild>
</ScrollFrame>
</Ui>

MacrolconTest
MacrolconTest.toc

Interface: 30200
Title: MacroIconTest
Notes: Test addon for a faux scroll frame

MacroIconTest.lua

MacroIconTest.xml

MacrolconTest.lua

function MacroIconTest_UpdatelIcons (startIcon)

local name = "MacroIconTestIcon"

for i=1,6 do

local texture = GetMacroIconInfo(startIcon + (i - 1))
local button = getglobal (name .. i)
button:SetNormalTexture (texture)
end
end

function MacroIconTest_OnMouseWheel (self, delta)
local current = MacroIconTest_HSlider:GetValue()

if (delta < 0) and (current < GetNumMacroIcons()) then
MacroIconTest_HSlider:SetValue (current + 1)
elseif (delta > 0) and (current > 1) then
MacroIconTest_HSlider:SetValue (current - 1)
end
end

Chapter 22 » Creating

Scroll Frames

MacrolconTest.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<Button name="MacroIconTest_IconTemplate" virtual="true">
<Size x="32" y="32"/>
<NormalTexture name="S$SparentIcon" setAllPoints="true"/>
<HighlightTexture alphaMode="ADD" 3
file="Interface\Buttons\ButtonHilight-Square"/>
</Button>
<Frame name="MacroIconTest">
<Size x="192" y="32"/>
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Frames>
<Button name="SparentIconl" &
inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
</Button>
<Button name="$parentIcon2" 3
inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT"
relativeTo="$parentIconl"/>
</Anchors>
</Button>
<Button name="$parentIcon3"
inherits="MacroIconTest_TIconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT"
relativeTo="SparentIcon2"/>
</Anchors>
</Button>
<Button name="SparentIcon4d" e
inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT"
relativeTo="$parentIcon3"/>
</Anchors>
</Button>
<Button name="S$parentIcon5"
inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT"
relativeTo="$parentIcond"/>

)

i)

P}

)

428 Partlll = Advanced Addon Techniques

</Anchors>
</Button>
<Button name="S$parentIcon6" 2
inherits="MacroIconTest_IconTemplate">
<Anchors>
<Anchor point="TOPLEFT" relativePoint="TOPRIGHT" «2
relativeTo="$parentIcon5"/>
</Anchors>
</Button>
</Frames>
<Scripts>
<OnLoad>
self:RegisterEvent ("PLAYER_LOGIN")
</OnLoad>
<OnEvent>
if event == "PLAYER_LOGIN" then
GetNumMacroIcons ()
MacroIconTest_UpdateIcons (1)
end
</OnEvent>
<OnMouseWheel>
MacroIconTest_OnMouseWheel (self, delta)
</OnMouseWheel>
</Scripts>
</Frame>
<Slider name="MacroIconTest_HSlider" orientation="HORIZONTAL">
<Size y="25"/>
<Anchors>
<Anchor point="TOPLEFT" relativePoint="BOTTOMLEFT" «2
relativeTo="MacroIconTest"/>
<Anchor point="TOPRIGHT" relativePoint="BOTTOMRIGHT" 2
relativeTo="MacroIconTest"/>
</Anchors>
<Backdrop edgeFile="Interface\Buttons\UI-SliderBar-Border"
bgFile="Interface\Buttons\UI-SliderBar-Background"
tile="true">
<EdgeSize>
<AbsValue val="8"/>
</EdgeSize>
<TileSize>
<AbsValue val="8"/>
</TileSize>
<BackgroundInsets>
<AbsInset left="3" right="3" top="6" bottom="6"/>
</BackgroundInsets>
</Backdrop>
<Scripts>
<OnLoad>
local max = GetNumMacroIcons ()
self:SetMinMaxValues (1, max - 5)

Chapter 22 » Creating Scroll Frames 429

self:SetValueStep(1.0)
self:SetvValue(l)
</OnLoad>
<OnValueChanged>
MacroIconTest_UpdateIcons (value)
</OnValueChanged>
</Scripts>
<ThumbTexture name="S$parentThumbTexture"
file="Interface\Buttons\UI-ScrollBar-Knob">
<Size x="25" y="25"/>
</ThumbTexture>
</Slider>
</Ui>

CHAPTER

25

Creating Dropdown Menus

Dropdown menus are used throughout the default user interface to pro-
vide the user with a list of selectable items. Some menus, such as the
menu that appears when you right-click your player frame (shown in
Figure 23-1), are used to provide a list of actions or configuration options
based on context. Other menus have artwork that makes them appear as more
standard dropdown-style menus, such as the dropdown used for the column
selection in the Who list panel, shown in Figure 23-2.

At a first glance, the system to create these dropdowns may seem rather
complex. This chapter helps to demystify the dropdown system in World of
Warcraft, showing you how to create them and make them work for your
addons.

Creating a Basic Dropdown

Creating a dropdown involves four major steps. Luckily, Blizzard provides a
robust set of templates and functions that make creating them fairly easy. This
section leads you through these steps:

1. Adding a button that can be clicked to show the dropdown menu.
This may be a button that already exists in your addon or something
entirely new.

2. Creating a new frame that inherits Blizzard’s uIDropbownMenuTemplate
template. It is not strictly necessary to create your own frame, but this
method allows you to ensure no other addons will accidentally alter your
dropdown.

431

432 Partlll = Advanced Addon Techniques

Dungeon

Leav

Figure 23-2: Column dropdown in the Who list panel

3. Initializing the dropdown menu once it has been created.

4. Writing code that causes a click on the button to toggle the display of the
dropdown menu.

For this example, youneed to create anew addon called DropDownTest. Cre-
ate the basic addon skeleton including DropDownTest . toc, DropDownTest . lua,
anchropDownTest.xml.

Adding a Toggle Button

Using the Blizzard template GameMenuButtonTemplate, create a button by
adding the following code to DropDownTest . xm1:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI .xsd">
<Button name="DropDownTest_Button" inherits="GameMenuButtonTemplate" 3
parent="UIParent" text="DropDownTest">
<Anchors>
<Anchor point="CENTER"/>
</Anchors>
<Scripts>
<OnClick>
DropDownTest_ButtonOnClick (self, button, down)
</OnClick>

Chapter 23 = Creating Dropdown Menus

433

</Scripts>
</Button>
</Ui>

To make a quick and easy button, this code uses the GameMenuButton
Template. The text is set using the XML attribute, and the new button is
anchored to the center of the user interface. When the button is clicked,
it calls the propbownTest_ButtononClick() function and passes the proper
arguments.

Creating a Dropdown Frame

The default Blizzard interface uses templates for its dropdown menus and, as
a result, you can re-use the templates as a basis for your own menus. Add the
following frame definition to bropDownTest .xm1:

<Frame name="DropDownTest_DropDown" inherits="UIDropDownMenuTemplate"
frameStrata="FULLSCREEN_DIALOG">
<Scripts>
<OnLoad>
DropDownTest_DropDownOnLoad (self)
</OnLoad>
</Scripts>

</Frame>

This frame simply inherits from the given template and sets the framestrata
to be praLoc_FULLSCREEN. This allows the dropdown menu to be used on
another frame that is already set to display on the full screen frame strata.
When the frame is first created, DropDownTest_DropDownOnLoad () is called to
handle the initialization of the dropdown menu.

Initializing the Dropdown

Two things need to happen when you are initializing a dropdown menu.
First, you must define a function that will be responsible for describing the
actual buttons and adding them to the menu. Second, you must call the global
UIDropDownMenu_Initialize () function to do some setup and accounting on
the frame.

Adding Buttons to the Dropdown

This initialization function is called by the default user interface to set up
the actual buttons that appear within the dropdown menu. The function is
passed the dropdown frame as the first argument, and a second argument,
level, indicates what level of the dropdown is being displayed (for multilevel
menus). This example does not use this argument because it will only contain
three items on the same level; multilevel menus are covered later in this
chapter.

434 Partlll = Advanced Addon Techniques

Add the following function to your bropDownTest . lua file:

function DropDownTest_InitializeDropDown (self, level)
-- Create a table to use for button information
local info = UIDropDownMenu_CreateInfo ()

-- Create a title button
info.text = "DropDown Test"
info.isTitle =1
UIDropDownMenu_AddButton (info)

-- Create a normal button

info = UIDropDownMenu_CreateInfo ()
info.text = "Sample Item 1"
UIDropDownMenu_AddButton (info)

-- Create another normal button
info = UIDropDownMenu_CreateInfo ()

info.text = "Sample Item 2"
UIDropDownMenu_AddButton (info)
end

The UIDropbownMenu_CreateInfo () function here is used to get an empty
info table to be filled with button attributes and eventually passed into
UIDropDownMenu_AddButton (). Internally this function re-uses tables to pre-
vent excessive memory usage for larger menus.

Calling UIDropDownMenu_lInitialize()

To tell the user interface what initialization function should be called when
the dropdown is shown, you must call UIDropDownMenu_Initialize (). This
function takes in the dropdown frame as the first argument, and the initial-
ization function as the second. Call this function by adding the following to

DropDownTest . lua:

function DropDownTest_DropDownOnLoad (self)
UIDropDownMenu_Initialize(self, DropDownTest_InitializeDropDown)

end

Your initialization function will now be called each time the menu is opened,
and again every time the state of the menu changes (for example when you
check an option, or open a submenu).

Toggling the Dropdown Menu

The final step is actually opening the dropdown menu when the user clicks the
button you've created. The Blizzard template code defines a toggle function,
called ToggleDropbDownMenu (), that allows you do this, as well as specify some

Chapter 23 = Creating Dropdown Menus

435

basic positioning information. The function takes eight possible arguments,
but only the first six are typically used:

m level (number)—The initial level to display. This number is passed
directly to the initialization function.

= value—A value used to set the global variable UIDROPDOWNMENU_MENU_
vALUE, which is used primarily in multilevel menus. This is discussed in
detail later in this chapter.

= dropDownFrame— The actual dropdown frame to display.

= anchorName (string)—The name of the frame to which the dropdown
should be anchored. This can also be the string cursor, in which case the
dropdown is anchored to the cursor position at the moment this function
is called.

m x0f fset (number)—A horizontal offset in units for the dropdown menu.

m yoffset (number)—A vertical offset in units for the dropdown menu.

Add the following function to bropbDownTest.lua to call ToggleDropbown
Menu () when the test button is clicked:

function DropDownTest_ButtonOnClick(self, button, down)

local name = self:GetName ()

ToggleDropDownMenu (1, nil, DropDownTest_DropDown, name, 0, 0)
end

Because this example displays only one level of the menu, the function
passes 1 as the level and doesn’t include a menu value. The dropdown will be
anchored to the button itself, with no offset from the default location.

Testing the Dropdown

Log in to World of Warcraft with the DropDownTest addon enabled; a game
button should display in the center of your screen. Click the button and you
should see the dropdown menu shown in Figure 23-3.

DropDownTest

Drap win Tes]
3 Itenm |

SampieEs fEny 2

Figure 23-3: Dropdown menu created by the DropDownTest addon

436

Part Ill = Advanced Addon Techniques

The example menu won’t do anything at the moment, but later in this
chapter you learn how to make the menu elements functional so they can be
used for configuration and other purposes. By default, the menu will timeout
after a certain period of inactivity, and clicking the test button while the menu
is open closes it outright.

Creating Multilevel Dropdowns

Creating a multilevel dropdown menu is straightforward once you understand
how a dropdown menu is created and initialized. In particular, the first
argument passed to the initialization function is a numeric value, the level of
the dropdown being displayed.

Consider a dropdown with two submenus called Alpha and Beta. Assume
each menu has distinct items that will be displayed. Because the root level
of the menu is 1, the level for both Alpha and Beta is 2. If each of them had
submenus, they would be level 3, and so on. To differentiate between Alpha
and Beta, you will set a value element in the button table.

Rewrite the DropDownTest_InitializeDropDown () function in your test
addon, as follows:

function DropDownTest_InitializeDropDown (self, level)
if level == 1 then
local info = UIDropDownMenu_CreateInfo()
info.text = "DropDown Test"
info.isTitle = true
UIDropDownMenu_AddButton (info, level)

info = UIDropDownMenu_CreateInfo ()
info.text = "Alpha Submenu"
info.hasArrow = true

info.value = "Alpha"
UIDropDownMenu_AddButton (info, level)

info = UIDropDownMenu_CreateInfo ()
info.text = "Beta Submenu"
info.hasArrow = true

info.value = "Beta"
UIDropDownMenu_AddButton (info, level)
elseif (level == 2) and (UIDROPDOWNMENU_MENU_VALUE == "Alpha") then
local info = UIDropDownMenu_CreateInfo ()
info.text = "Alpha Sub-item 1"
UIDropDownMenu_AddButton (info, level)
elseif (level == 2) and (UIDROPDOWNMENU_MENU_VALUE == "Beta") then

local info = UIDropDownMenu_CreateInfo()
info.text = "Beta Sub-item 1"

Chapter 23 = Creating Dropdown Menus

437

UIDropDownMenu_AddButton (info, level)
end
end

You'll notice quite a few differences from the original function, namely the
use of the hasarrowand value attributes in some of the button tables. hasarrow
tells the template code to treat the button as a menu header and to display the
arrow graphic. The value attribute is used to distinguish between different
submenus.

In the initialization function, if the level is 2, the value of UIDROPDOWNMENU_
MENU_VALUE is checked. This variable is set to the value attribute of the
menu header. These values can be anything—tables, functions, numbers, and
strings—as long as you can use them to distinguish between menus.

An optional second argument to the UIDropDownMenu_addButton () function
indicates the level at which the new button should be added. Without this,
entering a submenu would only add buttons to the root menu instead of
popping out an additional level, and that would be confusing.

The resulting menu can be seen in Figures 23-4 and 23-5.

DropDownTest

Alpha SUleitem 1

Beta Sulv-item |

Figure 23-5: Example dropdown menu with Beta expanded

Adding Functionality to Dropdowns

In addition to displaying text, dropdowns may contain more interactive
elements, such as checkboxes and color pickers. This section shows you how
to make dropdowns more interactive using these elements, and how to add
functionality to standard text buttons.

438 Partlll = Advanced Addon Techniques

Customizing Text Elements

Each text element in a dropdown menu can be customized using the following
attributes:

text (string)—Text to be displayed on the menu item.

isTitle—A boolean flag indicating if the button should be treated as a
title button (not clickable and gold text).

disabled—A boolean flag indicating if the button is disabled.

colorCode—A string containing a color code to be applied to the text
in the format |caarRRGGBB, including alpha, red, green, and blue. This
attribute is valid only for buttons that are enabled.

notClickable—A boolean flag indicating that the button should not be
clickable. This forces the button’s color to white, so you cannot color an
un-clickable item.

notCheckable—A boolean flag indicating that the button cannot be
checked. This causes the button’s width to shrink because the check
button graphic is no longer necessary.

tooltipTitle (string)—Title to be displayed in the tooltip that appears
when hovering the mouse over the menu option. Tooltips are only
displayed when Beginner Tooltips are enabled under Interface Options.

tooltiptext (string)—Text to be displayed in the tooltip that appears
when hovering the mouse over the menu option. Tooltips are only
displayed when Beginner Tooltips are enabled under Interface Options.
textHeight (number)—The height of the font used for the button text.
justifyH—If the buttonis not checkable and this attribute is set to CENTER,
the text on the button will be centered. No other text justification options
are available.

fontobject—A Font object to be used as a replacement for the normal
and highlight fonts in the dropdown.

You can replace your DropDownTest_Initialize () function with the follow-
ing to see each of these attributes in a working dropdown menu. Figure 23-6
shows the corresponding dropdown menu.

function DropDownTest_InitializeDropDown (self, level)

-- Create a table to use for button information
local info = UIDropDownMenu_CreateInfo ()

info.text = "Title Button"
info.isTitle = true

UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo()

Chapter 23 = Creating Dropdown Menus 439

info.text = "Disabled Button"
info.disabled = true
UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo ()
info.text = "Colored Text"
info.colorCode = "|cFF33FF22"
UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo ()
info.text = "Not Clickable"
info.notClickable = true
UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo()
info.text = "Not Checkable"
info.notCheckable = true
UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo ()

info.text = "Button with Tooltip"
info.tooltipTitle = "Tooltip title"
info.tooltipText = "Contents of the tooltip"

UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo ()
info.text = "Centered Text"
info.justifyH = "CENTER"
info.notCheckable = true
UIDropDownMenu_AddButton (info)

info = UIDropDownMenu_CreateInfo()
info.text = "Text with custom font"
info.fontObject = SystemFont_Small
UIDropDownMenu_AddButton (info)

end

DropDownTest

lot Clickable
kable
with Tooltin

Centered T Tooltip title
UltH CUSTON Font Contents of the tooltip

Figure 23-6: Dropdown menu showing various buttons

440 Partill = Advanced Addon Techniques

Function Menu Items

Any menu item can be set to call a function when it is clicked by using the
following set of attributes:

m func—The function to be called when the button is clicked.

= argl—An argument to be passed to the function when it is called.

= arg2—Another argument to be passed to the function when it is called.
|

keepShownOnClick—A boolean flag indicating whether or not the drop-
down menu should remain showing instead of disappearing when the
button is clicked.

Although the attributes are called argl and arg2, they are actually the
second and third arguments that are passed to the function. The first argument
is the button itself (which contains all of the valid attributes in the original
info table).

Add a function-enabled button to your dropdown using the following code:

info = UIDropDownMenu_CreateInfo ()
info.text = "Function Button"
function info.func (button, argl, arg2)

print ("CALL: Argl: " .. tostring(argl) .. " Arg2: " .. tostring(arg2))
end
info.argl = "Foo"
info.arg2 = "Bar"

UIDropDownMenu_AddButton (info)

CheckButton Menu Items

Many dropdown menus are used for configuration, such as the “Player vs.
Player” setting that can be accessed by right-clicking the player frame. These
toggleable items make use of the checkbox included in each dropdown entry,
and the checked attribute to signify that the item is checked.

info = UIDropDownMenu_CreateInfo()
info.text = "Toggleable setting"
info.checked = SOME_SETTING
function info.func(button, argl, arg2)
SOME_SETTING = not SOME_SETTING
print ("SOME_SETTING is " .. tostring (SOME_SETTING)
end
UIDropDownMenu_AddButton (info)

This code defines a new button that can be clicked to change the value of
the global variable soME_SETTING. Because it starts off with a value of ni1, the

Chapter 23 = Creating Dropdown Menus 441

button won’t be checked to start. Every time the button is clicked it will toggle
the setting and print a message to the chat frame. Figure 23-7 shows the button
when the SOME_SETTING is true.

DropDownTest

Title Button

« Toggleable setting

Figure 23-7: Dropdown Test showing the “Toggleable setting” option

If you don’t want the menu to be hidden when someone clicks to toggle a
setting, you can use the keepShownonc1ick attribute. The handler function will
still be called, and the checkbox will change without hiding the menu.

ColorPicker Menu Items

A dropdown menu can contain small color swatches that display a color, and
can be clicked to show a color picker frame. These allow for easy customization
of colors in a hierarchical dropdown menu. The color swatch can be customized
with the following attributes:

™ hasColorswatch—A boolean flag indicating if the menu item should
display a color swatch. This swatch can then be clicked to open the color
picker frame.

m r—The red component of the color swatch (0-255).
m g—The green component of the color swatch (0-255).
m 1, —The blue component of the color swatch (0-255).

= swatchFunc—A function called by the color picker when the color has
changed.

m hasopacity—A flag (1, nil) that adds the opacity slider to the color
picker frame.

442 Partlll = Advanced Addon Techniques

= opacity—The percentage of opacity, as a value between 0.0 and 1.0,
indicating the transparency of the selected color.

= opacityFunc—A function called by the color picker when the opacity
changes.

= cancelFunc—A function called by the color picker when the user clicks
the Cancel button. This function is passed the previous values to which
the color picker is reverting.

The following example uses the color picker to change the color of the
player’s name on the player frame. The code accesses the font string playerName
to get the current color values, as well as to set the new color.

info = UIDropDownMenu_CreateInfo ()

info.text = "Button Text Color"

info.hasColorSwatch = true

local oldr, oldg, oldb, olda = DropDownTest_ButtonText:GetTextColor ()

info.r = oldr

info.g = oldg

info.b = oldb

function info.swatchFunc ()
local r, g, b = ColorPickerFrame:GetColorRGB ()
DropDownTest_ButtonText:SetTextColor(r, g, b)

end

function info.cancelFunc (prev)
DropDownTest_ButtonText:SetTextColor (prev.r, prev.g, prev.g)

end

UIDropDownMenu_AddButton (info)

When the dropdown is initialized, the function stores the current color of
the text string using DropDownTest_ButtonText:GetTextColor (), storing the
returns in the r, g, and b attributes of the new menu item. When the user
changes the color on the picker, the swatch function fetches the selected color
from the color picker frame and changes the color of the text.

When the cancel function is called, a table containing the previous color
is passed, so the cancel function uses it to restore the original color. This
definition creates the menu item shown in Figure 23-8. When the user clicks
the color swatch, the color picker frame (see Figure 23-9) opens. The color of
the text on the dropdown button is then changed to reflect the new choice.

Function Button

Toggleable setting

Button Text Color

Figure 23-8: Menu item to change the color of the button text

Chapter 23 = Creating Dropdown Menus

443

Color Picker

Cancel

Figure 23-9: The ColorPicker frame that appears when the color swatch is selected

Using Dropdowns for Selection

The examples earlier in this chapter used dropdowns to create popup menus.
Although these are used throughout the default user interface, dropdowns
can also be used to provide a selection box.
Three utility functions are provided to facilitate the graphical setup of the
frame:
B UIDropDownMenu_SetWidth (frame, width, padding)
m frame—The dropdown frame to adjust.
m vidth—The desired width of the frame.
m padding—An amount of padding on either side of the text; defaults
to 25.
B JIDropDownMenu_SetButtonWidth (frame, width)

= frame—The dropdown frame to adjust.

m idth—The desired width of the button.
B UIDropDownMenu_JustifyText (frame, justify)

m frame—The dropdown frame to adjust.

m justify—The desired justification of the text, LEFT, RIGHT, CENTER.
Any dropdown that inherits from UIDropDownMenuTemplate is capable of

being used as a selection dropdown. Run the following Lua script in-game to
create a new sample menu:

if not DropDownMenuTest then
CreateFrame ("Frame", "DropDownMenuTest", UIParent,

444 Partlll = Advanced Addon Techniques

"UIDropDownMenuTemplate")
end

DropDownMenuTest :ClearAllPoints ()
DropDownMenuTest : SetPoint ("CENTER", 0, 0)
DropDownMenuTest : Show ()

local items = {
"Alpha",
"Beta",
"Gamma",
"Delta",

local function OnClick(self)
UIDropDownMenu_SetSelectedID (DropDownMenuTest, self:GetID())
end

local function initialize(self, level)
local info = UIDropDownMenu_CreateInfo ()
for k, v in pairs(items) do
info = UIDropDownMenu_CreateInfol()
info.text = v
info.value = v
info.func = OnClick
UIDropDownMenu_AddButton (info, level)
end
end

UIDropDownMenu_Initialize (DropDownMenuTest, initialize)
UIDropDownMenu_SetWidth (DropDownMenuTest, 100) ;
UIDropDownMenu_SetButtonWidth (DropDownMenuTest, 124)
UIDropDownMenu_SetSelectedID (DropDownMenuTest, 1)
UIDropDownMenu_JustifyText (DropDownMenuTest, "LEFT")

UIDropDownMenu_Setwidth is used to adjust the size of the text portion
of the dropdown menu, in this case to a value of 100. You should ensure
that the dropdown is wide enough to display any of the possible items.
UIDropDownMenu_SetButtonwidth allows you to set the width of the clickable
portion of the menu. Normally this is set to 24, which is the width of the actual
button graphic. Here it’s set to 124, making the entire selection box clickable.

UIDropDownMenu_JustifyText can be called to change the text jus-
tification (in this case, the text is leftjustified). Finally, a call to
UIDropDownMenu_SetSelectedID selects an item from the list to be displayed
by its index in the list. Figure 23-10 shows the resulting selection menu.

Chapter 23 = Creating Dropdown Menus

445

Camma

Alpha

Beta
“ Gamma
Drelta

Figure 23-10: Selection dropdown menu

Menu items can be selected by name, by value, or by numeric index
ushu; UIDropDownMenu_SetSelectedName, UIDropDownMenu_SetSelectedID,
and UIDropDownMenu_SetSelectedvalue. You should use whichever method
makes the most sense for you.

Automating Menu Creation with EasyMenu

The process of creating dropdowns can be tedious, especially considering
that the table definitions can be verbose. Blizzard provides a system called
EasyMenu to ease the creation of menus, allowing you to define them in tables
ahead of time. This reduces the amount of code you need to write and localizes
all changes to the dropdown to a set of table definitions.

Create an addon skeleton called EasyMenuTest with the standard
EasyMenu. toc and EasyMenu. lua. This menu will be created in Lua, without
using XML. Add the following code to EasyMenu. lua:

if not EasyMenuTest then

CreateFrame ("Frame", "EasyMenuTest", UIParent, «
"UIDropDownMenuTemplate")
end

if not EasyMenuButton then

CreateFrame ("Button", "EasyMenuButton", UIParent, 3
"GameMenuButtonTemplate")
end

menuTbl = {
{
text = "Alpha",
hasArrow = true,

menuList = {

446

Part Ill = Advanced Addon Techniques

{ text = "AlphaAlpha", },
{ text = "AlphaBeta", 1},
{ text = "AlphaGamma", },
Y,
I
{
text = "Beta",
hasArrow = true,
menuList = {
{ text = "BetaAlpha", },
{ text = "BetaBeta", 1},
{ text = "BetaGamma", 1},
}
I
{
text = "Some Setting",

checked = function()
return SOME_SETTING

end,
func = function()

SOME_SETTING = not SOME_SETTING
end,

Y.

EasyMenuButton:SetText ("EasyMenu Test")

EasyMenuButton:SetPoint ("CENTER", 0, 0)

EasyMenuButton:SetScript ("OnClick", function(self, button)
EasyMenu (menuTbl, EasyMenuTest, "EasyMenuButton", 0, 0, nil, 10)

end)

This example creates new button and dropdown frames and sets the button
to call the EasyMenu() function when it is clicked. Figure 23-11 shows the
resulting menu from the table definition. You may have noticed that the
checked attribute is set to a function here. This allows you to have dynamic
settings for checked items, because otherwise the true/false value would be
tixed when the table definition is created.

EasyMenu Test

AlphaAlpha
AlphaBeta

AlphaGamma

Figure 23-11: DropDown menu created using EasyMenu

Chapter 23 = Creating Dropdown Menus 447

EasyMenu is extremely useful when you are creating a menu of mostly static
items, but falls short when working with more dynamic menus.

Creating Dynamic Menus

As you create more advanced addons, you may need to create a dropdown
menu based on returns from an API function. Occasionally you can create
the table ahead of time and use EasyMenu, but you can always use the more
verbose method introduced at the start of the chapter.

Type and run the following code snippet to create a dropdown that shows
the status of the “World Explorer” achievement; showing you which zones
you have explored and what areas you have not:

if not ExplorerDropDown then

CreateFrame ("Frame", "ExplorerDropDown", UIParent, 3
"UIDropDownMenuTemplate")
end

ExplorerDropDown:ClearAllPoints ()
ExplorerDropDown:SetPoint ("TOPLEFT", 50, -100)
ExplorerDropDown : Show ()

local function initialize(self, level)
local info, achievementId
if UIDROPDOWNMENU_MENU_VALUE then
achievementId = UIDROPDOWNMENU_MENU_VALUE
else
achievementId = 46 -- Set the achievement to "World Explorer"
end
local id, name, points, completed = GetAchievementInfo (achievementId)
local numCriteria = GetAchievementNumCriteria(achievementId)
for i = 1, numCriteria do

local text, criType, completed, quantity, totalQuantity, name, 3
flags, assetID, quantityString, criterialID = 3
GetAchievementCriteriaInfo (achievementId, i)

info = UIDropDownMenu_CreateInfo()

info.text = text

info.checked = completed

if (criType == CRITERIA_TYPE_ACHIEVEMENT) and assetID then
if GetAchievementNumCriteria(assetID) > 0 then
info.hasArrow = true
info.value = assetID
end

448 Partlll = Advanced Addon Techniques

end
UIDropDownMenu_AddButton (info, level)
end
end

UIDropDownMenu_Initialize (ExplorerDropDown, initialize)
UIDropDownMenu_SetWidth (ExplorerDropDown, 125)
UIDropDownMenu_SetButtonWidth (ExplorerDropDown, 124)
UIDropDownMenu_SetText (ExplorerDropDown, "World Explorer!")

First you create the dropdown frame as in the previous examples, and
then query the achievements API to get the criteria for the “World Explorer”
achievement (which happens to be achievement ID 46). Each criteria of the
selected achievement that is itself an achievement is tested to see if it too
contains subitems, and if so shows the arrow and sets the value attribute.
Figure 23-12 shows the dropdown menu in action.

World Explorer!

" Outland

Morthrend

Circle of East Bindir

Hammerfall

[N
[
»
e
13
1 3
S
[
[
[S
b
h_.
[
3
[
[S
=S
e
| S
3
S
[
[N
| 3

Figure 23-12: World Explorer dropdown menu

Chapter 23 = Creating Dropdown Menus

449

Summary

This chapter showed you how to create basic dropdown menus for your
own buttons as well as how to create selection dropdowns. You used a
manual method of initializing dropdowns, and used the EasyMenu system to
automatically create them.

The next chapter shows you how to construct and scan tooltips for infor-
mation.

CHAPTER

24

Scanning and Constructing
Tooltips

Tooltips are by far one of the most pervasive Ul elements in World of Warcraft.
Whenever you move your mouse over a player, item, spell, talent, or almost
anything else in the game, you see a small tooltip in the bottom right of your
screen. This chapter introduces you to the inner workings of tooltips, showing
you how to create your own and how to get information that is available only
via tooltips.

Understanding the Tooltip System

Tooltips are used in World of Warcraft to display detailed information about
aspects of the game that might not be available through the game API. For
example, Figure 24-1 shows a spell tooltip that displays the name of the spell,
the resource cost for casting it, and the range along with the description
of the spell.

Tooltips are also used to provide contextual help when the mouse is over a
user interface element. For example, Figure 24-2 shows the tooltip displayed
when the mouse is over the player’s agility stat on the character frame, and
Figure 24-3 shows the tooltip displayed when the mouse is over the player
frame. This tooltip displays only if WoW’s “Beginner tooltips” option is
enabled. This option is enabled by default, but if you've turned it off you
might not see the tooltip.

All tooltips in the default user interface are created using the GameTooltip
frame type, which has methods to fill the tooltip with information about
different types of game objects (quests, items, spells, and so on).

451

452 Partlll = Advanced Addon Techniques

Obliterate
1 Unholy 1 Frost Melee Range
Instant

Party Options

Figure 24-3: Tooltip for the player frame

Different Types of Tooltips

You may have encountered two different types of tooltips while playing the
game. To prevent confusion between the two, let’s call them contextual tooltips
and static tooltips. Most of the material in this chapter applies to either type of
tooltip, but you should be aware of the two types.

Contextual Tooltips

A contextual tooltip is used to give additional information about some
other item of interest, such as an interface element or something in the
three-dimensional game world. When the mouse moves over such an item
the tooltip is displayed, and is hidden when the mouse leaves that element.
In the default user interface, the most often used contextual tooltip is named
GameTooltip.

Chapter 24 = Scanning and Constructing Tooltips

453

Static Tooltips

A static tooltip can be used to display information on its own, without
needing to be tied to a particular interface element. For example, any
links that are sent to you on the guild/party/trade channels are opened
in a static tooltip. This allows you to look at the information and move
it around your screen rather than having to leave your mouse in one
place. In the default user interface, the most often used static tooltip is
named ItemRefTooltip.

Tooltip Contents

As a frame, a tooltip consists of a series of lines of font strings, in two columns.
Figure 24-4 shows these columns and the names of the individual font strings.
As you can see, the first line is slightly larger than the others. This allows the
first line to be used as a title that stands out from the rest of the text.

Figure 24-4: GameTooltip with individual font string labels

When setting the contents of a tooltip, you normally won’t address these
font strings directly. Instead, you will make use of the GameTooltip API to
either load a predefined tooltip or add your own text.

Run the following code to set up and show the static tooltip TtemRefTooltip
on the screen. This allows you to use the various methods of setting/adding
text to the tooltip without needing to constantly set it up.

ItemRefTooltip:SetOwner (UIParent, "ANCHOR_PRESERVE")
ItemRefTooltip:SetText ("Hello World!")
ShowUIPanel (ItemRefTooltip)

This initial snippet shows the tooltip and displays the string Hello world!.
The tooltip can be moved around, but if you close it you will need to run the
snippet again to make the tooltip reappear.

Custom Text in a Tooltip

You have three different ways to manually add text to a tooltip. The setText
method lets you set the text of the first line only, the addLine method allows
you to add a line at a time (with an option to wrap strings that are too long),
and the addpoubleLine method lets you add text to both the left and right
columns.

454

Part Ill = Advanced Addon Techniques

SetText(“text” [r [, g [. b [. allll)

If your tooltip text consists of a single string that can be displayed in the
same size and color, you can use the :setText () method to accomplish this. It
accepts five arguments:

text—The text to be displayed in the tooltip.
r—The red component of the text color (optional).
g—The green component of the text color (optional).

b—The blue component of the text color (optional).

a—The alpha value of the text (optional).

The text string can contain embedded color codes. For example, make sure
the static tooltip is still shown, and then run the following code:

ItemRefTooltip:SetText ("Tooltip Title\n" ..
"|cfEffEfffThis is some text in a tooltip.\n" ..
"It can contain multi-line strings. |r")

Figure 24-5 shows the resulting tooltip. Note that all of the text is the same
size, and the second and third lines are a different color. The tooltip will
be sized wide enough to fit the contents, so you must be responsible for
any wrapping that is necessary.

Tooltip Title

This Is some text in a tooltip.
It can contain multi-line strings.

Figure 24-5: Tooltip created using SetText

AddLine(“text” [, r [, g [b [a [wrap]]lll)

Rather than just destructively setting the text of a tooltip, the addLine
method allows you to incrementally add lines. This function takes six
arguments:

m text—The text to be displayed on the tooltip.
r—The red component of the text color (optional).
g—The green component of the text color (optional).
b—The blue component of the text color (optional).

a—The alpha value of the text (optional).

wrap— True to wrap along string of text onto multiple lines if necessary,
false or omitted otherwise.

Chapter 24 = Scanning and Constructing Tooltips 455

Each call to this method adds another line to the tooltip. Run the following
to add a line to the already open tooltip:

ItemRefTooltip:AddLine ("This is a very long string that will be wrapped
due to the fifth argument to this function", 1, 1, 1, true)
ItemRefTooltip:Show ()

Figure 24-6 shows the tooltip with the additional line added. You should be
able to see a slight size difference between the first line and the new line. In
addition, the tooltip remains roughly the same size, but the new text has been
wrapped to fit this width.

Tooltip Title
This is some text in a tooltip.
It can contain multi-line strings

This is a very long string that will be
wrapped due to the fifth argument

Figure 24-6: Result of adding a line to the previous tooltip

AddDoubleLine("text1”, “text2” [, r1 [, g1 [b1 [, r2 [g2 [b2II11ID)

The addpoubleLine function can be used to add text to both columns at once,
coloring them independently. The first argument is the left string and the
second argument is the right string. Run this code to add a two-column line to
the tooltip, shown in Figure 24-7:

ItemRefTooltip:AddDoubleLine ("Left", "Right", 0.2, 1, 0.2, 1, 0.2, 0.2)
ItemRefTooltip:Show ()

Tooltip Title
This is some text in a tooltip.

It can contain multi-line strings.
This is a very long string that will be
ped due to the fifth argument

Figure 24-7: Tooltip with a two-column line

Game Element Tooltips

The GameTooltip frame type provides several special methods that allow you
to load the tooltip with the information for some game element. Table 24-1
shows a list of these methods and the game elements for which they can load
tooltips. The usage for these methods vary and you should consult the API
documentation for whichever function is required.

456 Partlll = Advanced Addon Techniques

Table 24-1: GameTooltip Methods for Loading Information
METHOD NAME DESCRIPTION

SetAuctionItem Loads the tooltip for an item that is for sale in
the auction house.

SetAuctionSellItem Loads the tooltip for an item the player is
currently placing for sale in the auction house.

SetBackpackToken Loads the tooltip for a currency token being
displayed in the backpack frame.

SetBagItem Loads the tooltip for an item in a given bag/slot.

SetBuybackItem Loads the tooltip for an item available for
buyback at a merchant.

SetCurrencyToken Loads the tooltip for a currency token.

SetEquipmentSet Loads the tooltip for an equipment set,
specified by name.

SetExistingSocketGem Loads the tooltip for a gem already in the item
currently open for socketing.

SetGlyph Loads the tooltip for one of the player’s glyphs.

SetGuildBankItem Loads the tooltip for an item in the player's
guild bank.

SetHyperlink Loads the tooltip for a spell, enchant, item, or

quest from a hyperlink.

SetHyperlinkCompareItem Loads the tooltip for the item currently
equipped in the slot used by an item
(represented by a hyperlink).

SetInboxItem Loads the tooltip with information about an
item attachment in the player's mailbox.

SetInventoryItem Loads the tooltip with information about an
equipped item (on the player, or on a friendly
player unit within inspect distance).

SetLootItem Loads the tooltip with information about an
item in the loot window.

SetLootRollItem Loads the tooltip with information about an
item being rolled on by the player.

SetMerchantCostItem Loads the tooltip with information about a
non-monetary item cost for an item a merchant
is selling.

SetMerchantItem Loads information about an item available from

a merchant.

Chapter 24 = Scanning and Constructing Tooltips 457

METHOD NAME DESCRIPTION

SetPetAction Loads the tooltip with information about an
action on the pet action bar.

SetPossession Loads the tooltip with information about the
type of possession the player is currently
engaged in.

SetQuestItem Loads the tooltip with information about an
item that is required to complete, or a reward
for a quest.

SetQuestLogItem Loads the tooltip with information about an
item that is required to complete, or a reward
for a quest in the player's quest log.

SetQuestLogRewardSpell Loads the tooltip with information about the
spell that is a reward for the currently selected
quest in the quest log.

SetQuestLogSpecialItem Loads information about any special items that
must be used to complete the given quest in
the quest log.

SetQuestRewardSpell Loads the tooltip with information about the
spell reward for the currently viewed quest at
an NPC.

SetSendMailItem Loads the tooltip with information about an
item attached to the mail currently being sent.

SetShapeshift Loads the tooltip with information about one of
the player's shapeshifts.

SetSocketGem Loads the tooltip with information about the

gem being placed into the item currently open
for socketing.

SetSocketItem Loads the tooltip with information about the
item currently open in the socketing UI.

SetSpell Loads the tooltip with information about a spell
in the player’s (or pet's) spellbook.

SetTalent Loads the tooltip with information about a
talent.

SetTotem Loads the tooltip with information about one of

the player's active totems.

SetTracking Loads the tooltip with information about the
currently selected tracking type.

Continued

458 Partlll = Advanced Addon Techniques

Table 24-1 (continued)

METHOD NAME DESCRIPTION

SetTradePlayerItem Loads the tooltip with information about an
item being traded by the player.

SetTradeSkillItem Loads the tooltip with information about a
tradeskill item, or required reagent for the item.

SetTradeTargetItem Loads the tooltip with information about an
item being traded by the target.

SetTrainerService Loads the tooltip with information about a
service available from a trainer.

SetUnit Loads the tooltip with information about a
given unit.

SetUnitAura Loads the tooltip with information about an

aura on a given unit.

SetUnitBuff Loads the tooltip with information about a buff
on a given unit.

SetUnitDebuff Loads the tooltip with information about a
debuff on a given unit.

Adding Information to the Tooltip

To see how to add information to a tooltip, you'll write a very simple snippet
that adds information to item tooltips. The 3.1 patch to World of Warcraft
added an equipment manager system that allows you to organize weapons,
armor, and other equipment into sets that can be quickly equipped together.
Unfortunately, there is no tooltip indicator that shows if an item belongs to
any sets.

Loading the Tooltip with Item Information

When you move your mouse over items in your containers, the default
user interface uses the GameTooltip:SetBagItem() method to fill the
tooltip with the item’s information. Likewise, when moving the mouse
over the player’s inventory (the items you actually have equipped), the
GameTooltip:SetInventoryItem() method is called.

The timing of tooltips is a bit odd, since you might expect them to be
immediately loaded with the item information. What actually happens is that
the client may request the item information from the server, and when the
information is properly loaded and displayed, the onTooltipsetItem widget
handler is called. An addon or script can use this handler to trigger any scans
of or additions to the information in the tooltip.

Chapter 24 = Scanning and Constructing Tooltips 459

Run the following code in-game:

local numSets = GetNumEquipmentSets ()
local inSet = {}

for i=1,numSets do
local name, icon, setID = GetEquipmentSetInfo (i)
local items = GetEquipmentSetItemIDs (name)
for slot,item in pairs(items) do
if inSet[item] then

inSet[item] = inSet[item] .. ", " .. name
else

inSet[item] = name
end

end
end

local function OnTooltipSetItem(self)
local name, link = self:GetItem()
if name then
local equippable = IsEquippableItem(link)
local item = link:match("Hitem: (%d+)"
item = tonumber (item)
if not equippable then
-- Do nothing

elseif inSet[item] then

GameTooltip:AddLine ("Equipment Set: " .. inSet[item], 0.2, 1,
0.2)
else
GameTooltip:AddLine("Item not in an equipment set", 1, 0.2,
0.2)
end
cleared = true
end
end

GameTooltip:HookScript ("OnTooltipSetItem", OnTooltipSetItem)

The first section of code loops through all of the equipment sets and creates
a string for each item that lists the sets to which it belongs. The second section
sets an onTooltipSetItem widget script that will be run anytime an item is
displayed in the tooltip. It checks to see which item is being shown, and then
adds a line indicating which equipment sets the item is in, if any.

The last line hooks the onTooltipSetItem script on the contextual tooltip
GameTooltip. As a result, the script will run anytime you move your
mouse over an item in-game—loot windows, trade windows, and the player
inspect window, for instance. It will not run when you click on an item
link in the chat window because that utilizes the ItemRefTooltip, which
hasn’t been hooked here.

460 Partlll = Advanced Addon Techniques

Getting Information from Tooltips

The client API has technical limitations that make some information available
only in the various game tooltips. For example, no API function currently exists
that can indicate whether an item is soulbound to the player character—this
information can only be found in the item’s tooltip. This is one of the more
difficult things to do because you have to deal with localized values and can’t
always be sure of the order in which information will appear. For instance,
Figure 24-8 shows three different item tooltips.

Figure 24-8: Example item tooltips

You can see that the bound status of each tooltip appears in the second line
of text in the left-hand column if the item is bound in some way. The difficulty
is when working with items that aren’t bound because other information will
be in that place.

Accessing Individual Tooltip Lines

A tooltip is just a special sort of frame that contains a series of font strings.
There are two columns in the tooltip and as many lines as needed to display
the information. For the GameTooltip and ItemRefTooltip (and indeed, any
tooltip that inherits from GameTooltipTemplate) frames, these font strings are
regularly named:

L GameTooltipTextLeftl

L GameTooltipTextLeft2

L GameTooltipTextRightl

L GameTooltipTextRight2

You can get the contents of the second tooltip line in the left column by
calling GameTooltipTextLeft2:GetText ().

Chapter 24 = Scanning and Constructing Tooltips

461

Checking Soulbound Status

Here you write a simple snippet of code that changes the border color
of the tooltips when an item is soulbound. To accomplish this, use the
OnTooltipSetItem script to detect items being loaded. Then access the indi-
vidual tooltip lines to see if the item is soulbound, and change the border color.
Run the following code:

GameTooltip:SetScript ("OnTooltipSetItem", function(self)
local boundText = GameTooltipTextLeft2:GetText ()

if boundText == ITEM_SOULBOUND or
boundText == ITEM_ACCOUNTBOUND then
self:SetBackdropBorderColor (0, 0, 0)
end

end)

Using Global Strings for Localization

You might be tempted to use the strings soulbound and Account Bound, but
then your addon will work only on English clients. Instead, this code uses the
globally defined strings rTEM_souLBouND and ITEM_ACCOUNTBOUND. The strings
are defined in FramexML/GlobalStrings. lua as follows:

ITEM_SOULBOUND = "Soulbound";
ITEM_ACCOUNTBOUND = "Account Bound";

These localized strings are loaded by the default user interface, and differ
depending on which locale the client is using. By comparing the tooltip against
the global values, you can ensure the code works properly regardless of what
language the user interface is displayed in.

The best place to look for the global strings for some part of the user interface
is the Globalstrings. lua file; search by the contents of the string used in your
version of the client.

Replacing a Script Instead of Hooking a Script

In this example, the code uses the setscript method to set the widget script
handler on the frame directly, rather than using the Hookscript method. Each
frame can have only one handler for each widget script, so this will overwrite
any script that is already set. It's generally better to use Hookscript () for an
addon released to to the public because setscript () may destroy handlers
placed by other addons, leading to runtime errors.

You could alter the snippet to use Hookscript (), but if you want to tweak
it and run it multiple times, you’ll notice that every version of your script that
you run is called every time the tooltip is loaded. If these versions conflict

462 Partlll = Advanced Addon Techniques

with each other, they might give you very confusing results. In development,
using setScript () is fine, but more often than not you will want to use
HookScript ().

Summary

In this chapter you learned how tooltips are constructed and how to add
your own information to them. In addition, you were introduced to a simple
technique for scanning information from a game tooltip. In the next chapter,
you learn how to use the secure snippets functionality of secure templates to
take protected action in combat.

CHAPTER

25

Taking Protected Action
in Combat

In Chapter 15, you learned how the secure template system protects WoW
game play from being automated through the user interface, by preventing
protected frames from being moved, shown or hidden, created, or having
their behavior changed during combat. However, several legitimate occasions
exist when it might be desirable for these things to happen during combat; for
instance, if someone’s target dies or is deselected during combat, the target
frame should be hidden, and shown again when the player picks a new target.
The stock target frame can rely on the fact that Blizzard wrote it and its code
is secure, but an addon that wants to provide a similar feature needs to use
a different mechanism.

Just before the Wrath of the Lich King expansion was released, a new system
was introduced to allow addons to load code of their own for secure execution,
and for Blizzard to strictly control what information and actions are available
to code that is being run securely. These chunks of controlled, authorized code
are referred to as snippets.

Snippets: The Basis of Secure Action

Of course, the whole system of protected game actions is founded on the
principle that addon code is “tainted,”” and that secure code becomes tainted as
soon as addon code tries to interfere with it. Snippets solve part of this problem.

How Can Addon Code Be Secure?

A snippet is a string containing Lua source code, typically stored in a frame
attribute. Because it is stored in a frame attribute, secure code can retrieve it

463

464 Partlll = Advanced Addon Techniques

without becoming tainted; and because that code can remain secure, it can
compile the attribute contents into an executable function that is also secure.
When it compiles this function, it can also restrict its access to specific functions
and variables so that the secure function can’t use information that the Blizzard
designers don’t want influencing sensitive decisions.

Writing a Snippet

A snippet is the body of a function, without the function (args, ...) and
final end tags. These elements are provided by the secure code that compiles
the snippet into a usable function. Because many snippets emulate frame script
handlers (onclick, onshow, and so on), the argument list is generally the same
as it would be in the equivalent XML script <onClick>, <onShow>, and so forth.

Snippets often contain code comprised of quotes, line breaks, and other
characters that normally need to be escaped inside Lua string literals. Because
of this, there is an emerging convention to enclose snippet literals in [[long
brackets,]] which ignore all special characters (except the end of the bracket).
This has the advantage of allowing you to format your code in a more natural
fashion, as well as often making it easier for you to distinguish the secure and
insecure parts of your addon code.

You can demo a very simple snippet with the following line:

/run SecureHandlerExecute (PlayerFrame, [[self:Hide()]1])

By itself, this isn’t terribly exciting. Insecure code can’t use secureHandler
Execute during combat, and that code could always hide the player frame
directly. SecureHandlerExecute is mostly used to perform setup on more com-
plex secure handler frames. The real power of snippets and secure execution
comes from the ability to attach snippets to frames that will run them securely
in response to user input or selected state changes. Before we move on to that,
though, put the player frame back by running the following code (snippets
can be stored in variables as well as in string literals):

local showAction = [[self:Show()]]; <
SecureHandlerExecute (PlayerFrame, showAction)

Secure Handler Frames

To get WoW to compile and run your snippets, you have to store and attach
them correctly. The most common mechanism for this is a set of protected
templates called the secure handlers.

Much the same way as SecureActionButtonTemplate provides a secure
function as its onclick handler, these templates each provide one or two
secure functions as various script handlers. Each of these functions looks for

Chapter 25 = Taking Protected Action in Combat

465

a snippet in a fixed relevant attribute and executes it when its corresponding
handler is triggered; for example, when someone clicks a button inheriting
from SecureHandlerClickTemplate, that button’s onclick function looks for
a snippet in its _onclick frame attribute and tries to execute it. It also passes a
reference to the button clicked and copies of the button and down arguments
to the script as arguments to the snippet.

Secure handler templates are available for most scripts that represent a user
HﬂeraCﬁOH(OnClick,OnDoubleClick,OnMouseUp/OnMouseDown,OnMouseWheel,
OnEnter/OnLeave,and,OnDragStart/OnReceiveDragL as well asscﬁyﬁsfor
responding to certain actions that can only be triggered by protected code
(onshow/onHide and onattributeChanged), which are discussed in more detail
later in the chapter.

As an example, you can create an addon that modifies the stock UI’s extra
action bars (the ones that can be turned on around the bottom and right edges
of the Ul), so that each one only appears when you're mousing over it. Because
the frames you have to create will have no visual elements of their own, and
you are primarily trying to interact with existing UI elements, this is easier to
do from Lua. Run the following code in-game:

local mousein = [[
self:GetFrameRef ("subject") : Show ()
11
local mouseout = [[
self:GetFrameRef ("subject") :Hide ()
11
for i, bar in ipairs{MultiBarRight, MultiBarLeft, 3
MultiBarBottomRight, MultiBarBottomLeft} do

local watcher = CreateFrame ("Frame", "ShyBarsWatcher"..i, 2
bar:GetParent (), "SecureHandlerEnterLeaveTemplate")
watcher:SetFrameLevel (bar:GetFrameLevel () - 1)

watcher:SetAllPoints (bar)

bar:SetParent (watcher)

bar:Hide()

watcher:SetAttribute ("_onenter", mousein)

watcher:SetAttribute("_onleave", mouseout)

SecureHandlerSetFrameRef (watcher, "subject", bar)
end

This code loops over each of the supplemental action bars, and attaches a
frame to each bar that will “watch” for mouseover events. The only really new
paﬁ:hereisthe use of the secureHandlerEnterLeaveTemplate to create the
new frames. This is the template that triggers certain snippets when someone
mouses in or out of it. The rest of the code uses the setal1points () method to
make sure that the frame is watching the same area that the bar takes up when
it’s present and makes sure that the watcher frame will not cover its bar when
shown (this could make the action bar difficult to click).

466

Part Ill = Advanced Addon Techniques

This isn’t a perfect example of making the action bars hide (for instance, if
your mouse leaves the area while being over one of the extra action bars, they
might not hide), but it’s a good first approximation that shows the basics of
the snippets system.

m The game stores a character’s preferred setting for which action
bars should be shown on the server, and they aren’t available to the client until
the vaRIABLES LOADED event has fired. If you were loading this into an addon,
you would want to delay hiding the bars until then, because the stock Ul would
reshow them.

Now, let’s break down the two chunks of code that are less familiar. The
mousein and mouseout local variables at the beginning of the file are chunks
of code in string form; that is, snippets. setattribute() calls attach these
snippets to the attributes that the template’s onEnter and onLeave handlers
will invoke. The other issue is that to make sure that secure snippets can’t
use disallowed information, they are run with a limited version of the global
environment that only includes certain functions, and frames don’t normally
exist there. So, to make the action bar frame that will be shown and hidden
available to the snippets, you have to store it in something called a frame
reference; this is basically a sanitized version of the frame (called a frame
handle, discussed more later), stored in the first frame’s frameref-subject
attribute (or whatever name you supplied when you set the frame reference).
Because the _onenter and _onleave scripts will be called with watcher as
self, the frame can then be retrieved with self:GetFrameRef ("subject").

Handler Template Reference

The simpler, and more common, secure templates respond directly to vari-
ous sorts of user interaction; these are generally triggered with the mouse, but
some can also be triggered from key binding actions by using setBindingclick.
Table 25-1 shows a list of the valid templates. Each template in the first column
supplies a handler for the frame script that calls the snippet named in the second
column, providing the arguments listed in the third column. For these tem-
plates, the arguments provided to the snippet are in the same order, and have
the same names, as would be supplied to the equivalent script element contents
in an XML frame definition; that is, an _onc1lick snippet receives the same set
of implicit arguments as the code in an <onclick>...</0nClick> element.
The last “interaction” template is slightly more complicated. Dragging a
frame through the startMoving () method call is not a protected operation
(because it is inherently interactive), so SecureHandlerDragTemplate is pri-
marily intended for buttons that you can drag things in or out of, such as
customizable action buttons. The button argument is the button that was

Chapter 25 = Taking Protected Action in Combat 467

held down to initiate the drag action, but the other arguments are the same
information returned by GetCursorinfo () —the kind of action or resource
held on the cursor, the identifier or value of the cursor’s contents (such as the
amount of money or the ID of the spell or item), and possible supplemental
information (such as whether a spell is a "Book" spell or a "pET" spell) passed
in vararg argument(s).

Table 25-1: Secure Handler Templates and Their Snippets

TEMPLATE SNIPPETS ARGUMENTS
SecureHandler _onclick self, button, down
ClickTemplate

SecureHandler _ondoubleclick self, button, down
DoubleClickTemplate

SecureHandler _onmouseup self, button

MouseUpDownTemplate

_onmousedown self, button
SecureHandler _onmousewheel self, delta
MouseWheelTemplate
SecureHandler _onenter self
EnterLeaveTemplate

_onleave self
SecureHandler _ondragstart self, button, kind, value,
DragTemplate

_onreceivedrag self, button, kind, value,
SecureHandler _onshow self
ShowHideTemplate

_onhide self
SecureHandler _onattribute self, name, value
AttributeTemplate changed
SecureHandler _onstate-* self, stateid, newstate
StateTemplate

Moreover, the _ondragstartand _onreceivedragsnippets may usea return
statement to have the game load the cursor with something new or exchange
its current contents. For instance, if you want to write a button that uses
the action slots to store its content much like the stock buttons do, you
can have the button inherit from both SecureaActionButtonTemplate and

468 Partlll = Advanced Addon Techniques

SecureHandlerDragTemplate, and use the following snippet in the button’s
_ondragstart and _onreceivedrag attributes:

local pickupAction = [[return "action", self:GetAttribute("action")]]
button:SetAttribute ("_ondragstart", pickupAction)
button:SetAttribute("_onreceivedrag", pickupAction)

Your drag handlers can return any of the following sequences:

return "action", actionSlot

return "bag", equippedBag

return "bagslot", bagID, slotNumber
return "inventory", inventorySlot
return "item", name or itemID

return "macro", name or macrolIndex
return "petaction", petSlot

return "spell", index, "BOOK" or "PET"
return "spell", name or spellID
return "companion", "MOUNT" or "CRITTER", index
return "equipmentset", name

return "money", amount

return "merchant", slot

You can also add "clear" to the beginning of any of these lists to clear the
cursor first, such as to pick up the contents of an action slot without dropping
anything into it that was already on the cursor. For instance, you might change
the drag-start handler to

button:SetAttribute("_ondragstart", [[return "clear", "action", 3
self:GetAttribute("action")]])

The last group of templates are intended to react to changes in frame
visibility or attribute values. These changes can be triggered by other snippets
acting on frames securely, or by state drivers that you have registered for the
frame (discussed in more detail later in the chapter).

Integrating a Click Handler with a Secure Action Button

One other facility offered by secureactionButtonTemplate is the ability to
run click snippets for undefined "type" attributes. If, for instance, button:
GetAttribute ("type") == "menu"armibutton:GetAttribute("_menu")Con-
tains a snippet, the secure action button will run it as a click handler, with
self, button, and down arguments. This means that you can intermingle
secure actions with other secure behaviors on a single button by using modi-
fier and mouse button selection. For instance, you can easily create menus for

Chapter 25 = Taking Protected Action in Combat

469

expanded click-casting, as in the following example addon for paladin char-
acters, BlessedMenus. Start by creating a BlessedMenus folder in your addons
directory, then create the file BlessedMenus. toc and enter the following;:

Interface: 30300

Title: BlessedMenus

Notes: Creates menus on party frames to select spells to cast on them
BlessedMenus.xml

BlessedMenus. lua

Next, create the file BlessedMenus.xml in the same directory, and start by
entering the following;:

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<Button name="BlessedMenusSpellButtonTemplate" enableMouse="true" 3
inherits="SecureActionButtonTemplate" virtual="true">
<Size x="144" y="16" />
<Layers>
<Layer level="ARTWORK">
<Texture parentKey="icon">
<Size x="16" y="16" />
<Anchors>
<Anchor point="TOPLEFT" />
</Anchors>
</Texture>
</Layer>
</Layers>
<ButtonText inherits="GameFontHighlight" justifyH="LEFT" />
<HighlightTexture alphaMode="ADD">
<Color r="0.75" g="0.75" b="0.6" a="0.5" />
</HighlightTexture>
</Button>
</Ui>

This is the beginning of a template that you can use for popup menu entries.
So far, it’s basically a horizontal bar containing a text string, with a small
icon at the left side. It has a plain yellow highlight texture to indicate which
menu item is currently being pointed at. Add the basic action button attributes
between the </Layers> and <ButtonText> tags:

<Attributes>

<Attribute name="type" value="spell" />

<Attribute name="useparent-unit" value="true" type="boolean" />
</Attributes>

470

Part Ill = Advanced Addon Techniques

These define the consistent parts of the button behavior. All these menu
items will be spell buttons, and they will cast on the unit whose frame was
clicked to bring up the spell menu. Note that you use the type tag attribute
here to set the frame attribute to a value with the Lua type "boolean".

Add a scripts section immediately after the attributes block and before
the <ButtonText> tag:

<Scripts>
<OnLoad>
self:GetFontString () : SetPoint ("LEFT", self.icon, "RIGHT", 2, 1)
self:RegisterEvent ("PLAYER_ENTERING_WORLD")
</OnLoad>
</Scripts>

The first line ensures that the button’s text is placed correctly in the button
(because the icon texture is created using a key rather than a name, you can’t
currently refer to it from an XML <anchor> tag’s relativeTo attribute). The last
line prepares the button to deal with the fact that its spell icon isn’t available
when your addon first loads, which is fully addressed in the next handler (add
it right before the </scripts> tag):

<OnEvent>
self.icon:SetTexture (GetSpellTexture (self:GetAttribute("spell")))
</OnEvent>

This handler is run in response to the PLAYER_ENTERING_WORLD event, when
the client has fully loaded spell icons. These icons are actually loaded by the
earlier sPELLS_CHANGED event, but that event does not fire when you reload the
UL so the more reliable PLAYER_ENTERING_WORLD is used. Also, if you watch
event traces, you will see that the SPELL_CHANGED event fires quite a number
of times during logging in. Waiting until the PLAYER_ENTERING_WORLD event
helps you avoid all of these.

Paladins use three major groups of beneficial spells, so you'll create three
menus, one for each. To facilitate that, create a menu template in the same file,
right before the </ui> tag:

<Frame name="BlessedMenusMenuTemplate" hidden="true"
protected="true" virtual="true">
<Size x="160" y="18" />
<Backdrop bgFile="Interface\Tooltips\UI-Tooltip-Background" 3
edgeFile="Interface\Tooltips\UI-Tooltip-Border" tile="true">
<EdgeSize val="16"/>
<TileSize val="16"/>
<BackgroundInsets left="4" right="4" top="4" bottom="4"/>
<BorderColor r="1" g="1" b="1" />
<Color r="0.09" g="0.09" b="0.19" a="1.0" />
</Backdrop>

Chapter 25 = Taking Protected Action in Combat 471

<Attributes>
<Attribute name="useparent-unit" value="true" type="boolean" />
</Attributes>
</Frame>

This creates a simple tooltip-type frame. Like the child buttons, the
useparent-unit attribute is set so that unit requests on the buttons can pass
all the way up to whatever unit button currently owns the menu. Now that the
templates are ready, you can save and close the XML file; the rest of the heavy
lifting is done dynamically at load time, so create the file BlessedMenus. 1uain
the BlessedMenus directory, if needed, and start it by entering the following;:

local function BlessedMenu (name, ...)
local self = CreateFrame("Frame", name, nil,
"BlessedMenusMenuTemplate")
self.buttons = {}
for i=1, select('#', ...) do
local spellName = select(i, ...)
local button = CreateFrame ("Button", nil, self,
"BlessedMenusSpellButtonTemplate")
self.buttons[i] = button
button:SetAttribute ("spell", spellName)
button:SetText (spellName)

if i == 1 then
button:SetPoint ("TOPLEFT", 8, -8)
else

button:SetPoint ("TOPLEFT", self.buttons[i - 1], 3
"BOTTOMLEFT", 0, -2)
end
end
self:SetHeight (#self.buttons * 18 + 14)
return self
end

This function does all the work of creating a menu frame, as well as creating
and placing the choice buttons in the menu, which it does by name. Add the
following code to create three menus using this function:

local heals = BlessedMenu ("BlessedMenusHeals",
"Holy Light",
"Flash of Light",
"Lay on Hands"

local hands = BlessedMenu ("BlessedMenusHands",
"Hand of Protection",
"Hand of Freedom",
"Hand of Salvation",
"Hand of Sacrifice"

472 Partill = Advanced Addon Techniques

local blessings = BlessedMenu ("BlessedMenusBlessings",
"Blessing of Might",
"Blessing of Kings",
"Blessing of Wisdom"

)

Now that you've defined the menus, it’s time to start preparing the code
that will drive the secure behaviors. Add the following:

local openSpellList = [[
local menu = IsAltKeyDown () and "blessings"
or IsControlKeyDown () and "heals"
or IsShiftKeyDown () and "hands"
menu = menu and self:GetFrameRef (menu)
if menu and menu:IsShown () and menu:GetParent () == self then
menu:Hide ()
return
end
if menu then
menu:Hide ()
menu: SetParent (self)
menu:SetPoint ("TOPLEFT", "Scursor")
menu: SetFrameLevel (self:GetFrameLevel () + 2)
menu: Show ()
end

1]

This is the snippet code that the party and player buttons will run when
clicked with certain modifiers, which you add in a moment. It uses information
about the current modifiers to determine which frame reference to retrieve
and open. If that menu is already open on the unit frame in question, it hides
it and takes no further action; if the menu is not open (hidden), or is open on
another unit frame, it is re-parented to the frame that was clicked, making sure
it appears above the frame clicked, and opened. It is also moved to appear
by the point clicked, using an arguments to SetPoint (), $cursor, that places
the point anchored by the mouse’s current location (it will not automatically
follow the mouse). But of course, the code will never run unless it is attached
to some frames; add the load-time code to do so just after the snippet:

for i, frame in ipairs{PlayerFrame, PartyMemberFramel, «3
PartyMemberFrame2, PartyMemberFrame3, PartyMemberFrame4d} do

frame:SetAttribute("shift-typel", "spelllist")
frame:SetAttribute("ctrl-typel", "spelllist")
frame:SetAttribute("alt-typel", "spelllist")

frame:SetAttribute("_spelllist", openSpellList)
SecureHandlerSetFrameRef (frame, "blessings", BlessedMenusBlessings)
SecureHandlerSetFrameRef (frame, "heals", BlessedMenusHeals)
SecureHandlerSetFrameRef (frame, "hands", BlessedMenusHands)

end

Chapter 25 = Taking Protected Action in Combat

473

This code starts by iterating over the player frame and the frames for all
party members and making the same changes to each one:

First, it sets "spelllist" as the type for modified left-clicks. This type is
not defined by the secure action button template, so it will look for a function
in self.menu Or a snippet in self:GetAttribute("_spelllist"). You should
use the latter because setting a key on the frame would introduce taint. As
you did with the shyBars example given before (the one that auto-hides the
extra action bars), you use secureHandlerSetFrameRef to import references to
the actual frames into the environment for the snippet to access when it runs.
Figure 25-1 shows the BlessedMenus addon.

Figure 25-1: BlessedMenus in action

A couple issues still exist with BlessedMenus; if you show one menu while
another one is open (such as by Shift+clicking, then Alt+clicking), they will
overlap, instead of closing the first one. Also, the menu does not disappear
when you choose an option from it. You learn how to address both these issues
in the following sections.

Preserving State and Controlling Information

The secure frame management system in versions 2.0-2.4 of WoW used a
single variable per header, called state, to summarize all the factors it used to
control frames. It was possible to use multiple control factors, but if you had an

474

Part Ill = Advanced Addon Techniques

addon like the original version of Goose that could show or hide frames based
on three different factors (whether or not you were in stealth, in combat, or
mounted), it needed eight different states (two possibilities for combat times
two for stealth times two for mount equals eight) and it had to be able to
handle all the possible combinations of which state to go to when any one of
these factors changed.

Two things make the existing system generally easier to manage. First,
snippets are capable of examining the game state, attributes on relevant
frames, and similar factors, directly when triggered to determine the state they
should set up. Second, the snippets associated with a frame can store as many
distinct pieces of information as they need to keep track of, in private globals.

Private Global Environments

Each function has an environment, which is a table where it stores and seeks
any global variable references made in its body. Because each new function
is created with the same environment as the function that created it, all the
functions created in the stock Ul or addon files normally share the same
environment unless they specify otherwise at some point.

The functions created when the secure handler infrastructure compiles
snippets use their own environments, which is part of how their access to
game information that’s not supposed to be used for secure actions is strictly
controlled (such as how low on health your target is, for example). Because
functions are also normally found by calling global variables, functions that
retrieve prohibited information simply aren’t available from inside a secure
environment. But snippets running in that environment can also store their
own globals there, which persist from one call to another. Moreover, all the
snippets associated with a frame typically share an environment, allowing
them to share input into their frame’s state.

As a simple example of how this can be used, you can fix one of the issues
with BlessedMenus, namely, that when you open one menu on a frame and
then another, the first one stays open behind the second one.

Open BlessedMenus . lua and look for your definition of the openspellList
snippet. Alter it to look like this (changed lines are highlighted):

local openSpellList = [[
local menu = IsAltKeyDown () and "blessings"
or IsControlKeyDown () and "heals"
or IsShiftKeyDown () and "hands"
menu = menu and self:GetFrameRef (menu)
if lastMenu and lastMenu:IsShown() and
lastMenu:GetParent () == self then
lastMenu:Hide()
if lastMenu == menu then

Chapter 25 = Taking Protected Action in Combat

475

return
end
end
if menu then
menu:Hide ()
menu: SetParent (self)
menu:SetPoint ("TOPLEFT", "Scursor")
menu: SetFrameLevel (self:GetFrameLevel () + 2)
menu: Show ()
lastMenu = menu
end

11

Every time you open a menu, you store it in the lastMenu variable. Then
when you go to later open another menu, you can hide whatever was shown
last. 1astMenu is neither a local variable nor an argument to the function, so Lua
will treat it as a global. However, you won’t see any changes to it outside the
snippet by looking in _G.lastMenuOpened; it’s a private global in the frame’s
own personal environment. You can use it as a way to track which menu you
last opened so that you can close it as needed before opening another one.

Secure API Functions

Private globals are usually used as a way for snippets to store internal state
information, but because functions in Lua are actually variables that contain
references to those functions, the private environment is also how snippets are
restricted to secure portions of the API. The following standard Lua functions
work similarly inside a snippet to the way they do in the normal World of
Warcraft Lua environment: type, select, tonumber, tostring, print, pairs,
ipairs, next, unpack, and the table, string, and math libraries, as well as their
deprecated global forms such as tremove.

The following WoW API functions are available to snippets in basically the
same form as they work in normal code:

SecureCmdOptionParse GetMouseButtonClicked

GetShapeshiftForm
IsStealthed, UnitExists
UnitIsDead, UnitIsGhost

GetActionBarPage
GetBonusBarOffset
IsMounted, IsSwimming

UnitPlayerOrPetInParty IsFlying
UnitPlayerOrPetInRaid IsFlyableArea
IsRightAltKeyDown IsIndoors
IsLeftAltKeyDown IsOutdoors
IsAltKeyDown GetBindingKey
IsRightControlKeyDown HasAction
IsLeftControlKeyDown IsHarmfulSpell
IsControlKeyDown IsHarmfulItem

476 Partlll = Advanced Addon Techniques

IsLeftShiftKeyDown IsHelpfulSpell
IsRightShiftKeyDown IsHelpfulItem
IsShiftKeyDown RegisterStateDriver
IsModifierKeyDown GetActionInfo
IsModifiedClick

The following player information functions behave basically the same as the
equivalent unit information functions, but only allow you to inquire about the

player:
PlayerCanAttack PlayerIsChanneling
PlayerCanAssist PlayerInCombat

UnitHasVehicleUI is available inside the secure environment, but only
returns useful information for units that are friendly to the player: true for
friendly units that have a vehicle interface, false for friendly units that don't,
and nil for all non-friendly units.

Two new player information functions are also available to snippets: Player
InGroup returns "raid" if the player is in a raid group, "party" if the player is
in a party but not a raid group, and ni1 if the player is not in any group; player
PetSummary returns the name and creature family of the player’s pet, if any.

The table module inside the secure environment includes one function
that is not part of the normal table module. For security reasons, the snippet
execution engine will not compile snippets that create tables directly using the
table constructor {}. Instead, you can create tables for your snippets to store
information using table.new(...).If arguments are supplied, they are added
to the new table under consecutive integer keys, starting from 1. There is no
way to initialize a table with non-integer keys using table.new(), but you can
set them afterward using conventional table syntax.

The other action the secure environment has to prohibit to snippets is the
creation of functions, but repetitive tasks can be executed in a similar way
using the control object provided in each frame’s environment.

The control Object

The secure environment provides something called a control object to serve
two principal functions: The first is to be able to trigger insecure functions
that have full access to presentational elements such as textures (but without
secure privileges to affect protected execution), and the second is to isolate
small chunks of repetitive code in snippets, so that they can be called like
functions.

When you have to make cosmetic updates to a frame based on changes to its
attributes or other triggers, you can assign a function to a key on that frame in
advance. Then, when secure code running in that frame’s environment wants
to trigger that function, it can call control:callMethod (keyName, ...). This
will find originalFrame as the frame owning the secure environment, retrieve

Chapter 25 = Taking Protected Action in Combat

477

originalFrame [keyName], and if it is a function, call it with (originalFrame,

.) as arguments. The call will be made insecurely, so the function will run
without any special privileges, but with full access to the global environment.
When the function returns, the snippet that called it remains secure, but any
returns from the method function called are discarded and not available to the
secure environment.

The control object can also run snippets, whether provided as string literals
or stored in variables. The control:Run (snippet, ...) function will run the
specified snippet with the owning frame as sel1f and the remaining arguments
passed as the vararg expression. The control :RunFor (frameHandle, snippet,
...) function will run the supplied snippet with frameHandle as self, with
the rest of the arguments passed in the vararg expression, but still in the
environment of the frame calling control :RunFor.

The control:RunAttribute(name, ...) function is very similar to
control:Run, but instead of taking snippet code directly, it retrieves the
snippet to run from owningFrame:GetAttribute(name). This is presently
about the only way to securely interact with any attribute on a frame that
starts with an underscore.

The final method of the control object is largely obsolete, but can occasion-
ally used as a timesaver. control:ChildUpdate (snippetID, message) checks
each child of the calling frame for a "_childupdate-"..snippetID attribute
or a "_childupdate" attribute in that order. It then calls that snippet on that
child, with the child itself, snippetID, and message as arguments, in the child
frame’s environment.

Frame Handles

Because true tables can’t exist in WoW'’s secure sandboxes (the objects manip-
ulated by the table library are actually special proxy objects), frames can’t be
imported directly into snippet code. To allow secure code to manipulate frames,
proxy objects called frame handles are created. The self argument received by
most snippets is actually a frame handle, and SecureHandlerSetFrameRef
stores a frame handle in an attribute on the target frame where it can be
retrieved.

For the most part, frame handles act like frames. They have many of the
same methods, but a few important distinctions exist:

m Frame handles are actually userdata objects, so you cannot set values
on their keys as you can with frames.

m Most frame handle methods throw an error if used during combat for
a frame handle that represents an unprotected frame.

m Frame handles also have some changed methods, as well as a few
methods that don’t normally exist on real frames.

478 Partlll = Advanced Addon Techniques

To get a taste for using frame handles, press Esc to enable your right action
bar, navigate to Interface Options, select ActionBars, and check the Right Bar
checkbox. Then run the following script in-game:

local function ConstructButton(name, parent, baseTexture)

local self = CreateFrame ("Button", parent:GetName()..name, parent, 2

"SecureHandlerClickTemplate")

parent [name:lower ()] = self
self:SetHeight (32)
self:SetWidth(32)

self:SetNormalTexture (baseTexture.."-Up")
self:SetPushedTexture (baseTexture.."-Down")
self:SetHighlightTexture (baseTexture.."-Highlight", "ADD")

return self
end

local advance = MultiBarRight.advance or ConstructButton ("Advance", «3
MultiBarRight, [[Interface\MainMenuBar\UI-MainMenu-ScrollUpButton]])
advance:SetPoint ("BOTTOM", MultiBarRight, "TOP")
advance:SetAttribute ("_onclick", [I[

bar = bar or self:GetParent /()

local page = tonumber (bar:GetAttribute('actionpage')) or 4
if page <= 1 then

page = 7
end

bar:SetAttribute ("actionpage", page - 1)

buttons = buttons or table.new(bar:GetChildren())

for i, button in ipairs(buttons) do

button:SetAttribute ("touch")

end 11
)
local regress = MultiBarRight.regress or ConstructButton("Advance", «3
MultiBarRight, [[Interface\MainMenuBar\UI-MainMenu-ScrollDownButton]])
regress:SetPoint ("TOP", MultiBarRight, "BOTTOM")
regress:SetAttribute ("_onclick", [I[

bar = bar or self:GetParent/()

local page = tonumber (bar:GetAttribute('actionpage')) or 2
if page >= 6 then

page = 0
end

bar:SetAttribute ("actionpage", page + 1)

buttons = buttons or table.new(bar:GetChildren())

for i, button in ipairs (buttons) do
button:SetAttribute ("touch")

end 1]

The first function creates a new button when called, and sets up certain
cosmetic details. The next block uses this function to create a button, and
attaches it to the rightmost extra action bar at the top end. Then it sets up a

Chapter 25 = Taking Protected Action in Combat

479

snippet to handle clicks on the button, decreasing the effective page number
of the action bar. Finally, it does something similar to create another button,
attached to the bottom of the action bar, which increases the bar’s page number
by one. You now can rotate the rightmost extra action bar through all six action
pages independently of the main bar.

Take a particular look at a few parts of the snippet. The first line looks for
a frame handle to the button’s own parent (MultiBarRight) if necessary and
caches it in a private global to save on future lookups (because these buttons
will never change parents, this is fine; for a mod like BlessedMenus, avoid
caching parents for frames whose parentage can change dynamically). The
next partis the main logic; it uses :GetAttribute () on the parent frame handle
to determine the bar’s current page, and advances it to the next page, rotating
back to the other end of the cycle if needed. It also uses :setattribute() to
change the bar to the newly chosen page.

The last part uses :Getchildren() if needed to cache a list of the buttons
on the bar, and iterates across them, setting the touch attribute to nil1. This is
done in order to UjggerActionBarButtonTemplate% <OnAttributeChanged>
handler and cause it to refresh the buttons.

Allowed Actions

Using frame handles is intended to be as much like using frames as possible.
All of the following methods work on frame handles in basically the same way
as they do on frames, except that they throw an error if used on an unprotected
frame in combat (frames that are protected by virtue of having a protected
child still count as protected for most purposes here):

GetID() IsShown () IsVisible()

Getwidth () GetHeight () GetRect ()

GetScale() GetEffectiveScale() GetFrameLevel ()
GetAttribute (name) GetChildren/() GetParent ()

GetNumPoints () GetPoint (1) SetID(id)

SetWidth (width) SetHeight (height) SetScale(scale)

SetAlpha (alpha) ClearAllPoints () SetAttribute (name, value)
Raise () Lower () SetFrameLevel (level)
Disable () Enable () GetName ()

IsProtected() GetObjectType () IsObjectType (ot)

All of these function work even on unprotected frames in combat, and can
be used to avoid errors caused by using disallowed frame handles.

Additional or Changed Actions

Several frame handle methods are exclusive to frame handles, or require
special considerations when used on frame handles.

480 Partlll = Advanced Addon Techniques

Show(skipAttr)
Hide(skipAttr)

By default, these methods of frame handles set or clear the statehidden
attribute, which is used by a few other parts of the Ul You can pass
true to these functions to prevent them from changing this attribute.

SetPoint(point, relframe, relpoint, xofs, yofs)

You can’t omit the relframe argument to assume the frame parent
when calling setpoint from a snippet, although you can pass the
"$parent" string instead of a frame handle. You also can’t omit the
relpoint argument if you want to pass any offset values.

relframe should be one of the following;:

= A valid handle to an explicitly protected frame (effective protection
is not sufficient)

= il or the string "$screen" to anchor to the root window
m The string "$parent" to anchor to the frame’s parent

m The string "$cursor", which will place the frame offset from the
cursor’s position when the call is made. The frame will not automati-
cally track the cursor.

SetAllPoints(relframe)

This is subject to most of the same changes as setpoint (), but
"$cursor" is not a valid target.

SetParent(handle)

Like setpoint (), the handle passed as the new parent must be an
explicitly protected frame.

GetFrameRef(label)

This method is only available to frame handles, because it’s not very
useful for normal frames. It returns the frame handle stored in
self:CGetAttribute("frameref-"..label).It’s generally used as a
convenient way to retrieve frame references passed in using
SecureHandlerSetFrameRef.

GetEffectiveAttribute(name, button, prefix, suffix)

This is used as an interface to SecureButton_GetModifiedAttribute, to
retrieve attributes that vary based on modifier keys and mouse button
the way secureactionButtonTemplate does. You can omit some of the
arguments to search attributes based on the current system status.

GetChildList(tbl)

This is used to conserve memory and performance when you
frequently need to re-create a list of a frame’s children. It appends the

Chapter 25 = Taking Protected Action in Combat

481

frame’s children to the table passed in and returns it again for
convenience. It does not purge the old contents automatically, but you
can run the table through table.wipe to do so before passing it in if
you need to.

GetMousePosition()

This returns the cursor’s current position over the frame, normalized to
the frame; that is, (0,0) is the frame’s lower left and (1,1) is its upper
right. If the mouse is not over the frame, this method returns ni1.

IsUnderMouse(recursive)

This returns true if the frame is under the current mouse position. If
you pass true for recursive, it will also return true if any of the
frame’s children are under the mouse.

SetBindingClick(priority, key, name, button)
SetBinding(priority, key, action)
SetBindingSpell(priority, key, spell)
SetBindingMacro(priority, key, macro)
SetBindingltem(priority, key, item)
ClearBinding(key)

ClearBindings()

These are analogous to the setoverrideBinding* functions in the
global environment, except that they are described as frame methods.
The calling frame is considered the owner of the override binding so
established.

An override binding is a temporary binding that does not affect your
saved key binding settings. It lasts until cleared or until the client is
closed or the Ul reloaded. When a key is pressed, the client searches
first for the most recent override binding set with the priority argument
true, if any exist; if none are still assigned, it looks for the most recent
override binding assigned without priority. If no override bindings are
found for that key, the regular binding, if any, is triggered.

RegisterAutoHide(duration)
UnregisterAutoHide()
AddToAutoHide(handle)

These methods are usually used to support “hesitating menus,” menus
that automatically close after a brief time if a selection isn’t made from
them. RegisterAutoHide (duration) indicates that the frame should be
hidden duration seconds after the mouse leaves it, unless the mouse
reenters it during that time, in which case the timer starts again when
the mouse leaves the area. UnregisterautoHide () simply cancels any
pending hide delay on the frame.

482 Partlll = Advanced Addon Techniques

AddToAutoHide (handle) includes handle’s screen area in the block that
will be monitored to determine if the mouse focus is on the frame or its
other points of interest, in order to determine if the timer will run down
or not. For instance, it allows a frame to stay visible as long as the
mouse is over it or any of its children.

Wrapping Frame Scripts

Suppose for a moment you're leveling a druid, and running a lot of dungeons
like Razorfen Downs for gear and experience because you have a regular
group. Before every trip into a dungeon, and every so often while you're
inside, you recast Mark of the Wild or Thorns on the whole group. This task
is repetitive and kind of mindless, so you might want to make an addon that
will make it easier (if you don’t have a druid, mages and priests also tend to go
through the same thing until they’re high enough to learn group buff spells).
The foundation of this frame, Buffcycler, is very simple, based on what you
learned in Chapter 15 about action buttons. Run the following lines in-game:
local BuffCycler = BuffCycler or CreateFrame("Button", "BuffCycler", 3

UIParent, "ActionButtonTemplate, SecureActionButtonTemplate")
BuffCyclerIcon:SetTexture[[Interface\Icons\Spell_Nature_Regeneration]]

BuffCycler:SetAttribute("type", "spell")
BuffCycler:SetAttribute("spell", "Mark of the wild")
BuffCycler:SetPoint ("TOPRIGHT", BuffFrame, "TOPLEFT", -300, 0)

Of course, in its current form, this addon button only casts Mark of the Wild
on your current target. Figure 25-2 shows the BuffCycler button in-game.

Figure 25-2: BuffCycler

Chapter 25 = Taking Protected Action in Combat

483

A Simple Click Wrapper

If you're familiar with making macros, you may already have learned that
cycling reliably through a set of targets isn’t the sort of thing that macros can
do easily or well. But programmatic logic doesn’t have much of a problem
with it, provided it’s allowed to work in combat. You can add that behavior to
the button with a function called secureHandlerWrapScript:

SecureHandlerWrapScript (BuffCycler, "OnClick", BuffCycler, [I[
local unit = self:GetAttribute("unit")

if unit == "player" then
unit = "partyl"

elseif unit == "partyl" then
unit = "party2"

elseif unit == "party2" then
unit = "party3"

elseif unit == "party3" then
unit = "party4"

elseif unit == "party4" then
unit = "player"

end

if unit and UnitExists(unit) then
self:SetAttribute("unit", unit)
else
self:SetAttribute("unit", "player")
end

1)

What this code effectively does is “hook” But£Cycler’s onclickhandler with
the code in the long brackets, so that that code is called before secureaction
Button_oOnClick. The secure handler mechanisms create the hook as secure
code, so that it will not taint the call to SsecureaActionButton_0OnClick. You can
also supply a second string (not used in this case) to be called as a ““post-hook,”
which is why it’s referred to as “wrapping” the existing script. These hooks
can be used in a number of ways:

m As used here, they can set up the button’s functional attributes to prepare
it for its click, as well as internally recording information about the “state”
of the addon, such as where it is in a series of actions.

m A pre-hook snippet can use the return statement to modify the argument
values passed to the original frame script. For instance, because a click
handler takes button as an argument, a wrapper around onClick can
return changed values for but ton to be used by the original handler when
it gets called.

m A pre-hook snippet can also return false to completely suppress the
original handler from running. It can do this conditionally based on

484 Partlll = Advanced Addon Techniques

things like frame attributes or previously stored information, as well as
current API checks of approved information, such as whether you have a
target, or other legitimate macro conditions.

Notice that the secureHandlerwWrapScript call refers to BuffCycler twice.
When you call secureHandlerWrapScript, you have to give it two frames,
which can be the same or different frames. The first one is the frame whose
script handler you will actually wrap. The second one (the third argument) is
the “owner” of the script; any private variable references (explained in more
detail a little later in the chapter) are associated with that frame. All scripts
owned by a frame have access to all private variables created by any script
owned by that frame.

To prevent exploits, only an explicitly protected frame (one inheriting from
a template with the protected="true" tag attribute) can be designated as a
script owner. Moreover, snippets wrapping a frame script will not be run if
the wrapped frame becomes unprotected, such as by having all its protected
children re-parented to other frames. Its original script will be run without
modification, and its wrappers will resume functioning if it becomes protected
again.

m At the time of this writing, implicit protection is not sufficient to
allow script wrappers to run on a frame; any script wrappers on a frame that is not
explicitly protected will be created successfully, but will be silently ignored. It is
possible that a future version of the secure handlers will lift this restriction, but
until such a change is made, you can make protected proxy frames with suitable
scripts and have them manipulate references to the frames you want to control.

It is also possible to unwrap a script, so that it returns to its original
behavior. SecureHandlerUnwrapScript (wrappedFrame, scriptName) will
securely restore the original handler, and return the prebody snippet, owning
header frame, and postbody snippet, allowing you to put the wrapper back
on if needed.

Using a Post-Hook

If two strings are supplied to secureHandlerwWrapScript, the second one is a
post-hook snippet called after the original handler completes. Most pre-hooks
can include a message as an additional return value; if this message is non-nil,
the post-hook is called and receives the message as an additional argument.

Post-hooks are commonly used to perform clean-up or change an addon’s
state information after an action completes, setting it up for the next action.
You can use this to make the menu frames created by BlessedMenus act
more like conventional popup menus, closing after a choice is made from
them. Open up the BlessedMenus.xml file and find the first template,
BlessedMenusSpellButtonTemplate. Locate its onLoad handler and add the
following statement at the end of the handler:

Chapter 25 = Taking Protected Action in Combat

485

SecureHandlerWrapScript (self, "OnClick", self:GetParent(),

[[return nil, "closeMenu"l],

[[1f message == "closeMenu" then owner:Hide() end]]

)

A pre-hook is always required, partly because a post-hook will never be
called unless the pre-hook returns a message to call it with. In this case,
returning nil as the button value means that the button argument will be
passed unchanged to the original click script.

The post-hook snippet receives the same arguments as the pre-hook snippet
(but with any changes returned by the pre-hook snippet), plus one more,
message, which is largely irrelevant in this example. The other point worth
noting is the global value, owner. Each secure environment stores a reference
to the frame handle for the frame with which the environment is associated.
Because the menu containing the button is the header frame for the wrapping
snippets, owner always refers to it. This is the simplest way to allow the menu’s
buttons to close their containing menu.

Script Wrapper Reference

The scripts that can be wrapped are mostly the same ones found on
SecureHandler templates; they deal specifically with user interaction or pro-
tected triggers. The following scripts support secure wrappers, with the
following arguments to their pre-hook and post-hook snippets.

SCRIPT PRE-HOOK POST-HOOK

OnClick button, message = postHook (self,
preHook (self, button, message, button, down)
down)

OnDoubleClick button, message = postHook (self,
preHook (self, button, message, button, down)
down)

PreClick button, message = postHook (self,
preHook (self, button, message, button, down)
down)

PostClick button, message = postHook (self,
preHook (self, button, message, button, down)
down)

OnEnter allow, message = postHook (self,
preHook (self) message)

OnLeave allow, message = postHook (self,
preHook (self) message)

OnShow allow, message = postHook (self,
preHook (self) message)

OnHide allow, message = postHook (self,

preHook (self)

message)

486 Partlll = Advanced Addon Techniques

OnDragStart varies postHook (self,
message, button)
OnReceiveDrag varies postHook (self,
message, button)
OnMouseWheel allow, message = postHook (self,
preHook (self, offset) message, offset)
OnAttribute allow, message = postHook (self,
Changed preHook (self, name, message, name, value)
value)

Pre-hook snippets wrapping onDragstart and oOnReceiveDrag are a little
more complicated than others because their return values can be used to
control the cursor contents. They can return false as other pre-hook snippets
can to suppress the original script, or they can return type information
in the same manner as the _ondragstart and _onreceivedrag snippets of
SecureHandlerDragTemplate. They can also return "message" and a message
value to prompt a postHook to execute.

Triggered Changes

Of course, sometimes you need to trigger a snippet in response to something
other than user input; the situations in which you can do this are limited, to
prevent automation, but they do exist, supported by a mechanism called state
drivers.

State Drivers

A state driver is a set of commands to an internal manager that takes action

on that frame when one or more elements of the game state change. It works

similarly to a conditional clause in a macro, selecting an argument based on a

set of authorized conditions, and passing that argument to a specified action

on a frame, usually showing it, hiding it, or setting an attribute. They are

established with the RegistersStateDriver Or RegisterUnitWatch functions.
For instance, execute the following code in-game:

run RegisterStateDriver (PlayerFrame, "visibility", "[combat] show; hide")

The stock player frame should disappear from the upper left. Do something
to enter combat—such as start a duel—and it should reappear, disappearing
automatically once combat is over. This works even for protected frames, as
you just saw; although, not surprisingly, you cannot register or change a state
driver during combat from insecure code.

Chapter 25 = Taking Protected Action in Combat 487

"visibility" is a special case. When you pass it as the second argument,
the frame will be shown whenever your conditions statement (the third argu-
ment) evaluates to "show" and hidden whenever it evaluates to "hide". For any
other string stateName you pass as the second argument, the state driver will
set the attribute on the frame named "state-"..stateName to whatever string
the conditions evaluate to, provided that value has actually changed since the
last time (a full explanation of conditions is provided at the end of the section).
You can then set that frame to react to that attribute change by having it inherit
from secureHandlerStateTemplate Or SecureHandlerAttributeTemplate (in
the next section). If you want to remove state triggers from a particular frame,
you can use UnregisterStateDriver (frame, action) to remove a specific
one or UnregisterStateDriver (frame) to remove all of them.

BRIT] registerunitwatch is a convenient, simplified interface to a common use
case, wanting a unit frame to hide or show according to whether its unit currently
exists, the way the stock target frame does. If you want the frame to be notified
without changing its visibility, you can call Registerunitwatch (frame, true)
and the driver will set the state-unitexists attribute on the frame to true or
false instead.

RegisterUnitWatch (frame, useState) is almost equivalent to being an alias
for a preconfigured call to RegisterStateDriver, although there are two
important distinctions; you cancel it with Unregisterunitwatch, and if you track
a frame with Registerunitwatch and change the frame’s unit attribute, it will
start dynamically tracking the new unit rather than requiring you to unregister and
reregister the state driver.

State Responders

To perform other secure actions in response to changes in a frame’s attributes
or visibility, various templates are available:

L SecureHandlerShowHideTemplate
L SecureHandlerAttributeTemplate

L SecureHandlerStateTemplate

Responding to Show/Hide

SecureHandlerShowHideTemplate is the simplest, and useful because you can
use it to respond to any change in visibility, not just ones triggered by state
drivers. For instance, you can tweak BlessedMenus so that the menus close
when the user presses the Esc key.

Open BlessedMenus . lua and find the definition of the Bl1essedMenu function.
Change the first few lines as follows:

488 Partlll = Advanced Addon Techniques

local function BlessedMenu (name, ...)

local self = CreateFrame ("Button", name, nil, 3
"BlessedMenusMenuTemplate")

self.buttons = {}

Next, open BlessedMenus.xml and find the frame definition for
BlessedMenusMenuTemplate.FHSbfﬂuitheprotected:"true"tagzﬁhﬁbu&zon
the<Frame>tagandchangeﬁt0inherits:"SecureHandlerShowHideTemplate,
SecureHandlerClickTemplate". Then change the <Frame> tag itself and its
corresponding </Frame> tag to <Button> and </Button> tags. Finally, just
before the </aAttributes> tag, add three more attribute definitions:

<Attribute name="_onshow" value="self:SetBindingClick(false, 3
'"ESCAPE', self:GetName(), 'Escape')" />
<Attribute name="_onhide" value="self:ClearBindings ()" />
<Attribute name="_onclick"
value="1if button == 'Escape' then self:Hide() end" />

XML doesn’t support long brackets, so you should be careful when writing
snippets to be stored in XML attributes—for example, by using single quota-
tion marks around strings within the snippet, since a double quotation mark
would be interpreted as the end of the XML attribute. If your code is more
complicated, such that avoiding quotation marks becomes an issue, you can
use :SetAttribute() calls in a frame’s or template’s onLoad code instead of
specifying snippets in XML attributes.

This code modifies the frames used as menus by making them clickable. It
attaches secure code so that when the frame is shown, it will temporarily bind
the Escape key to click the menu itself (rather than its buttons) with the virtual
mouse button "Escape" (because mouse clicks are represented to the UI using
strings, any string value can be used as a “button’”’). When that click (and only
that click) happens on the menu, the menu will close itself. When the menu is
closed for any reason, it will give up its hold on the Escape key and return it
to its previous function.

Responding to Attribute and State Changes

SecureHandlerAttributeTemplateis a fairly Straightforward template. It will
fire the frame’s _onattributechanged snippet whenever one of the frame’s
attributes (whose name does not start with an underscore) is changed,
supplying the name and value of the changed attribute as arguments.
SecureHandlerStateTemplate gives a little more structure to its use and is bet-
ter integrated with the state drivers. Itis only triggered by changes in attributes
whose names start with "state-". When one happens, it looks for a snippet in
the frame attribute with the same name as the changed attribute, but prefixed

Chapter 25 = Taking Protected Action in Combat

489

with "_on"; that s, if triggered by a change to the state-unitexists attribute,
it looks for a snippet to handle that attribute in the _onstate-unitexists
attribute. Instead of the raw name and value arguments, it calls that snippet
with the stateid argument, which is the name of the changed attribute minus
the "state-" portion, and the newstate argument, which is the same as value.
That is, if the state handler was triggered by a change in the state-unitexists
attribute, the stateid argument will be "unitexists".

To see one rather remarkable way you can use SecureHandlerState
Template, enter the following block into a fresh page in-game (if you don’t
have a priest to test this with, substitute spells or items appropriate to your
character):

local self = AvatarCaster or CreateFrame("Button", "AvatarCaster",
nil, "SecureActionButtonTemplate, SecureHandlerStateTemplate")
self:Hide ()

self:SetAttribute("_onstate-mouseover", [[
if newstate == "exists" then
local name = self:GetName ()
self:SetBindingClick(false, "SHIFT-BUTTON1", name, "shiftl")
self:SetBindingClick(false, "CTRL-BUTTON1", name, "ctrll")
self:SetBindingClick(false, "SHIFT-BUTTON2", name, "shift2")
self:SetBindingClick(false, "CTRL-BUTTON2", name, "ctrl2")
else
self:ClearBindings ()
end 1]
)
RegisterStateDriver (self, "mouseover",
" [target=mouseover,exists] exists; noexists")

self:SetAttribute("unit", "mouseover")
self:SetAttribute ("type", "spell")
self:SetAttribute("*spell-shiftl", "Power Word: Fortitude")
self:SetAttribute("*spell-shift2", "Power Word: Shield")
self:SetAttribute("*spell-ctrll", "Flash Heal")
self:SetAttribute("*spell-ctrl2", "Renew")

Run this script once you've finished it. Try holding down Shift or Control
and clicking various character or monster avatars in the game-world display;
observe how spells are cast on them directly without changing your target.
Now, you can break down how it works.

The frame is created from a combination of SecureActionButtonTemplate
(so that it can actually cast spells) and secureHandlerStateTemplate (so that
it can respond to changes in the game state). The Avatarcaster or portion
simply prevents you from creating a new frame if you need to run the script
more than once, such as by making an error in the script the first time. The

490

Part Ill = Advanced Addon Techniques

frame is purely functional, and requires no visual presentation such as textures
or font strings.

The _onstate-mouseover snippet will be called whenever the
state-mouseover attribute is set, with "mouseover" as the stateid
argument and the new value of the attribute as the newstate argument.
Because this snippet is only being used for one state variable, it disregards
the stateid argument. If state-mouseover is set to "exists", the button will
rebind several mouse clicks so that they “click” this action button even though
the mouse is no longer over it. These bindings do not replace any standard
bindings associated with these button clicks; instead, they are “owned” by
the frame whose handle sets them, and last until the frame releases them (as it
does when the snippet is called with "noexists").

Rather than standard values such as "LeftButton", the button argument
received by the button’s onclick handler will be a special value such as
"shiftl". This workaround is need to preserve information about which
modifiers were down when the click was made, because when a binding that
includes modifiers, such as sHIFT-F1, is pressed, the binding’s actual code is
resolved as if Shift (or whatever modifiers are included in the binding) were
not being held down; this prevents the action button from finding traditional
modified attributes such as shift-spelll.

The RegisterstateDriver call establishes a driver so that when your
mouse cursor is pointing at a targetable player or creature, the button’s
state-mouseover attribute will be set to either "exists" or "noexists",
accordingly. It will not actually set the frame’s attribute value if the new
value would be the same as the old value, so the frame’s _onstate-mouseover
snippet will only be called when it actually changes.

The last block of code sets up the spellcasting characteristics of the button,
as explained in Chapter 15. Two points are worthy of note: the button’s unit
is "mouseover", so that spells will be cast on whatever player or mob is under
the mouse in the world frame; and the attributes are phrased to key off of the
custom button values supplied by the setBindingClick calls in the previous
code snippet.

State Conditionals

The key to registering state drivers that actually do what you want is under-
standing the conditional system. If you are familiar with writing macros, you
have likely seen it already; macros that select a spell based on modifier keys
or the nature of the target rely on the same system. When you give it a string,
it returns a portion of that string based on the game state by calling a function
called SecureCmdOptionParse.

This function starts at the beginning of the string and looks for the first
matching pair of square brackets (11) and anything they contain. If it does not

Chapter 25 = Taking Protected Action in Combat

491

find a pair of brackets, it goes to either the first semicolon it finds, if there is
one, or the end of the string, if there isn’t, and returns everything from where
it is up to that point, trimming off any leading or trailing whitespace. If it does
find such a pair, it separates the contents into a series of conditions wherever it
finds commas, and determines the truth value of each condition. If all of them
are true, it looks for either the next semicolon after the end bracket, or the end
of the string, and returns anything before the point it finds, starting from the
last closing square bracket before that point, again trimming off any leading
or trailing whitespace. If any of the conditions are false, it repeats its search,
starting from after the ending bracket of the set of conditions it just checked.
Figure 25-3 shows the breakdown of parsing a secure command.

[mod: shift,nocombat] focus: [target=mousscver help] [med:ctrl] moussover:

If both of these are true.. retumn this.. ..otherwise, if this is true.., .o this is.. .-.Jetum this.. T

..but if none of those 15 true, then retumn this (the empty string ™)

show; [combat] hida

Retum this... _.s0 never even look at this (this example is broken)

Figure 25-3: Breaking down conditionals

A comprehensive list (as of the time of this writing) of recognized conditions
follows. The system is case-sensitive; conditions must be in lowercase to be
recognized, except for the names of spells, units, or creature types, for which
case is disregarded. If a condition is encountered that is not recognized, it is
automatically treated as being false, and a system message appears in your
chat window indicating that an unknown macro option was encountered and
what it was. A recognized condition prefaced with no is also a valid condition,
meaning the opposite of what the condition tests for; for instance, [nocombat]
returns true if you are not in combat.

Target Specifiers and Unit Conditions

Although most conditions, such as [combat], are general inquiries about the
player’s game state, certain conditions apply to a specific unit, such as [dead].
By default, such conditions refer to the player’s current target; but if you want
to ask about the status of another unit, you can include a [target=unitID]
clause in your conditions. By itself, a [target=unitID] specifier is always
true; this is useful in many macros (because in a macro, such a specifier
will also redirect a spell or item being cast to its unit), but not in state
driver conditionals. However, they still have many uses in state drivers when
combined with specific unit conditions, such as [target=mouseover, exists]
in the Avatarcaster example earlier.

Any acceptable unitIDp can be supplied. Remember that names of pets or
characters in your raid or party are also valid unit1ps, but names of mobs,
totems, enemies, or allied players outside your group are not.

492

Part Ill = Advanced Addon Techniques

State Variables

Some conditions can have more than one value. For instance, [modifier] is
true if any of the Ctrl, Shift, and Alt keys are held down, but [modifier:ctrl]
is true only if the Control key, specifically, is down, whether or not other
modifier keys are down.

A state variable can be checked for more than one possible value by stringing
them together; for example, [modifier:shift/alt] is true if either the Shift
or the Alt key is down. If you negate this condition, first the whole condition
is evaluated, then the result is negated, so [nomodifier:shift/alt] is true if
neither the Shift key nor the Alt key is down. This means that if you want to
test if the Control key and only the Control key is being held, you can use the
compound condition [modifier:ctrl, nomodifier:shift/alt].

Some condition variables can be checked meaningfully without checking
them for a particular value; that is, [channeling] is true if you are presently
channeling any spell, but [channeling:Blizzard] is only true if you are
particularly channeling the Blizzard spell. However, some condition variables
always have a value, so you must specify one or more values to get a
meaningful result. [actionbar:3] is only true if your main action bar is set to
page 3, but [actionbar] is always true, because you are always on some page
or another.

Unit Conditions

The following conditions are tested against your target, unless you specify
another target using a [target=unitID] phrase:

m [exists] —Indicates whether the unit exists, regardless of its condition.
So [noexists] will be true if you have no target.

= harm] —Indicates that the unit exists and that you are able to cast attack
spells on it. So [target=focus,noharm] means that either you have no
focus or that it is not attackable.

= [help] —Indicates that the unit exists and that you could target it with
beneficial spells such as buffs or heals. It is possible, although very
uncommon, for both [help] and [harm] to be true for a given unit; it is
more common for both [noharm] and [nohelp] to be true for a unit, such
as certain NPCs; and naturally, if [noexists] is true for a unit, then both
[nohelp] and [noharm] will also be true.

m [dead] —Trueif the unit exists and is dead or a ghost. Currently, [nodead]
is usually more functional, and usually needs to be in a [exists, nodead]
clause to be useful.

= [party] and [raid] —True if the target is in the same party or raid with
you, respectively. If [party] is true, [raid] will also be true, but not

Chapter 25

Taking Protected Action in Combat

493

always the other way around. Be careful not to confuse these conditions
with [group:party] and [group:raid], described later.

General Conditions

These conditions always apply to the condition of the player character or the
client UI, regardless of which unit might be specified in the conditional clause.
Several of the following conditions have abbreviations or synonyms that you
can use if you need to make your code more concise:

m [actionbar:1/2/3/4/5/61, [bar:1/2/3/4/5/6]1—These both return true
if the given page (or one of the given pages) is currently the active page in
the UL In state drivers, this can be useful for synchronizing two or more
action bars together so that one changes when another does.

[bonusbar:1/2/3/4/5]—Used to handle special additional action bar
pages such as those provided when a warrior switches stances or when a
druid switches shapeshift forms. Assuming that the character has learned
all appropriate stances, forms, or similar capabilities, they are numbered

as shown in Table 25-2.

Table 25-2: Bonus Bar Values for Various Classes and Modes

BONUS BAR WARRIOR DRUID ROGUE PRIEST/WARLOCK
1 Battle Bear Form/ Stealth Shadowform or
Stance Dire Bear Metamorphosis
Form
2 Defensive Cat Form Shadow
Stance Dance
3 Berserker Moonkin
Stance Form/Tree
of Life Form

B [button:1/.../5/<virtual

B [channeling], [channeling:<spell

There are two other numbers: 4, which is presently not used by the stock
UL and 5, a special case available to all players, used when you are
possessing another unit or controlling a vehicle.

click>], [btn:1/.../5/<virtual

click>]—Because it selects based on what mouse button was clicked on
an action button to trigger the current action, this option is very useful in
macros, but is almost totally purposeless for use in state drivers.

name>{/<spell name>}]—In its

general form, this condition is true if the player is channeling any spell;

494 Partlll = Advanced Addon Techniques

with a value or list of values, it is true while the player is channeling any
of the listed spells.

= [combat] —True whenever the player character or his pet is engaged in
combat.

B [ecquipped:<item type>], [worn:<item type>] —True if the player char-
acter has an item that is of the given type or subtype equipped and
equipped in the given inventory slot.

m |t can check for any of the following item types or subtypes; it cannot
check for a specific item by name:

Arrow Leather Shields

Bullet Librams Staves

Bows Mail Thrown

Cloth Miscellaneous Totems

Crossbows One-Hand Two-Hand

Daggers One-Handed Axes Two-Handed Axes
Guns One-Handed Maces Two-Handed Maces
Fishing Poles One-Handed Swords Two-Handed Swords
Fist Weapons Plate Wands

Idols Polearms

m [flyable] —Returns true if the player is in an area where flying is
allowed. This also returns true even if the player lacks a skill needed to
fly in that area.

m [flying] —True if the player is flying; that is, off the ground on a flying
mount or in a flying form. It is not true when the character is in the air
because he is jumping or falling, even with a slow fall effect.

® [groupl, [group:party], [group:raid] — [group] is true when you are
in any kind of group; [group:raid] is true whenever you are in
any kind of raid group, including battlegrounds. [group:party] and
[group:party/raid] are legal syntax, but are both effectively longer
synonyms for [group].

= [indoors] —True whenever the player is indoors.

B modifier:shift/ctrl/alt/<MODIFIEDCLICK>], [mod:shift/ctrl/
alt/<MODIFIEDCLICK>] —[modifier] and [mod] by themselves are true
whenever the player is holding any of the Shift, Control, or Alt keys
down. With a specified key or list of keys, they are true whenever any of
the specified keys are down.

This condition also supports abstract, rebindable modifiers such as
SELFCAST (which defaults to the Alt key). See the IsModifiedclick and
SetModifiedcClick functions (API) for more information.

Chapter 25 = Taking Protected Action in Combat 495

= [mounted] —True whenever the player character is on any kind of mount,
including automated flight path (taxi) mounts, but typically not when
operating a vehicle.

= [outdoors] —True whenever the player character is outdoors. It uses a
separate API from [indoors] (pertaining to the usability of certain spells
and items, which does not necessarily correspond to whether a roof is
over the player’s head), so itis not always synonymous with [noindoors],
although this will generally be the case.

B [pet], [pet:<pet name>], [pet:<pet type>]— [pet] is true whenever
the player character is controlling a pet of any kind, including a vehicle
or possessed unit. With an argument or list of arguments, it is true if the
player character is controlling a pet whose name or type (such as owl or
succubus) matches any of the listed arguments.

m [spec:n]—True if the player character’s currently active talent special-
ization index is in the list of arguments. At the time of this writing, only
the values 1 and 2 are possible, but this could be expanded at some point
in the future.

™ [stance], [form], [stance:0/1/2/.../n], [form:0/.../n]—By itself,
[stance] or [form] returns true if the player character is in any stance
or shapeshift form; this will always be true for warriors. With a list of
numerical arguments, it is true when the player character’s current stance
or form index is in the argument list. Table 25-3 shows the possible
indices, depending on class:

Table 25-3: Stance Values for Different Classes

INDEX WARRIOR DRUID ROGUE PRIEST SHAMAN WARLOCK
1 Battle Bear Stealth Shadow Ghost
Stance Form/Dire form Wolf
Bear Form
2 Defensive ~ Aquatic Metamor-
Stance Form phosis
3 Berserker Cat Form Shadow
Stance Dance
4 Travel Form

Druid stance values are a bit more complicated because, due to talents, the
player might have Tree of Life form or Moonkin Form. In that case, stance 5
will contain this form, and stance 6 will contain the player’s flight form (either
Flight Form or Swift Flight Form). If the player does not have either of those
talented stances, the flight forms will be moved into stance 5.

496 Partlll = Advanced Addon Techniques

This condition is closely related, but not identical, to [bonusbar].

m [stealth] —Trueif the player character is in any kind of stealth condition,
including rogue stealth, druid prowl, night elf shadowmeld, or mage
invisibility. There is presently no way to determine if a hunter pet is in
stealth from the conditional system.

= [swimming] —True whenever your character is in the water.

Summary

This chapter addresses quite a lot of material, but fortunately most of it is
based on a few common principles. By now, you should grasp how to:

= Write snippets that use implied arguments, private globals, frame han-
dles, and a restricted environment.

m Attach these snippets to frames for secure execution by using
SecureHandler templates or script wrappers.

m Register state drivers to take action on frames, and construct conditionals
that will select the values you want to use based on game state.

The Code

BlessedMenus

BlessedMenus.toc

Interface: 30300

Title: BlessedMenus

Notes: Creates menus on party frames to select spells to cast on them
BlessedMenus.xml

BlessedMenus. lua

BlessedMenus.xml

<Ui xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<Button name="BlessedMenusSpellButtonTemplate" enableMouse="true" 2
inherits="SecureActionButtonTemplate" virtual="true">
<Size x="144" y="16" />
<Layers>

Chapter 25 = Taking Protected Action in Combat

497

<Layer level="ARTWORK">
<Texture parentKey="icon">
<Size x="16" y="16" />
<Anchors>
<Anchor point="TOPLEFT" />
</Anchors>
</Texture>
</Layer>
</Layers>
<Attributes>
<Attribute name="type" value="spell" />
<Attribute name="useparent-unit" value="true" type="boolean" />
</Attributes>
<Scripts>
<OnLoad>
SecureHandlerWrapScript (self, "OnClick", self:GetParent(),
[[return nil, "closeMenu"]],
[[if message == "closeMenu" then owner:Hide() end]]
)
self:GetFontString () : SetPoint ("LEFT", self.icon, "RIGHT", 2, 1)
Self:RegiSterEvent("PLAYERﬁENTERINGﬁWORLD")
</OnLoad>
<OnEvent>
self.icon:SetTextureed
(GetSpellTexture(self:GetAttribute("spell")))
</OnEvent>
</Scripts>
<ButtonText inherits="GameFontHighlight" justifyH="LEFT" />
<HighlightTexture alphaMode="ADD">
<Color r="0.75" g="0.75" b="0.6" a="0.5" />
</HighlightTexture>
</Button>
<Button name="BlessedMenusMenuTemplate" hidden="true"
inherits="SecureHandlerShowHideTemplate, SecureHandlerClickTemplate" 3
virtual="true">
<Size x="160" y="18" />
<Backdrop bgFile="Interface\Tooltips\UI-Tooltip-Background" 3
edgeFile="Interface\Tooltips\UI-Tooltip-Border" tile="true">
<EdgeSize val="16"/>
<TileSize val="16"/>
<BackgroundInsets left="4" right="4" top="4" bottom="4"/>
<BorderColor r="1" g="1" b="1" />
<Color r="0.09" g="0.09" b="0.19" />
</Backdrop>
<Attributes>
<Attribute name="useparent-unit" value="true" type="boolean" />
<Attribute name="_onshow" value="self:SetBindingClick(false, 3
'ESCAPE', self:GetName(), 'Escape')" />
<Attribute name="_onhide" value="self:ClearBindings ()" />
<Attribute name="_onclick"

498 Partlll

Advanced Addon Techniques

value="if button == 'Escape'

</Attributes>
</Button>
</Ui>

BlessedMenus.lua

local function BlessedMenu (name,

local self = CreateFrame("Frame", name, nil, 3

"BlessedMenusMenuTemplate")
self.buttons = {}
for i=1, select('#', ...) do
local spellName = select (i,

local button = CreateFrame ("Button", nil, self,

.

)

"BlessedMenusSpellButtonTemplate")

self.buttons[i] = button
button:SetAttribute("spell™",
button:SetText (spellName)
if 1 == 1 then
button:SetPoint ("TOPLEFT",
else
button:SetPoint ("TOPLEFT",
0, -2)
end
end
self:SetHeight (#self.buttons *
return self
end

spellName)

8, -8)

self.buttons[i -

18 + 14)

local heals = BlessedMenu ("BlessedMenusHeals",

"Holy Light",
"Flash of Light",
"Lay on Hands"

local hands = BlessedMenu ("BlessedMenusHands",

"Hand of Protection",
"Hand of Freedom",
"Hand of Salvation",
"Hand of Sacrifice"

local blessings = BlessedMenu ("BlessedMenusBlessings",

"Blessing of Might",
"Blessing of Kings",
"Blessing of Wisdom"

local openSpellList = [[

local menu = IsAltKeyDown() and "blessings"

then self:Hide()

11,

L)

end" />

"BOTTOMLEFT",

P}

Chapter 25 = Taking Protected Action in Combat

499

or IsControlKeyDown () and "heals"
or IsShiftKeyDown () and "hands"
menu = menu and self:GetFrameRef (menu)
if lastMenu and lastMenu:IsShown() and ¢

lastMenu:GetParent () == self then
lastMenu:Hide ()
if lastMenu == menu then
return
end
end

if menu then
menu:Hide ()
menu:SetParent (self)
menu:SetPoint ("TOPLEFT", "Scursor")
menu: SetFramelLevel (self:GetFrameLevel () + 2)
menu : Show ()
lastMenu = menu
end

1]

for i, frame in ipairs{PlayerFrame, PartyMemberFramel, 3
PartyMemberFrame2, PartyMemberFrame3, PartyMemberFrame4d} do

frame:SetAttribute("shift-typel", "spelllist")
frame:SetAttribute("ctrl-typel", "spelllist")
frame:SetAttribute("alt-typel", "spelllist")

frame:SetAttribute("_spelllist", openSpellList)
SecureHandlerSetFrameRef (frame, "blessings", BlessedMenusBlessings)
SecureHandlerSetFrameRef (frame, "heals", BlessedMenusHeals)
SecureHandlerSetFrameRef (frame, "hands", BlessedMenusHands)

end

CHAPTER

26

Creating Unit Frames with
Group Templates

Earlier in this book you learned how to create a very simple unit frame, and
then later extended it by making it clickable using secure templates. With some
work, you could extend this addon to show your party or raid, but because
each individual frames is a secure template, it cannot be created or configured
while the player is in combat.

One way around this is to create all of the frames ahead of time and use
the “unit watch” system to show them as needed. For something like party
frames, this might even make the most sense, because you can create the
frames before the player enters combat, and the secure template system will
show and hide them as necessary. However, this method isn’t well suited to
displaying larger groups like raids.

What if you want to display your raid group and sort it by class or raid
role? This would allow you to always have the tanks in one location and the
unit frames of your healers in another. Unfortunately, there doesn’t seem to
be a way to do this in the default user interface. Luckily, Blizzard provides
several templates that allow developers to create raid, party, and pet frames
that update and configure themselves even while the player is in combat. The
templates allow you to pre-program the type and configuration of the frames,
as well as directions of how the frames should be placed and sorted.

In this chapter you use the secureGroupHeaderTemplate to create a fully
functional party/raid unit frame addon called SquareUnitFrames.

Configuring a SecureGroupHeader

The role of the secure group headers is actually pretty straightforward,
managing only the parts that aren’t possible in addon code. The header’s

501

502 Partlil = Advanced Addon Techniques

primary responsibility is managing the creation and placement of frames. As
players join your party or raid, the secure template handles the creation of
new frames for each of them. If an addon were to try this while the player is
in combat, the new frames would be locked down, unable to be modified. The
group headers enable your addon to do last-minute configuration before the
frame is ever locked down.

The process for creating a new group header is roughly as follows:

1. Create a new header frame that inherits from SecureGroupHeader
Template. This may be a custom XML template that inherits from the
Blizzard template and adds things such as artwork and labels, or just the
raw template itself.

2. Set attributes on the new header for some of the following:
m What characters, classes, groups should be displayed in the header?

m Should the header be displayed when the player is in a party, raid,
solo, or all of the above?

m When new frames are created, how should they be anchored to the
existing frames?

= How should the frames be sorted?
m Should the frames be grouped, or displayed in columns and rows?

3. Supply an XML template (optionally) that the header will use to create
new unit frames. Again, this could just be the standard secureunitButton
or a custom template with artwork and other elements.

4. Provide a configuration function (optionally) that will be called when
a new unit frame is created, allowing for last-minute customization by
addons.

Of course, creating a fully functional raid addon is a bit more complicated
than this, but once you’ve mastered the basics of using the template, other
features can be added to your addon as necessary.

Configuration Options

A secureGroupHeader has plenty of options that can be set using attributes.
These options can be grouped into three major classes: filtering, grouping and
sorting, and display. Tables 26-1, 26-2, and 26-3 describe these attributes.

When specifying a groupBy attribute, you must also supply a groupingorder
or the template will encounter an error, because groupingorder doesn’t have
any default values.

Chapter 26 = Creating Unit Frames with Group Templates 503

Table 26-1: Filtering Attributes

ATTRIBUTE TYPE DESCRIPTION
showRaid boolean When true, the group header is shown when
the player is in a raid.

showParty boolean When true, the group header is shown when
the player is in a party. This attribute doesn't
imply showRaid but can work alongside it.

showPlayer boolean When true, the header includes the player
when not in a raid (normally, the player would
not be visible in a party listing).

showSolo boolean When true, the header is shown when the
player is not in any group. This option implies
showPlayer.

nameList string A comma-separated list of player names to be

included in the listing. This option is not used if
groupFilter is specified.

groupFilter string A group number, or any combination of the
following strings:

m A comma-separated list of raid group
numbers

= A comma-separated list of uppercase class
names in English (WARRIOR, PRIEST, and
So on)

m A comma-separated list of uppercase
group roles (MAINTANK, MATNASSTST)

strictFiltering boolean When true, a character must match both a
group and a class from the groupFilter list.
This allows you to specify "1, WARRIOR", which
shows all warriors in group 1.

Table 26-2: Grouping and Sorting Attributes

ATTRIBUTE TYPE DESCRIPTION

groupBy string Specifies a grouping to apply before the list of
players is sorted. Can be one of the following
values: "GROUP", "CLASS", or "ROLE". The
sorting within these groups can be specified
with the groupingOrder attribute.

Continued

504 Partlil = Advanced Addon Techniques

Table 26-2 (continued)

ATTRIBUTE TYPE DESCRIPTION

groupingOrder string Specifies what order should be applied to the
groups before they are sorted individually. This
should be a comma-separated string of group
numbers, uppercase class names, or uppercase
role names (depending on what type of
grouping was specified).

sortMethod string Specifies what sorting method should be used
for ordering raid frames. Can be either "NAME"
or "INDEX", where index will sort the raid by
the internal raid ID. This value defaults to
"INDEX".

sortDir string Specifies the sort order using "asc" for
ascending, and "DESC" for descending. This
value defaults to "asc".

Table 26-3: Display Attributes

ATTRIBUTE TYPE DESCRIPTION

template string The name of an XML template to use when
creating new frames. This can be a custom
template, or the simple
SecureUnitButtonTemplate.

templateType string The frame type of the XML template being used
(Button, StatusBar, and so on).

point string A valid XML anchor point. This point will be
used to anchor a new frame to an existing
frame. The code will intelligently use the
opposing anchor points, so if you specify
"Top", it will anchor the "ToP" point of the
new frame to the "BoTTOM" point of the
previous frame.

xOffset number An x offset (in pixels) to be used when
anchoring new frames.

yOffset number Ay offset (in pixels) to be used when
anchoring new frames.

maxColumns number The maximum number of columns that the
header will create. The default for this attribute
is a single column.

Chapter 26 = Creating Unit Frames with Group Templates

ATTRIBUTE TYPE DESCRIPTION

unitsPerColumn number The maximum number of units that will be
displayed in a single column. When this value is
nil, there is no limit.

startingIndex number The index in the final sorted list at which to start
displaying units. This value defaults to 1.

columnSpacing number The amount of space (in pixels) between the
columns. This value defaults to 0.

columnAnchorPoint string The anchor point for each new column. A value
of "LEFT" causes the columns to grow to the
right.

initial-anchor string The initial anchor point for new unit frames.

This can be used to place the frame in a
different starting location (such as growing from
the bottom up instead of top down). This value
should be a comma-separated list containing
anchor point, relative anchor point, x offset, and

y offset.
initial-width number The initial width of the unit frame in pixels.
initial-height number The initial height of the unit frame in pixels.
initial-scale number The initial scale of the unit frame.
Initial-unitwatch boolean Whether or not the frame should register for

unit watch when initially created. If this
attribute is set to the string state, the frame will
be notified via the w attribute. If this attribute is
set to any other true value, the frame will be
shown or hidden depending on whether or not
the unit exists.

In Table 26-3, a column means the initial level of grouping for the raid
frames. Because you can specify a custom anchor point for the frames (using
the point attribute), your columns could actually be horizontal, and your rows
could be vertical. In addition, when using a multicolumn display, you must
specify a columnAnchorpoint or the template will generate an error.

Initial Configuration Function

In addition to the predefined attributes, a group header can identify an
initial configuration function that will be called after a frame has been cre-
ated, but before it is fully locked down by the user interface. Setting the

506 Partlll = Advanced Addon Techniques

initialConfigFunction key in the header’s table to a function enables this
feature.

This function will be able to set attributes on the frame and do any other
one-time configuration bits. This is a good chance to register events and
click handlers, or set up any secure click actions. Although the frame is not
completely locked down, you are still unable to move/hide/show the frame
from within this function.

Creating SquareUnitFrames

As with all of your addons, start by creating an addon skeleton called
SquareUnitFrames, containing both a Lua and an XML file. Create
SquareUnitFrames. toc and add the fOHOWing:

Interface: 30300
Title: SquareUnitFrames
Notes: Square shaped party/raid frames

SquareUnitFrames.xml
SquareUnitFrames.lua

Constructing the Template

A normal secureunitButton won't have any visual elements and you know
you want to display at least the unit’s name, health, and power. Open up
SquareUnitFrames.xml and include the following code to define the button
template:

<Ui
xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">
<Frame name="SquareUnitFrames_UnitTemplate" virtual="true">
<Size x="36" y="36"/>
<Layers>
<Layer level="BACKGROUND">
<Texture setAllPoints="true">
<Color r="0.0" g="0.0" b="0.0"/>
</Texture>
</Layer>
</Layers>
<Scripts>
<OnShow function="SquareUnitFrames_Frame_OnShow"/>
</Scripts>
</Frame>
</Ui>

Chapter 26 = Creating Unit Frames with Group Templates

507

This code creates a new template called squareUnitFrames_UnitTemplate
that will be used by the group header to create new frames. The template
defines a solid black background texture, sized 36-by-36 pixels. The rest of the
sub-frames will be children of this main frame.

After the </Layers> tag and before the <scripts> tag, add the following
frame definitions:

<Frames>
<Button name="$parent_Unit" parentKey="unit" e
inherits="SecureUnitButtonTemplate">
<Size x="34" y="34"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="1" y="-1"/>
</Anchor>
</Anchors>
<Layers>
<Layer level="OVERLAY">
<FontString name="S$parent_Name" parentKey="name"
inherits="GameFontHighlight" setAllPoints="true"/>
</Layer>
</Layers>
<Frames>
<StatusBar name="S$parent_HealthBar" parentKey="healthBar">
<Size x="34" y="30"/>
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
<BarTexture file="Interface\Buttons\UI-Listbox-Highlight2"/>
<BarColor r="1.0" g="1.0" b="1.0"/>
</StatusBar>
<StatusBar name="$parent_PowerBar" parentKey="powerBar">
<Size x="34" y="3"/>
<Anchors>
<Anchor point="TOPLEFT" relativeTo="S$parent_HealthBar"
relativePoint="BOTTOMLEFT">
<Offset x="0" y="-1"/>
</Anchor>
</Anchors>
<BarTexture file=e3
"Interface\TargetingFrame\UI-TargetingFrame-BarFill" />
<BarColor r="1.0" g="1.0" b="1.0"/>
</StatusBar>
</Frames>
</Button>
</Frames>

This first sub-frame is the actual button that displays the unit’s name, health,
and power (for example, mana, rage, or energy). The button is anchored and

508 Partlll = Advanced Addon Techniques

sized in a way that causes the background to appear as a one-pixel border on
all sides. The textures used here were chosen for a specific visual style, but
you could use any texture for your status bars. The health bar dominates most
of the frame, whereas the power bar is just 3 pixels high.

Creating a Header Template

Although you could create a header purely in Lua and set attributes on it in
your main script, setting the attributes in XML may be preferable because it
allows the frame to be validated as a whole (and remain alterable in Lua).
After the template definition in squareUnitFrames.xml but before the </ui>
tag, add the following code:

<Frame name="SquareUnitFrames_Header" parent="UIParent"

inherits="SecureGroupHeaderTemplate" movable="true">

<Anchors>
<Anchor point="CENTER"/>

</Anchors>

<Attributes>
<Attribute name="showParty" type="boolean" value="true"/>
<Attribute name="showRaid" type="boolean" value="true"/>
<Attribute name="showPlayer" type="boolean" value="true"/>
<Attribute name="showSolo" type="boolean" value="true"/>
<Attribute name="maxColumns" type="number" value="8"/>
<Attribute name="unitsPerColumn" type="number" value="5"/>
<Attribute name="columnAnchorPoint" type="string" value="TOP"/>
<Attribute name="point" type="string" value="LEFT"/>
<Attribute name="template" type="string"
value="SquareUnitFrames_UnitTemplate"/>
<Attribute name="templateType" type="string" value="Frame"/>
<Attribute name="xOffset" type="number" value="-1"/>
<Attribute name="yOffset" type="number" value="1"/>

</Attributes>

</Frame>

This new frame template inherits from secureGroupHeaderTemplate and
begins anchored in the center of the screen. The attributes section programs
how the header is to behave. You learn more about each of the possible
attributes in the next section but for now, know that this frame will include the
player in its display, and will be shown when the player is in a raid, in a party,
or soloing. Frames are organized into columns of five, with eight columns
total. The grid of frames groups from left to right and the template you've just
defined is used to create the child frames.

Because each frame has a one-pixel black border, two frames stacked
vertically would have two pixels in between, and a one-pixel border around.
To prevent this and make the borders consistent, xoffset and yoffset are set
to tell the header how to anchor new frames.

Chapter 26 = Creating Unit Frames with Group Templates

509

Additionally, the header is flagged as movable, because at some point in the
future it may be useful for the player to be able to move the frames around
the screen.

Setting Name and Status Bars

If you were to load the addon at this point, the frames wouldn’t display
anything; however, to update the name and health/power bars the frame
needs to know when the unit it’s supposed to be displaying has changed.
When the group header reconfigures the frames, it hides each frame and
then re-shows them. You can use this to update the frame by defining an
onShow script.

Open SquareUnitFrames. lua and add the fOHOWing function:

function SquareUnitFrames_Frame_OnShow (button)
local unit = button:GetAttribute("unit")

if unit then
local guid = UnitGUID(unit)
if guid ~= button.guid then
SquareUnitFrames_ResetUnitButton (button.unit, unit)
button.guid = guid
end
end
end

-- Actually show the header frame
SquareUnitFrames_Header:Show ()

In its current state, the group header has a tendency to show and hide the
frames more often than is strictly necessary. Knowing this, you implement
a small check to ensure you only reset the frame when the underlying unit
actually changes. First you check to make sure that the frame actually has the
unit attribute set, and then retrieve the GUID for that unit. You may recall
from Chapter 21 that the GUID is a globally unique identifier for each unit so
you can use this to track these changes.

You call an external function to actually update the button, and the reason
for this will become apparent later in the chapter. Suffice it to say that the
reset code is called from multiple places, so abstracting the code into a
function enables you to avoid maintaining it in two different places. Define
the following function after squareUnitFrames_Frame_OnShow and before the
call that actually shows the header frame:

function SquareUnitFrames_ResetUnitButton (button, unit)
SquareUnitFrames_ResetHealthBar (button, unit)
SquareUnitFrames_ResetPowerBar (button, unit)

510 Partlll = Advanced Addon Techniques

SquareUnitFrames_ResetName (button, unit)
end

This function takes two arguments: the unit button sub-frame and the unit
that is being displayed by the frame. It in turn calls three more functions,
for the same reason. These implementations are extremely straightforward, so
add them now:

function SquareUnitFrames_ResetName (button, unit)
local name = UnitName (unit) or UNKNOWN
button.name: SetText (name)

end

function SquareUnitFrames_ResetHealthBar (button, unit)
local classColor = RAID_CLASS_COLORS[class]
local class = select (2, UnitClass(unit)) or "WARRIOR"

button.healthBar:SetStatusBarColor (classColor.r, «3
classColor.g, classColor.b)
button.healthBar:SetMinMaxValues (0, UnitHealthMax (unit))
button.healthBar:SetValue (UnitHealth (unit))
end

function SquareUnitFrames_ResetPowerBar (button, unit)
local powerType, powerToken = UnitPowerType (unit)
local powerColor = PowerBarColor |[powerToken]

button.powerBar:SetStatusBarColor (powerColor.r, «2
powerColor.g, powerColor.b)
button.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
button.powerBar:SetValue (UnitPower (unit))
end

In certain cases a unit’s name might not be available, so you supply a default
of Unknown just so your unit frame displays something reasonable in those
cases. You use the global RaTD_crLAss_coLORS table to look up the correct color
for the unit, and PowerBarcolors to find the correct color for the power bar.
Figure 26-1 shows the resulting unit frame, if you load the addon in-game.

Figure 26-1: SquareUnitFrames showing a frame for the player

A frame is created for your character and anyone else in your party or raid,
but the name doesn’t appear to have been set. In fact, this is just a layering
issue with the textures for the status bars. Even though the font string for

Chapter 26 = Creating Unit Frames with Group Templates

511

the unit’s name is on the overLAY layer, before graphical layers are checked,
frame levels are used to layer the graphics. Because both of the status bars are
children of the unit frame, they are at least one frame level higher than the
button, causing the textures for the status bars to appear above the font string.

There is no good way to fix this, but one way is to manually lower the frame
level of the status bars to match the main button. This may not work in all
cases, but in these simple unit frames it works quite well.

Nudging Frame Levels

Because the status bar frame levels only need to be adjusted when the frame is
first created, this is a great place to utilize initialConfigFunction. At the top
of squareUnitFrames. lua, add the following function definition:

function SquareUnitFrames_InitialConfig(frame)
-- Nudge the status bar frame levels down
frame.unit.healthBar:SetFrameLevel (frame.unit:GetFrameLevel ())
frame.unit.powerBar:SetFrameLevel (frame.unit:GetFrameLevel ())
end

Then, right before the line that calls squareunitFrames_Header: Show():

SquareUnitFrames_Header.initialConfigFunction = 3
SquareUnitFrames_InitialConfig

Now whenever a frame is created, the initial configuration function is called
and the frame levels are nudged so the frame displays correctly. Figure 26-2
shows squareunitFrames at this stage, with the names and colored status bars

visible.

Figure 26-2: SquareUnitFrames showing the player frame, after nudging frame levels.

Responding to Events and Clicks

The names are a bit squished and the frames don’t actually update when the
player’s health or power change, but if you have people leave and join your
party you should see the frames reconfiguring during combat. This section
makes the frames a bit more responsive by responding to events.

Targeting the Unit on Left-Click

Currently when you click the unit frames, they do nothing other than eat the
mouse click. As you learned in Chapter 15, you can fix this by setting attributes

512 Partlll = Advanced Addon Techniques

on the secure frame. Add the following to the XML definition for the unit
button, inside the main template. The code goes between the </Frames> tag
and the </Button> tag:

<Attributes>
<Attribute name="useparent-unit" type="boolean" value="true"/>
<Attribute name="*typel" type="string" value="target"/>
</Attributes>

The first attribute directs the frame to use the unit attribute from its parent.
Remember that the unit button isn’t the one being created by the group header,
so the attribute won’t be set on it. Inheriting the parent’s attribute in this way
ensures that any changes during combat work correctly. The second attribute
tells the frame to set all left-clicks to target the unit. In addition to this, you
could actually bind spells, macros, and other types of actions supported by the
SecureUnitButton template.

Moving the Header

As fun as creating unit frames is, having them stuck in the middle of your
screen can seriously impact your playing! You've done this a few times already
in this book, so add the following scripts to the unit button’s definition inside
the template (after the </Frames> tag and before the <Attributes> element):

<Scripts>
<OnDragStart function="SquareUnitFrames_Button_OnDragStart"/>
<OnDragStop function="SquareUnitFrames_Button_OnDragStop"/>
<OnHide function="SquareUnitFrames_Button_OnDragStop"/>
</Scripts>

And add the corresponding functions to squareunitFrames.lua anywhere
before the last three lines that show the header:

function SquareUnitFrames_Button_OnDragStart (self, button)
SquareUnitFrames_Header:StartMoving ()
SquareUnitFrames_Header.isMoving = true

end

function SquareUnitFrames_Button_OnDragStop(self, button)
if SquareUnitFrames_Header.isMoving then
SquareUnitFrames_Header:StopMovingOrSizing ()
end
end

Note that these functions call startMoving () and StopMovingOrSizing ()
on the header, rather than on the frame itself. This ensures that the entire set
of unit frames moves together. Now add the final line to your initialization

Chapter 26 = Creating Unit Frames with Group Templates

513

function SquareUnitFrames_InitialConfig, to register the button for drag
events:

button.unit:RegisterForDrag ("LeftButton")

Reload your user interface and you should be able to drag the frames
around the screen, and click them to target the unit. If you are in the middle
of dragging the frame when someone joins or leaves the party, the header will
stop moving. This is because when the button you are dragging (the actual
unit frame you click) is hidden, the game client will not fire an onMouseup
event. If the onHide script wasn't set that way, the header would get stuck to
your mouse.

Health Update Events

Unit frames aren’t very useful without an accurate depiction of the unit’s
health, so you should register for three events, by adding the following code
to the bottom of your initial configuration function:

frame:RegisterEvent ("UNIT_HEALTH")
frame:RegisterEvent ("UNIT_MAXHEALTH")
frame:RegisterEvent ("PLAYER_ENTERING_WORLD")

The first two events you should already be familiar with from your work
earlier in this book, but PLAYER_ENTERING_WORLD is a bit peculiar. Without it,
your unit frames would work in most situations, but in specific circumstances
(such as when the player releases in Tempest Keep and is resurrected outside)
the unit frames could get “stuck” on the wrong health display until another
event occurred. To prevent this, all unit frames will reset themselves whenever
this event occurs.

Add the onEvent script to the definition of squareUnitFrames_uUnitTemplate,
not the sub-button you’ve been working on previously, putting the following
directly after the onshow definition:

<OnEvent function="SquareUnitFrames_Frame_OnEvent"/>
Create the corresponding handler by defining a new function:

function SquareUnitFrames_Frame_OnEvent (self, event, argl, ...)
local unit = self:GetAttribute("unit")
if not unit then
return
end

-- Handle any events that don't accept a unit argument
if event == "PLAYER_ENTERING_WORLD" then

SquareUnitFrames_ResetUnitButton(self.unit, unit)
elseif argl and UnitIsUnit (unit, argl) then

514 Partlll = Advanced Addon Techniques

if event == "UNIT_ MAXHEALTH" then
self.unit.healthBar:SetMinMaxValues (0, UnitHealthMax (unit))
self.unit.healthBar:SetValue (UnitHealth (unit))

elseif event == "UNIT_HEALTH" then
self.unit.healthBar:SetValue (UnitHealth (unit))
end
end

end

This function first checks to ensure that the frame’s unit attribute is set;
otherwise the frame is not displaying a unit. Then the handler responds to the
PLAYER_ENTERING_WORLD event, because it doesn’t matter which unit is being
shown by the frame. Then you check that the unit being altered (passed in
argl) is the same as the unit the frame is displaying. Inside this condition, the
unit health and maximum health events are handled, just changing the status
bars as appropriate.

Power Update Events

Properly displaying and updating the power bar for a unit frame is inherently
much more difficult, because a unit can have multiple types of power. Mana,
Energy, Rage, Runic Power, and Focus can all be queried by the unitpower ()
API function, but they all fire different types of events. Those sneaky Druids
who are able to switch between Rage, Energy, and Mana when they shapeshift
further complicate the issue.

Rather than registering for all of the events and then having to check that
you're responding to the correct one, you'll only register each frame for the
events that are actually relevant. Replace your existing squareUnitFrames_
ResetPowerBar function with the following two functions (or add the first
function and just make the appropriate changes to the second):

local function unregisterManyEvents (frame, ...)
for i=1, select("#", ...) do
local event = select(i, ...)
frame:UnregisterEvent (event)
end
end

function SquareUnitFrames_ResetPowerBar (button, unit)
local powerType, powerToken = UnitPowerType (unit)
local powerColor = PowerBarColor [powerToken]
local alive = not UnitIsDeadOrGhost (unit)

local parent = button:GetParent ()

unregisterManyEvents (parent, "UNIT_MANA", "UNIT_RAGE", 2
"UNIT_FOCUS", "UNIT_ENERGY", "UNIT_RUNIC_POWER")
unregisterManyEvents (parent, "UNIT_ MAXMANA", "UNIT_MAXRAGE", Lo

"UNIT_MAXFOCUS", "UNIT_MAXENERGY", "UNIT_MAXRUNIC_POWER")

Chapter 26 = Creating Unit Frames with Group Templates 515

parent:RegisterEvent ("UNIT_" .. powerToken)
parent:RegisterEvent ("UNIT_MAX" .. powerToken)

button.powerBar:SetStatusBarColor (powerColor.r, «2
powerColor.g, powerColor.b)
button.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
button.powerBar:SetValue (UnitPower (unit))
end

The unregisterManyEvents function is a simple utility that allows you to
un-register multiple events from a frame without having to do each of them
on a separate line. In the power bar reset function, you query the client to
see what type of power the unit currently has, then look up the appropriate
color in the constant table. The powerToken is the type of power in English
uppercase (such as RAGE, MANA, Or RUNIC_POWER).

The function then unregisters all of the possible events, of which there are
ten—five for normal updates and five for when the maximum value changes.
Next you use a simple trick to decide what events to register by adding the
powerToken to UNIT_ and unIT_Max_. This allows you to avoid having a large
if statement handling each of the five cases. Finally, the color is set and the
values on the status bar are updated.

Actually registering the events and handling them is the easy bit. Add the
following to the initial configuration function, remembering that the actual
power events will be registered when the reset power bar function is called:

frame:RegisterEvent ("UNIT_DISPLAYPOWER")

The actual event handler can use the same trick that you used in the preceding
code, but it needs to query the client in order to test. Add the following line
to SquareUnitFrames_Frame_OnEvent hnrnedja&ﬂy'aﬁerthe line ﬂnatbeghns

elseif argl and

local powerType, powerToken = UnitPowerType (unit)

Then add the conditions inside the sub-conditional that ensures that the unit
attribute is set, and the unit actually exists (the same block where you handle
health and power updates):

elseif event == "UNIT_DISPLAYPOWER" then
SquareUnitFrames_ResetPowerBar (self.unit, unit)

elseif event == "UNIT_" .. powerToken then
self.unit.powerBar:SetValue (UnitPower (unit))

elseif event == "UNIT_MAX" .. powerToken then
self.unit.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
self.unit.powerBar:SetValue (UnitPower (unit))

516 Partlil = Advanced Addon Techniques

When the unit’s display power changes you reset the entire bar to ensure
that it’s re-colored and the min/max values are correct. To test the other two
events, you just concatenate the powerToken again and update the status bars
accordingly. Now the unit frame should properly show power gain and loss,
and switch correctly when a unit’s power type changes.

Responding to Name Changes

At times either the game client is unable to resolve a name immediately, or the
name of a unit token might change. When this happens, the UNIT_NAME_UPDATE
event fires, so you can update your frames accordingly.

Add the event registration to your initial configuration function:

frame:RegisterEvent ("UNIT_NAME_UPDATE")

Now add the event to your onkEvent function, by adding the following in
the same block as the health and power updates (because this event passes the
unit argument):

elseif event == "UNIT_NAME_UPDATE" then
SquareUnitFrames_ResetName (self.unit, unit)

That’s the end of the compulsory portion of creating a normal unit frame.
The next section shows you how to add a number of enhancements to your
frames.

Enhancing SquareUnitFrames

This is the fun part of addon writing! Once you have something basic working,
you're able to add features until you have the addon just right for your
purposes. Here are the features you are going to add to make this addon a bit
more useful:

m Highlight units on mouseover, so it’s clear who the player is selecting
Highlight the unit that is the player’s current target

Show the unit’s threat level by coloring the unit name

Show dead players more prominently

Prevent WoW from truncating longer names with

Replace the mana bar with a pet frame when the unit has a pet

Highlighting Units on Mouseover

This is probably the simplest modification, because Blizzard’s system
already has so much support for it. Remember that any texture in the

Chapter 26 = Creating Unit Frames with Group Templates

517

HIGHLIGHT layer is displayed when the mouse is over that texture. Simply
add the following at the bottom of the unit sub-button definition inside the
template:

<HighlightTexture file=¢3
"Interface\Buttons\ButtonHilight-Square" alphaMode="ADD"/>

Now each time you move your mouse over a unit in the grid, you'll see a
border around the frame. Figure 26-3 shows this feature in action!

Mel...5aga Mi... lzer Ele..

Bra... Ela... Las.. Xia... Draoi

Figure 26-3: SquareUnitFrames highlighting units on mouseover

Showing the Targeted Unit

Showing the targeted unit is a bit more complex, because you need to watch
for changes to the player’s target and then update accordingly. First you
should create a texture in the unit button inside the template that can be
shown to indicate selection. Add the following in the oveErLAY layer of the unit
sub-button definition:

<Texture name="$parent_Selected" parentKey="selected"
setAllPoints="true"

file="Interface\Buttons\CheckButtonHilight" alphaMode="ADD" 3
hidden="true"/>

Next you need to register for the PLAYER_TARGET_CHANGED event so you can
show the texture on the selected unit and ensure the texture is hidden on all
others. Add the event registration to your initial config function:

frame:RegisterEvent ("PLAYER TARGET_CHANGED")

Now add the following condition to your event handler after pLAYER_
ENTERING_WORLD; there is no need to check the unit argument for this event:

elseif event == "PLAYER_TARGET_CHANGED" then
if UnitIsUnit (unit, "target") then
self.unit.selected:Show /()
else
self.unit.selected:Hide()
end

Although this will work in most cases, you should probably add it to the
reset button function as well; otherwise if your party members were to change

518 Partlll = Advanced Addon Techniques

while you keep the same target, your unit frames wouldn’t properly show it.
Add this code to SquareuUnitFrames_ResetUnitButton:

if UnitIsUnit (unit, "target") then
button.selected:Show ()

else
button.selected:Hide()

end

Figure 26-4 shows the difference between mouseover highlighting and the
selection texture.

e she...

Asl... Killi... Bro... THEL. Draoi

—

Figure 26-4: SquareUnitFrames showing both the selected unit and the unit the mouse
is over.

Displaying Threat Levels

In the Wrath of the Lich King expansion, WoW introduced a threat sys-
tem that can be queried by addons. Although the functions can be queried
for specific mobs, you are only concerned with the global threat of each
unit (that is, whether or not a mob is focusing on the unit). Fortunately,
this is very easy to accomplish. Add the following code to the bottom of

SquareUnitFrames_ResetName:

local status = UnitThreatSituation (unit)

if status and status > 0 then
local r, g, b = GetThreatStatusColor (status)
button.name: SetTextColor(r, g, b)

else
button.name:SetTextColor(1l, 1, 1)

end

This function queries the threat situation status for the given unit, and then
retrieves the correct color and applies it to the font string. Now register for the
event in your initial configuration function:

frame:RegisterEvent ("UNIT_THREAT_SITUATION_UPDATE")

Finally, add the condition to the event handler as follows, in the
sub-conditional that checks the unit argument, after the UNIT_NAME UPDATE
condition:

elseif event == "UNIT_THREAT SITUATION_UPDATE" then
local status = UnitThreatSituation (unit)
if status and status > 0 then
local r, g, b = GetThreatStatusColor (status)

Chapter 26 = Creating Unit Frames with Group Templates

519

self.unit.name:SetTextColor(r, g, b)
else

self.unit.name:SetTextColor (1, 1, 1)
end

Figure 26-5 shows a raid group with names colored to indicate threat level.

SR e AT

] I 7
Figure 26-5: SquareUnitFrames showing threat levels for party members

Showing Dead Players

Right now if someone in your group were to die, it would be difficult to see if
they were actually dead or just very low on health. You can fix this by changing
the status bar’s color to gray and filling it in. Change your implementation of
SquareUnitFrames_ResetHealthBartOthefOHO“dng:

function SquareUnitFrames_ResetHealthBar (button, unit)
local class = select (2, UnitClass(unit)) or "WARRIOR"
local classColor = RAID_CLASS_COLORS[class]
local alive = not UnitIsDeadOrGhost (unit)

if alive then
button.healthBar:SetStatusBarColor (classColor.r, €3
classColor.g, classColor.b)
button.healthBar:SetMinMaxValues (0, UnitHealthMax (unit))
button.healthBar:SetValue (UnitHealth (unit))
button.dead = false
else
button.healthBar:SetStatusBarColor (0.3, 0.3, 0.3)
button.healthBar:SetMinMaxValues (0, 1)
button.healthBar:SetValue(1l)
button.dead = true
end
end

The first two lines are the same, but then you use the UnitIsbeadorGhost
function to (shockingly) check to see if the unit is either dead or a ghost. You
then either color the status bar based on the class color, or change it to grey
and fill it in. You also set a flag on the unit button that you'll use in the event
handler to indicate whether the status bar is currently showing the player as
dead or alive.

Change the unIT_HEALTH and UNIT_MAXHEALTH portion of the event handler
to the following;:

if event == "UNIT_MAXHEALTH" then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then
SquareUnitFrames_ResetUnitButton(self.unit, unit)

520 Partlll = Advanced Addon Techniques

else
self.unit.healthBar:SetMinMaxValues (0, UnitHealthMax (unit))
self.unit.healthBar:SetValue (UnitHealth (unit))

end
elseif event == "UNIT_HEALTH" then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then
SquareUnitFrames_ResetUnitButton(self.unit, unit)
else
self.unit.healthBar:SetValue (UnitHealth (unit))
end

Here you just check to see if your flag is different from the return of
UnitIsDeadOrGhost and then adjust the frame accordingly. When a unit dies
the API still shows it as having power, so color that grey as well. Open up
SquareUnitFrames_ResetPowerBarandix¥ﬂacethe]astthﬂXEHHQS

button.powerBar:SetStatusBarColor (powerColor.r, powerColor.g, 3
powerColor.b)

button.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
button.powerBar:SetValue (UnitPower (unit))

with the following:

local alive = not UnitIsDeadOrGhost (unit)
if alive then

button.powerBar:SetStatusBarColor (powerColor.r, 2
powerColor.g, powerColor.b)
else

button.powerBar:SetStatusBarColor (0.3, 0.3, 0.3)
end

button.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
button.powerBar:SetValue (UnitPower (unit))

Change the event handler by replacing the power event conditions with the
following code:

elseif event == "UNIT_" .. powerToken then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then
SquareUnitFrames_ResetPowerBar (self.unit, unit)
else
self.unit.powerBar:SetValue (UnitPower (unit))

end
elseif event == "UNIT_MAX" .. powerToken then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then

SquareUnitFrames_ResetPowerBar (self.unit, unit)

else
self.unit.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
self.unit.powerBar:SetValue (UnitPower (unit))

end

Chapter 26 = Creating Unit Frames with Group Templates 521

Figure 26-6 shows the unit frames with a dead unit, which is much easier to
see when it’s shaded.

Figure 26-6: SquareUnitFrames showing a dead unit shaded out

Displaying Unit Names

Currently, whenever squareunitFrames displays a name that is longer than
four characters (and some names that are shorter), it is truncated with an
ellipsis (“ ... ”) at the end. This isn’t very desirable—an ellipsis takes up
much of the unit button’s width, space that could be better used to display
more characters of the name—but WoW doesn’t really provide an easy way
to fit as much of a name as possible in a font string of limited width.

What you can do instead is try different substrings of the name in order to
fit as many characters as you can in a 30-pixel-wide font string. This algorithm
might look like this:

local substring(name, length)
for length=#name, 1, -1 do
substring = string.sub(name, 1, length)
button.name:SetText (substring)
if button.name:GetStringWidth() <= 30 then
button.shortname = substring
return
end
end

First you take the entire string and set a font string to display it. Then you
check to see what the width of the resulting display is. You continue to take
one less character and as soon as you have something that is less than or equal
to 30 pixels in width, you accept it and store it in the button (so you can re-use
it later instead of re-calculating it).

This process, however, will have a big problem with names that contain
non-alphanumeric characters, such as letters with accents and other spe-
cial symbols. These characters are encoded using a standard called UTF-8.
Although UTEF-8 is very far outside the scope of this book, you can read more
information aboutitathttp://en.wikipedia.org/wiki/ut£8. What you need
to know is that although each of those special characters can be represented by
multiple bytes, Lua’s string library treats each byte as an individual character.
The following is sample output from World of Warcraft:

> print (string.len("Griber"))
7

522

Part Ill = Advanced Addon Techniques

Even though Griiber has only six visible characters, it’s actually made up
of seven different characters from the Lua string library’s point of view. If
you tried to examine the substring between character positions 1 and 3 you
would only get half of the ““ii”” character. That’s because Lua’s built-in string
processing functions aren’t UTF-8 aware.

Luckily we’ve done the work so you don’t have to, and have created
a function that takes in a string, a start index, and a number of char-
acters to retrieve. Define this function directly above your definition of
SquareUnitFrames_ResetName (you can include the comments if you’d like):

-- This function can return a substring of a UTF-8 string, properly
-- handling UTF-8 codepoints. Rather than taking a start index and
-- optionally an end index, it takes the string, the start index, and
-- the number of characters to select from the string.

-- UTF-8 Reference:

-- Oxxxxxx - ASCII character

-- 110yyyxx - 2 byte UTF codepoint
-- 1110yyyy - 3 byte UTF codepoint
-- 11110zzz - 4 byte UTF codepoint

local function utf8sub(str, start, numChars)
local currentIndex = start
while numChars > 0 and currentIndex <= #str do
local char = string.byte(str, currentIndex)
if char >= 240 then
currentIndex = currentIndex + 4
elseif char >= 225 then
currentIndex = currentIndex + 3
elseif char >= 192 then
currentIndex = currentIndex + 2
else
currentIndex = currentIndex + 1
end
numChars = numChars - 1
end
return str:sub(start, currentIndex - 1)
end

Next, change the definition of SquareUnitFrames_ResetName to the
following:

function SquareUnitFrames_ResetName (button, unit)
local name = UnitName (unit) or "Unknown"

local substring

for length=#name, 1, -1 do
substring = utf8sub(name, 1, length)
button.name:SetText (substring)

Chapter 26 = Creating Unit Frames with Group Templates

523

if button.name:GetStringWidth() <= 30 then
return
end
end

local status = UnitThreatSituation (unit)

if status and status > 0 then
local r, g, b = GetThreatStatusColor (status)
button.name:SetTextColor(r, g, b)

else
button.name:SetTextColor(l, 1, 1)

end

end

Sure, it’s a lot of code to accomplish something that should be relatively
easy, but it makes the frames look so much neater. Figure 26-7 shows the
difference between the old version and the new improved version.

PEl. Na... | Nat Ked Try

Ma... Ch... Kir... Cha Zsy Utsi

Ivessj Pal... Sw... e Pala Swy

Figure 26-7: SquareUnitFrames showing truncated names, and the version using the
fitting algorithm

Adding Pets to SquareUnitFrames

The state handlers system makes it extremely easy to add a pet frame that is
shown/hidden correctly, even when the player is in combat. The first thing
you need to do is create the frame definition in the XML file. Add the following
after the </Button> tag for the unit sub-button, but before the </Frames> tag
for the XML template:

<Button name="S$parent_Pet" parentKey="pet"
inherits="SecureHandlerShowHideTemplate, SecureUnitButtonTemplate">
<Size x="34" y="5"/>
<Anchors>
<Anchor point="BOTTOMLEFT">
<Offset x="1" y="1"/>
</Anchor>
</Anchors>
<Frames>
<StatusBar name="S$parent_HealthBar" parentKey="healthBar"
setAllPoints="true">
<BarTexture file="Interface\Buttons\UI-Listbox-Highlight2"/>

524 Partlll = Advanced Addon Techniques

<BarColor r="0.0" g="1.0" b="0.0"/>

</StatusBar>

</Frames>

<Attributes>
<Attribute name="useparent-unit" type="boolean" value="true"/>
<Attribute name="unitsuffix" type="string" value="pet"/>
<Attribute name="*typel" type="string" value="target"/>

</Attributes>

<HighlightTexture file="Interface\Buttons\UI-Listbox-Highlight2"
alphaMode="ADD" />

</Button>

This definition inherits from SecureHandlerShowHideTemplate as well as
SecureUnitButtonTemplate. This enables you to run code when the frame
is shown or hidden, and allows you to enable left-click to target the unit.
The frame is hidden by default, and you’ll register it to be shown whenever
the unit has a pet. The unitsuffix attribute here, when combined with
useparent-unit, ensures that the frame inherits the unit attribute from its
parent, and adds pet to the end, giving you the pet’s unit identifier.

Add the following code to the end of squareUnitFrames_InitialConfig:

RegisterUnitWatch (frame.pet)
frame.pet:SetFrameRef ("unit", frame.unit)
frame.pet:SetAttribute ("_onshow", [I[
local unit = self:GetFrameRef ("unit")
unit:SetHeight (28)

11)

frame.pet:SetAttribute("_onhide", [I[
local unit = self:GetFrameRef ("unit")
unit:SetHeight (34)

11)

frame.pet.unit = frame.unit

frame.pet:HookScript ("OnShow", SquareUnitFrames_Pet_OnShow)
frame.pet:HookScript ("OnHide", SquareUnitFrames_Pet_OnHide)

The first line simply registers the pet frame to be shown/hidden based on
the existence of the unit it’s set to display. Next two secure snippets are created
that will be run when the frame is shown and hidden. The first changes the
height of the unit frame to be 6 pixels smaller, and the second changes it back
to the original height.

Next, you set button.pet.unit to be equal to button.unit. This allows
you to easily access the unit button from within the pet button’s handlers.
Finally, you hook the onshow and onHide widget scripts so you can run some
non-secure code. This is because non-secure frames cannot be altered from
secure snippets, and vice versa. You want to hide the power bar (which is not
secure), so this is the best way to accomplish this.

Chapter 26 = Creating Unit Frames with Group Templates

525

Define these two functions somewhere in your Lua file before the header
show at the end:

function SquareUnitFrames_Pet_OnShow(self)
self.unit.healthBar:SetHeight (28)
self.unit.powerBar:Hide ()

end

function SquareUnitFrames_Pet_OnHide (self)
self.unit.healthBar:SetHeight (30)
self.unit.powerBar:Show ()

end

The height of the health bar is changed and the power bar is shown or
hidden. What all of this will accomplish is making the unit frame a bit smaller,
and removing the power bar. Then the pet health bar is placed below the unit
frames (but big enough that it can still be easily seen and clicked).

Add a function that resets the pet button when requested, so it can be used
elsewhere in the code:

function SquareUnitFrames_ResetPetButton (button, unit)
if UnitExists(unit) then
local health = UnitHealth(unit)
local maxHealth = UnitHealth (unit)
button.healthBar:SetMinMaxValues (0, maxHealth)
button.healthBar:SetValue (health)
end
end

Add a call to this function in the SquareUnitFrames_Frame_OnShow function,
right after the call to squareUnitFrames_ResetUnitButton (note that you
append pet to the end of the unit token so it looks at the correct unit):

SquareUnitFrames_ResetPetButton (button.pet, unit .. "pet")

Finally, add event handlers for the unit’s health by adding the following to
the onEvent script. This code should be added in the outermost e1se statement,
after the first unitIsunit block (if you're confused, you can always skip to the
end of the chapter and see where it lies in the context of the whole function):

elseif argl and UnitIsUnit (unit .. "pet", argl) then
if event == "UNIT_MAXHEALTH" then
self.pet.healthBar:SetMinMaxValues (0, UnitHealthMax (argl))
self.pet.healthBar:SetValue (UnitHealth (argl))

elseif event == "UNIT_HEALTH" then
self.pet.healthBar:SetValue (UnitHealth (argl))
end

end

526 Partlil = Advanced Addon Techniques

It's a relatively small amount of code to write for such a big change to
functionality. Figure 26-8 shows a warlock without a pet and with an imp

summoned and fighting.
.

Figure 26-8: SquareUnitFrames for a warlock without a pet (left) and with a summoned
pet (right).

Creating a SecureGroupPetHeaderTemplate

If instead of adding pets to an existing frame, you just want to have a header
consisting solely of pets, Blizzard has provided a template just for this purpose.
In addition to the attributes allowed by the secureGroupHeaderTemplate, the
following two attributes can be used to customize the display of party/
raid pets:

m yseOwnerUnit (boolean)—When true, the unit attribute on the created
frames corresponds to the owner’s unit instead of the pet’s unit.

m filterOnPet (boolean)—When true, the pet’s names are used when
sorting and filtering.

In addition to these specific attributes, the pet header accepts the same
attributes as the normal secure group header.

Summary

Although stringent limitations exist as to what can be accomplished in an
addon, a number of powerful templates allow developers to make extremely
functional addons. This chapter introduced you to the group header templates,
and created an extensive party/raid addon.

The Code

SquareUnitFrames

SquareUnitFrames.toc

Interface: 30300
Title: SquareUnitFrames
Notes: Square shaped party/raid frames

SquareUnitFrames.xml
SquareUnitFrames.lua

Chapter 26 = Creating Unit Frames with Group Templates

527

SquareUnitFrames.xml

<Ui
xmlns="http://www.blizzard.com/wow/ui/"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.blizzard.com/wow/ui/
http://wowprogramming.com/FrameXML/UI.xsd">

<Frame name="SquareUnitFrames_UnitTemplate" virtual="true">
<Size x="36" y="36"/>
<Layers>
<Layer level="BACKGROUND">
<Texture setAllPoints="true">
<Color r="0.0" g="0.0" b="0.0"/>
</Texture>
</Layer>
</Layers>
<Frames>
<Button name="S$parent_Unit" parentKey="unit"
inherits="SecureUnitButtonTemplate">
<Size x="34" y="34"/>
<Anchors>
<Anchor point="TOPLEFT">
<Offset x="1" y="-1"/>
</Anchor>
</Anchors>
<Layers>
<Layer level="OVERLAY">
<FontString name="$parent_Name" parentKey="name"
inherits="GameFontHighlight" setAllPoints="true"/>
<Texture name="Sparent_Selected" parentKey="selected"
setAllPoints="true"
file="Interface\Buttons\CheckButtonHilight"
alphaMode="ADD" hidden="true"/>
</Layer>
</Layers>
<Frames>
<StatusBar name="$parent_HealthBar"
parentKey="healthBar">
<Size x="34" y="30"/>
<Anchors>
<Anchor point="TOPLEFT"/>
</Anchors>
<BarTexture
file="Interface\Buttons\UI-Listbox-Highlight2"/>
<BarColor r="1.0" g="1.0" b="1.0"/>
</StatusBar>
<StatusBar name="Sparent_PowerBar" parentKey="powerBar">
<Size x="34" y="3"/>
<Anchors>
<Anchor point="TOPLEFT"

528 Partlll = Advanced Addon Techniques

relativeTo="$parent_HealthBar"
relativePoint="BOTTOMLEFT">
<Offset x="0" y="-1"/>
</Anchor>
</Anchors>
<BarTexture
file="Interface\TargetingFrame\UI-TargetingFrame-«3
BarFill"/>
<BarColor r="1.0" g="1.0" b="1.0"/>
</StatusBar>
</Frames>
<Scripts>
<OnDragStart
function="SquareUnitFrames_Button_OnDragStart"/>
<OnDragStop
function="SquareUnitFrames_Button_OnDragStop"/>
<OnHide function="SquareUnitFrames_Button_OnDragStop"/>
</Scripts>
<Attributes>
<Attribute name="useparent-unit" type="boolean"
value="true"/>
<Attribute name="*typel" type="string" value="target"/>
</Attributes>
<HighlightTexture
file="Interface\Buttons\ButtonHilight-Square"
alphaMode="ADD" />
</Button>
<Button name="S$parent_Pet" parentKey="pet"
inherits="SecureHandlerShowHideTemplate, <2
SecureUnitButtonTemplate">
<Size x="34" y="5"/>
<Anchors>
<Anchor point="BOTTOMLEFT">
<Offset x="1" y="1"/>
</Anchor>
</Anchors>
<Frames>
<StatusBar name="S$Sparent_HealthBar" parentKey="healthBar"
setAllPoints="true">
<BarTexture
file="Interface\Buttons\UI-Listbox-Highlight2"/>
<BarColor r="0.0" g="1.0" b="0.0"/>
</StatusBar>
</Frames>
<Attributes>
<Attribute name="useparent-unit" type="boolean"
value="true"/>
<Attribute name="unitsuffix" type="string" value="pet"/>
<Attribute name="*typel" type="string" value="target"/>
</Attributes>

Chapter 26 = Creating Unit Frames with Group Templates

529

<HighlightTexture
file="Interface\Buttons\UI-Listbox-Highlight2"
alphaMode="ADD" />
</Button>
</Frames>
<Scripts>
<OnShow function="SquareUnitFrames_Frame_OnShow"/>
<OnEvent function="SquareUnitFrames_Frame_OnEvent"/>
</Scripts>
</Frame>

<Frame name="SquareUnitFrames_Header" parent="UIParent"

inherits="SecureGroupHeaderTemplate" movable="true">

<Anchors>
<Anchor point="CENTER"/>

</Anchors>

<Attributes>
<Attribute name="showParty" type="boolean" value="true"/>
<Attribute name="showRaid" type="boolean" value="true"/>
<Attribute name="showPlayer" type="boolean" value="true"/>
<Attribute name="showSolo" type="boolean" value="true"/>
<Attribute name="maxColumns" type="number" value="8"/>
<Attribute name="unitsPerColumn" type="number" value="5"/>
<Attribute name="columnAnchorPoint" type="string"

value="TOP" />
<Attribute name="point" type="string" value="LEFT"/>
<Attribute name="template" type="string"
value="SquareUnitFrames_UnitTemplate"/>

<Attribute name="templateType" type="string" value="Frame"/>
<Attribute name="xOffset" type="number" value="-1"/>
<Attribute name="yOffset" type="number" value="1"/>

</Attributes>

</Frame>

</Ui>

SquareUnitFrames.lua

function SquareUnitFrames_InitialConfig (frame)
-- Nudge the status bar frame levels down
frame.unit.healthBar:SetFrameLevel (frame.unit:GetFrameLevel ())
frame.unit.powerBar:SetFrameLevel (frame.unit:GetFrameLevel ())
frame.unit:RegisterForDrag ("LeftButton")

frame:RegisterEvent ("UNIT_HEALTH")
frame:RegisterEvent ("UNIT_MAXHEALTH")
frame:RegisterEvent ("PLAYER_ENTERING_WORLD")
frame:RegisterEvent ("UNIT_DISPLAYPOWER")
frame:RegisterEvent ("UNIT_NAME_UPDATE")
frame:RegisterEvent ("PLAYER_TARGET_CHANGED")
frame:RegisterEvent ("UNIT_THREAT_SITUATION_UPDATE")

530 Partlll = Advanced Addon Techniques

RegisterUnitWatch (frame.pet)

frame.pet:SetFrameRef ("unit", frame.unit)

frame.pet:SetAttribute ("_onshow", [I[
local unit = self:GetFrameRef ("unit")
unit:SetHeight (28)

11)

frame.pet:SetAttribute("_onhide", [I[
local unit = self:GetFrameRef ("unit")
unit:SetHeight (34)

11)

frame.pet.unit = frame.unit

frame.pet:HookScript ("OnShow", SquareUnitFrames_Pet_OnShow)
frame.pet:HookScript ("OnHide", SquareUnitFrames_Pet_OnHide)

end

function SquareUnitFrames_Frame_OnShow (button)
local unit = button:GetAttribute("unit")

if unit then
local guid = UnitGUID(unit)
if guid ~= button.guid then

SquareUnitFrames_ResetUnitButton (button.unit, unit)
SquareUnitFrames_ResetPetButton (button.pet, unit

button.guid = guid
end
end
end

function SquareUnitFrames_ResetUnitButton (button, unit)
SquareUnitFrames_ResetHealthBar (button, unit)
SquareUnitFrames_ResetPowerBar (button, unit)
SquareUnitFrames_ResetName (button, unit)

if UnitIsUnit (unit, "target") then
button.selected: Show()

else
button.selected:Hide ()

end

local status = UnitThreatSituation (unit)

if status and status > 0 then

local r, g, b = GetThreatStatusColor (status)

button.name:SetTextColor(r, g, b)
else
button.name:SetTextColor(l, 1, 1)
end
end

"pet")

Chapter 26 = Creating Unit Frames with Group Templates

531

-- This function can return a substring of a UTF-8 string,
-- properly handling UTF-8 codepoints. Rather than taking
-- index and optionally an end index, it takes the string,
-- start index and the number of characters to select from

-- string.

-- UTF-8 Reference:

-- Oxxxxxx — ASCII character

-- 110yyyxx - 2 byte UTF codepoint
-- 1110yyyy - 3 byte UTF codepoint
-- 11110zzz - 4 byte UTF codepoint

local function utf8sub(str, start, numChars)

local currentIndex = start

while numChars > 0 and currentIndex <= #str do
local char = string.byte(str, currentIndex)

if char >= 240 then
currentIndex = currentIndex + 4
elseif char >= 225 then
currentIndex = currentIndex + 3
elseif char >= 192 then
currentIndex = currentIndex + 2

else
currentIndex = currentIndex + 1
end
numChars = numChars - 1
end

return str:sub(start, currentIndex - 1)
end

function SquareUnitFrames_ResetName (button, unit)

local name = UnitName (unit) or "Unknown"

local substring

for length=#name, 1, -1 do
substring = utf8sub(name, 1, length)
button.name:SetText (substring)

if button.name:GetStringWidth() <= 30 then

return
end
end

local status = UnitThreatSituation (unit)
if status and status > 0 then

local r, g, b = GetThreatStatusColor (status)

button.name:SetTextColor(r, g, b)
else
button.name:SetTextColor(l, 1, 1)
end
end

a start
the
the

532 Partlll = Advanced Addon Techniques

function SquareUnitFrames_ResetHealthBar (button, unit)
local class = select(2, UnitClass(unit)) or "WARRIOR"
local classColor = RAID_CLASS_COLORS[class]
local alive = not UnitIsDeadOrGhost (unit)

if alive then
button.healthBar:SetStatusBarColor (classColor.r, <3
classColor.g, classColor.b)
button.healthBar:SetMinMaxValues (0, UnitHealthMax (unit))
button.healthBar:SetValue (UnitHealth (unit))
button.dead = false
else
button.healthBar:SetStatusBarColor (0.3, 0.3, 0.3)
button.healthBar:SetMinMaxValues (0, 1)
button.healthBar:SetValue (1)
button.dead = true
end
end

function SquareUnitFrames_ResetPowerBar (button, unit)
local powerType, powerToken = UnitPowerType (unit)
local powerColor = PowerBarColor [powerToken]

local alive = not UnitIsDeadOrGhost (unit)
if alive then
button.powerBar:SetStatusBarColor (powerColor.r, «2
powerColor.g, powerColor.b)
else
button.powerBar:SetStatusBarColor (0.3, 0.3, 0.3)
end

button.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
button.powerBar:SetValue (UnitPower (unit))
end

function SquareUnitFrames_Button_OnDragStart(self, button)
SquareUnitFrames_Header:StartMoving ()
SquareUnitFrames_Header.isMoving = true

end

function SquareUnitFrames_Button_OnDragStop(self, button)
if SquareUnitFrames_Header.isMoving then
SquareUnitFrames_Header:StopMovingOrSizing ()
end
end

function SquareUnitFrames_Frame_OnEvent (self, event, argl,
local unit = self:GetAttribute("unit")
if not unit then
return

Chapter 26 = Creating Unit Frames with Group Templates

533

end

-- Handle any events that don't accept a unit argument
if event == "PLAYER_ENTERING_WORLD" then
SquareUnitFrames_ResetUnitButton(self.unit, unit)
elseif event == "PLAYER_TARGET CHANGED" then
if UnitIsUnit (unit, "target") then
self.unit.selected:Show()
else
self.unit.selected:Hide()
end
elseif argl and UnitIsUnit (unit, argl) then
local powerType, powerToken = UnitPowerType (unit)
if event == "UNIT_MAXHEALTH" then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then
SquareUnitFrames_ResetUnitButton (self.unit, unit)
else
self.unit.healthBar:SetMinMaxValues (0, UnitHealthMax (unit))
self.unit.healthBar:SetValue (UnitHealth (unit))

end
elseif event == "UNIT_HEALTH" then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then
SquareUnitFrames_ResetUnitButton (self.unit, unit)
else
self.unit.healthBar:SetValue (UnitHealth (unit))
end
elseif event == "UNIT_DISPLAYPOWER" then
SquareUnitFrames_ResetPowerBar (self.unit, unit)
elseif event == "UNIT_" .. powerToken then
if self.unit.dead ~= UnitIsDeadOrGhost (unit) then

SquareUnitFrames_ResetPowerBar (self.unit, unit)

else
self.unit.powerBar:SetValue (UnitPower (unit))

end

elseif event == "UNIT_MAX" .. powerToken then

if self.unit.dead ~= UnitIsDeadOrGhost (unit) then
SquareUnitFrames_ResetPowerBar (self.unit, unit)

else
self.unit.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
self.unit.powerBar:SetValue (UnitPower (unit))

end
elseif event == "UNIT_NAME_UPDATE" then
SquareUnitFrames_ResetName (self.unit, unit)
elseif event == "UNIT_THREAT_SITUATION_UPDATE" then

local status = UnitThreatSituation (unit)

if status and status > 0 then
local r, g, b = GetThreatStatusColor (status)
self.unit.name:SetTextColor(r, g, b)

else
self.unit.name:SetTextColor (1, 1, 1)

534 Partlll = Advanced Addon Techniques

end
end
elseif argl and UnitIsUnit (unit .. "pet", argl) then
if event == "UNIT_MAXHEALTH" then

self.pet.healthBar:SetMinMaxValues (0, UnitHealthMax (argl))
self.pet.healthBar:SetValue (UnitHealth(argl))

elseif event == "UNIT_HEALTH" then
self.pet.healthBar:SetValue (UnitHealth(argl))
end
end
end

local function unregisterManyEvents (frame, ...)
for i=1, select("#", ...) do
local event = select(i, ...)
frame:UnregisterEvent (event)
end
end

function SquareUnitFrames_ResetPowerBar (button, unit)
local powerType, powerToken = UnitPowerType (unit)
local powerColor = PowerBarColor [powerToken]
local alive = not UnitIsDeadOrGhost (unit)

local parent = button:GetParent ()

unregisterManyEvents (parent, "UNIT _MANA", "UNIT_ RAGE",
"UNIT_FOCUS", "UNIT_ENERGY", "UNIT_RUNIC_POWER")
unregisterManyEvents (parent, "UNIT_ MAXMANA", "UNIT_MAXRAGE",
"UNIT_MAXFOCUS", "UNIT_MAXENERGY", "UNIT_MAXRUNIC_POWER")
parent:RegisterEvent ("UNIT_" .. powerToken)
parent:RegisterEvent ("UNIT_MAX" .. powerToken)

button.powerBar:SetStatusBarColor (powerColor.r, «2
powerColor.g, powerColor.b)
button.powerBar:SetMinMaxValues (0, UnitPowerMax (unit))
button.powerBar:SetValue (UnitPower (unit))
end

function SquareUnitFrames_Pet_OnShow(self)
self.unit.healthBar:SetHeight (28)
self.unit.powerBar:Hide ()

end

function SquareUnitFrames_Pet_OnHide (self)
self.unit.healthBar:SetHeight (30)
self.unit.powerBar:Show ()

end

function SquareUnitFrames_ResetPetButton (button, unit)

Chapter 26 = Creating Unit Frames with Group Templates 535

if UnitExists(unit) then
local health = UnitHealth(unit)
local maxHealth = UnitHealth (unit)
button.healthBar:SetMinMaxValues (0, maxHealth)
button.healthBar:SetValue (health)
end
end

-- Actually show the header frame
SquareUnitFrames_Header.initialConfigFunction = 3
SquareUnitFrames_InitialConfig
SquareUnitFrames_Header:Show ()

In This Part

Chapter 27: API Reference
Chapter 28: API Categories
Chapter 29: Widget Reference
Chapter 30: Events Reference

CHAPTER

7

API Reference

The World of Warcraft API contains more than a thousand functions that can be used
to interact with the game client, and obtain information about the state of the game.
This chapter includes an alphabetic listing of each of these functions with detailed
descriptions of what each function does, what arguments it takes, and what values it
returns to the caller.

Although all efforts were made to provide the most up-to-date listing of func-
tions, the API is a constantly moving target, changing from patch to patch. For
the most current listing of the API please visit the book’s companion website
at http://wowprogramming.com/docs. Information about upcoming changes to
the API can be found on the official World of Warcraft Ul & Macros Forums:
http://forums.worldofwarcraft.com/board.html?forumId=11114.

API Reference Conventions

Following each function is a description of what the function does, along with
the function signature, followed by any arguments, returns, or example snippets
of code.

Function Signatures

A function signature is a short way to express the name of a function, the argu-
ments that the function expects to be called with, and any values that the function
may return. Consider the following signature for the CalculateAuctionDeposit ()
function:

deposit = CalculateAuctionDeposit (runTime)

539

540

Part IV = Reference

This notation indicates that the function accepts a single argument called runTime,
and returns a single value called deposit. These aren’t requirements for names: they
are simply names given to each of the arguments and returns, to make the signature
easier to read and understand.

If a function signature is omitted, then the function takes no arguments, and returns
no values. This is equivalent to the function signature FunctionName (), so these
signatures are not listed.

Optional Arguments

When a signature contains an optional argument, it is wrapped in square brackets to
indicate this. Here’s the function signature for BuyMerchantItem():

BuyMerchantItem(index [,quantity])

This signature shows that the function returns no arguments and takes an argument
index, along with an optional argument quantity. The specific details of what the
optional argument does are listed in the description for that argument, which is
displayed below the signature.

Functions can have multiple nested optional arguments, like SendChatMessage ():

SendChatMessage ("text" [, "chatType" [, "language" [, "channel"]]1])

This function requires the first argument text, but can also take up to three more
arguments. The optional arguments are nested in this way because to include the argu-
ment language, you must also include something for chatType (even if it’s the value
nil). Likewise, to supply a channel argument, you must also supply values for
chatType and language.

Argument Choices
Certain functions, such as IsAddonLoaded (), have alternative choices in their argu-
ments:

loaded = IsAddOnLoaded (index) or IsAddOnLoaded ("name")

This function can take either the index of addon in the addon listing, or the name of
an addon. It then returns whether or not the addon is currently loaded by the game
client. When there are distinct choices for the function signature, each signature is
added to the end in this way.

Argument and Return Listings

Following a function signature is a detailed listing of the arguments and returns for
the given function. The arguments and returns are both given in a similar format. Here
is the listing for the GetSocketTypes () function:

Argument:

index—The index of the socket to query. (number)

Chapter 27 = API Reference

541

Return:
gemColor—The color of the given gem socket. (string)

B Blue B Red

M vellow | Meta

Under each section is a list of named arguments, followed by a description of the
argument. After the description is an indicator that tells you which type of Lua value
to pass (or what type to expect from the function). In this case, the function accepts a
numeric argument called index and returns a string that is the color of the socket. If
the argument is optional, this will be indicated in the argument listing as well as in the
function signature.

Common API Flags

Throughout the API, there are a number of common attributes that a given function
might have, for example those functions that cannot be called by addons during
combat. Table 27-1 shows a listing of the various API flags.

When a function is flagged with one of the API flags, you will see a margin icon
indicating this. Although most flags are self explanatory, you can always refer back to
Table 27-1 for more information.

Table 27-1: API Flags

FLAG DESCRIPTION

blizzardui This function is not a C API but a Lua function declared in
Blizzard's default user interface. Its implementation can be
viewed by extracting the addon data using the Addon Kit
provided by Blizzard.

confirmation This function does not prompt the user for confirmation
before its results take effect -- that behavior is provided by
the default Ul, and this function is called from the
confirmation dialog

hardware This function requires a key or mouse press in order to be
used, but may not be protected.

luaapi This function is defined in the Lua standard libraries

maconly This function is designed for the Mac OS X client only.

nocombat This function cannot be called during combat.

protected This function is protected and can only be called by the

Blizzard user interface.

542

Part IV = Reference

APl Meta-Types

To clarify the documentation of API functions, we have created a number of meta-types
that are used to describe what sort of values are accepted in an argument or returned
from an API function. These are not actual Lua types, but a classification of accepted
values in various API sub-systems. When a meta-type applies to an argument or return
value, this is indicated after the Lua type in the argument listing. Meta-types enable
you to consolidate the documentation for classes of API functions, rather than having to
document the same list of values over and over again. This section describes these types.

1nil

Many API functions use values indicative of a binary state but do not utilize the
Boolean true and false values in Lua. Due to the way the functions are limited, they
use the number value 1 for true, and nil for false. Because Lua treats nil as a false
value and any non-nil value as true in a conditional, these values can generally be
used the same as Boolean values in conditional statements (such as 1f IsInGuild()
then ... end). However, you should avoid making direct comparisons using this
type of value: for example, the condition 1f IsInGuild() == true then ... end
will never be triggered. These types of variables are called 1nil values, to distinguish
them from Boolean values.

actionlD

The actionID meta-type is used to identify one of the player’s action bar slots. In
UI terms, action bar slots are a layer of abstraction between spells or items and the
mechanisms available to the player for using them conveniently. For example, instead
of the default Ul internally using setBindingSpell (), SetBindingMacro (), and
so on whenever the player changes the contents of the visible action bars, it instead
manages a set of key bindings corresponding to the action bar slots.

Chapter 27 = API Reference 543

Every player has at least NUM_ACTIONBAR_PAGES * NUM_ACTIONBAR_BUTTONS (in
the current client, 6 * 12, or 72) action slots corresponding to the six default
action bar pages. In addition, players of certain classes (or with certain talents) may
have additional actionIDs available corresponding to the “bonus’ action bars that
automatically become available when changing stances, stealthing, shapeshifting, etc.

ah-list-type
There are three different types of auction house listings, represented by string values.

These ah-1ist-type values may be one of the following;:

m]ist—The items that are currently for sale in the auction house.
= bidder—The items for which the player has placed a bid.
m owner —The items that the player has placed up for auction.

anchorPoint

Frames and graphical regions are anchored to each other using anchor points, repre-
sented by the anchorPoint meta-type. These points are simple strings that indicate a
point on the region. The following are valid anchor point strings:

CENTER LEFT BOTTOMRIGHT

BOTTOM RIGHT TOPLEFT

TOP BOTTOMLEFT TOPRIGHT
arenaTeamlID

The arenaTeamID API meta-type identifies one of the (up to three) arena teams to
which a player can belong. These indices begin at 1 for the player’s smallest team and
increase with size. For example, if the player belongs to a 2v2 team and a 5v5 team
then 1 will indicate the 2v2 team while 2 refers to the 5v5 team. However, if the player
belongs to a 3v3 team and a 5v5 team but no 2v2 team, then 1 will indicate the 3v3
team, and 2 will again indicate the 5v5 team. If the player is on teams of all three sizes,
then 1 indicates the 2v2 team, 2 indicates the 3v3 team and 3 indicates the 5v5 team.

The Blizzard Ul's Lua function ArenaTeam_GetTeamSizeIDcanbe used to translate
a team size (2, 3, or 5) to the appropriate arenaTeamID for the player.

auraFilter

Buffs and debuffs can be filtered in the WoW API using strings that represent complex
aura filters, indicated by the auraFilter meta-type. These strings can contain any
number of filterers separated by either the pipe character (|) or a space. Possible filter
values currently include:

m gL PFUL—Helpful spells (buffs).

m pARMFUL—Harmful spells (debuffs).

m prAYER—Spells that can be cast by the player on themselves.

544 PartlV = Reference

m RATD—Spells that can be cast by the player on their raid.
= CANCELABLE—Spells that can be cancelled.
= NOT_CANCELABLE—Spells that cannot be cancelled.

For example the string HELPFUL | RAID will filter to show only those helpful spells
that the player can cast on their raid. You cannot use both the HARMFUL and the
HELPFUL filters at the same time, as they cancel each other out. In addition, these two
filters should not be used in the UnitBuff and UnitDebuff functions, as they are
already implicitly included in their implementation and as such will be ignored.

backdrop

A backdrop definition is a Lua table with specific attributes that match directly with
the elements in the <Backdrop> definition in an XML definition. It has the following
structure:

{

-- path to the background texture

bgFile = "Interface\\DialogFrame\\UI-DialogBox-Gold-Background",

-- path to the border texture

edgeFile = "Interface\\DialogFrame\\UI-DialogBox-Gold-Border",

-- true to repeat the background texture to fill the frame,
false to scale it

tile = true,

-- size (width or height) of the square repeating background 3
tiles (in pixels)

tileSize = 32,

-- thickness of edge segments and square size of edge corners 3
(in pixels)

edgeSize = 32,

-- distance from the edges of the frame to those of the background 2
texture (in pixels)

insets = {
left = 11,
right = 12,
top = 12,

bottom = 11

bitfield

A bitfieldis a numeric value combining several binary flags into one number. The
flags can be inspected individually using the bitwise functions in the bit library. For
example (using Get ItemFamily and related constants):

GetItemFamily ("Crystallized Air")

-- returns 1224

bit.bor (0x0008,0x0040,0x0080,0x0400)

-- returns 1224

-- these are the masks for tradeskill bags.

Chapter 27 = API Reference 545

bit.band(GetItemFamily ("Crystallized Air"), 0x0040)
-- returns 64, or 0x0040: the item fits in an Enchanting Bag
bit.band(GetItemFamily ("Crystallized Air"), 0x0020)

-- returns 0, or 0x0000: the item does not fit in an Herb Bag

binding

A binding is a string identifying one or more keyboard keys or mouse buttons, used
with key binding and modified click API functions and the OnKeyDown/OnKeyUp script
handlers. Most letter, number, and symbol keys are identified by their (uppercase)
letter, number, or symbol.

Other keys are identified by a series of global variables with names prefaced
by kEY_; for instance, the localized name for the binding NUMPADO can be found
in _G["KEY_NUMPADO"]. Some keys have platform-specific names; for example, the
localized name for the binding PRINTSCREEN can be found in _G["KEY_PRINTSCREEN
_MAC"] (revealing that it refers to the F13 key found on Mac extended keyboards).

Modifier keys are identified as follows:

= [,SHIFT, RSHIFT, SHIFT—Left, right, or generic Shift key

= [,CTRL, RCTRL, CTRL—Left, right, or generic Control key

= [ALT, RALT, ALT—Left, right, or generic Alt (or Option) key
m STRG—German equivalent to CTRL key

Mouse buttons are identified by the token BUTTON followed by the but-
ton number—BUTTON1 for the primary (left) button, BUTTON2 for the right
button, BUTTON3 for middle, and so on.

For use in key bindings, several key/button identifiers can be strung together
with hyphens to indicate a key combination; e.g. CTRL-SHIFT-SPACE, RALT-F12,
SHIFT-BUTTONL.

chatMsgType

The chatMsgType is a string identifying the common type of a set of chat window
messages; used in chat window functions for determining which windows display
which messages, and the colors for displaying each message type.

Each CHAT_MSG event has a corresponding chatMsgType identified by the part of
the event name following the initial CHAT_MSG_; e.g. the chatMsgType for CHAT_MSG
_COMBAT_FACTION_CHANGE is COMBAT_FACTION_CHANGE. A list of pre-configured
chatMsgTypes can be found as keys in the global table ChatTypeInfo.

colorString

Formatting used to colorize sections of text when being displayed in a FontString.
A colorsString takes the form |c (colorvalue) (text) |r:

m colorvalue—A string of four hexadecimal formatted bytes describing
component values of the color. Each byte can be a value from 00 (representing

546 PartlIV = Reference

zero intensity of the component) to ff (representing full intensity of the
component):

1. Alpha value, but currently unused: always £ £
2. Red component of the color
3. Green component of the color
4. Blue component of the color
m text—The text to be colorized.
For example the string |cf£££££00Yellow Text |r will display yellow text when

sent to a font string or message frame. Color strings can be used for display anywhere
in the UI, but can only be delivered in a chat message if included as part of a hyperlink.

containeriD

A containerIDisanumeric identifier for one of the player’s bags or other containers.
Possible values:

m -2 —Keyring

m -] —Main storage area in the bank

= 0 —Backpack

In addition a number from 1 through NUM_BAG_SLOTS indicates a bag slot, num-
bered as presented in the default Ul from right to left. Container identifiers from
NUM_BAG_SLOTS + 1 through NUM_BAG_SLOTS + NUM_BANKBAGSLOTS represent the
bank bag slots, numbered as presented in the default UI from left to right.

containerSlotiD

A containerSlotID is a numeric index of an item slot within a container. Slots are
numbered from left to right, top to bottom, as presented in the default UI.

frameStrata

A frameStrata value is a string identifying the general layering order of frames.
Where frame level provides fine control over the layering of frames, frame strata
provides a coarser level of layering control. Frames in a higher strata always appear
“in front of”” frames in lower strata regardless of frame level. Available frame strata
are listed below in order from lowest to highest:

= BACKGROUND—Used by default for static UI elements such as the PlayerFrame
and Minimap

m 10— Used by default for lower-priority Ul elements such as the party member
and target frames

m vEDIUM— Default frame strata for general usage

m 7GH—Used by default for higher-priority Ul elements such as the Calendar and
Loot frames

m DTALOG—Used by default for alerts and other dialog boxes which should appear
over nearly all other UI elements

Chapter 27 = API Reference

547

= FULLSCREEN—Used by default for full-screen windows such as the World Map

= FULLSCREEN_DIALOG—Used by default for alerts or dialog boxes which should
appear even when a full-screen window is visible

m TOOLTIP—Used for mouse cursor tooltips, ensuring they appear over all other
UI elements

glyphindex

A glyphIndex is a numeric glyph index, ordered by the level at which the glyphs are
discovered. Specifically:
1. The major glyph at the top of the user interface (level 15)
The minor glyph at the bottom of the user interface (level 15)
The minor glyph at the top left of the user interface (level 30)
The major glyph at the bottom right of the user interface (level 50)
The minor glyph at the top right of the user interface (level 70)

S

The major glyph at the bottom left of the user interface (level 80)

GUID (Globally Unique IDentifier)

Each entity in World of Warcraft is identified by a globally unique identifier (GUID), a
unique 64-bit number that is generally presented as a string containing a hexadecimal
representation of the number (e.g. “OxF530007EAC083004”). (Note that Lua in WoW
does not support 64-bit integers, so this value cannot be converted in a lossless way
with tonumber.)

The type of unit represented by a GUID can be determined by using bit.band ()
to mask the first three digits with 0x00F:

= 0x000—A player

= 0x003—An NPC

= 0x004—A player’s pet (i.e. hunter/warlock pets and similar; non-combat pets
count as NPCs)

= 0x005—A vehicle
Further content of the GUID varies by unit type: player, NPC, pet, or vehicle.

Players

The remaining thirteen digits are unique to a player character at least within that
character’s battlegroup (that is, they remain unique and constant even in cross-server
battlegrounds). This number is also semi-permanent—it persists from character cre-
ation until deletion, renaming, or server transfer.

NPCs

For NPCs, the remaining digits break down as follows:

= Digits 4-6—Unused.

548 Part IV = Reference

m Digits 7-10—NPC creature ID: identifies the specific named NPC (e.g. Hogger,
Loque’nahak) or type of NPC (e.g. Sunfury Nethermancer, Shattertusk Mam-
moth). Converting to decimal results in the ID found on database sites such
as http://wowhead.com; can also be used with the PlayerModel widget API
SetCreature to view the NPC’s model.

m Digits 11-16—Spawn counter: identifies the individual NPC (i.e. differentiates
between the Gamon you recently killed and the Gamon that respawned a few
minutes later.

Pets

Hunter pets immediately after taming retain the GUID they had as a wild creature;
after re-summoning or logout/login, their GUID changes to the pet format. Remaining
digits can be broken down as follows:

m Digits 4-10—A constant value unique to the individual pet: like a player’s unique
ID it is constant across multiple sessions.

m Digits 11-16—Spawn counter: changes when the pet is dismissed and re-
summoned.

Vehicles

Vehicles have the same format and content as NPCs.

GUID Example

For example, the GUID 0xF530007EAC083004 can be deconstructed as follows:
Digits 1-3 are “F53”; bit .band (0xF53, 0x00F) == 0x003, so this is an NPC.
Digits 7-10 are “7EAC"’; 0x7EAC == 32428, which you can look up to find the NPC

is an Underbelly Rat.

Digits 11-16 have no intrinsic meaning, but distinguish this Underbelly Rat from all
others spawned since the last server reset.
The following code is an example of a function to decode GUIDs:

function ParseGUID (guid)
local first3 = tonumber ("0x"..strsub(guid, 3,5))
local unitType = bit.band(first3,0x00f)

if (unitType == 0x000) then
print ("Player, ID #", strsub(guid,6))
elseif (unitType == 0x003) then
local creatureID = tonumber ("0Ox"..strsub(guid,9,12))
local spawnCounter = tonumber ("0x"..strsub(guid,13))
print ("NPC, ID #",creaturelD, "spawn #", spawnCounter)
elseif (unitType == 0x004) then
local petID = tonumber ("0Ox"..strsub(guid,6,12))
local spawnCounter = tonumber ("0x"..strsub(guid,13))
print ("Pet, ID #",petID, "spawn #", spawnCounter)
elseif (unitType == 0x005) then

Chapter 27 = API Reference 549

local creatureID = tonumber ("0Ox"..strsub(guid,9,12))
local spawnCounter = tonumber ("0x"..strsub(guid,13))
print ("Vehicle, ID #",creaturelID, "spawn #",spawnCounter)
end
end

Hyperlink

A hyperlink is a string containing markup allowing the client to present it as a link,
which the player can click to view more information about or take action regarding
the data it represents.

Hyperlinks take the form |H(linktype): (linkdata) |h(text) |h, where
(linktype) determines the type of link, (1inkdata) is a code referencing the linked
information, and (text) is the text visible to the player. Some API functions which
operate on links do not require a full hyperlink, only its 1inktype:linkdata portion.

Links are often encapsulated in a colorString. In such cases, the full color
String-wrapped link is the only form of the link allowed to be used in chat;
attempting to transmit an invalid link may cause the player to be disconnected from
the server.

The WoW client recognizes several kinds of hyperlinks, identified by their 1inktype:

player spell talent item
playerGM enchant achievement
glyph quest trade

They are described in the following sections. If 1 inkdata elements noted as optional
are omitted the client can still resolve the link.

player

Example: |Hplayer:Aerdrig|h[Aerdrig] |h

Represents a player character. Left-clicking a player link in the default Ul opens the
ChatFrameEditBox to send a whispered message to the character. Right-clicking opens
a menu with options for inviting the character to the player’s party/raid, adding the
character to the ignore list, or reporting the chat message in which the link appears
as spam. The linkdata for a player link consists solely of the player’s name (or in
cross-realm battlegrounds, the player’s name and home realm separated by a hyphen,
e.g. “Gundark-Broxigar”).

playerGM

Example: |HplayerGM:Eyonix|h[Eyonix] |h
A variation on the player type used exclusively for Game Master chat.

glyph

Example: | c££66bbff |[Hglyph:23:460 |h[Glyph of Fortitude] |h|r

550

Part IV = Reference

Represents a glyph inscribed in a character’s spellbook. Clicking a glyph link in the
default UI shows a tooltip with its description. The linkdata for a glyph link follows
the format socket : glyphID:

m socket (optional)—The socket in which the glyph is placed; values 21 through
26 correspond to glyphlndex values 1 through 6.

= §1yphID—A unique identifier for the glyph effect; not used elsewhere in the API.

spell

Example: |c££71d5£f |[Hspell:46584 |h[Raise Dead] |h|r

Represents a spell. Clicking a spell link in the default UI shows a tooltip with its
description. The linkdata for a spell link consists solely of the spelllD number uniquely
identifying the spell, usable with APIs such as GetSpellInfo ().

enchant

Example: |c££££d000 |[Henchant:59387 |h[Certificate of Ownership] |h|r

Represents a trade skill recipe (originally used only for Enchanting, but now applies
to all trade skills). Clicking a spell link in the default Ul shows a tooltip with its
description (and that of the item it creates, if applicable). The linkdata for a spell link
consists solely of the spelllD number uniquely identifying the trade skill recipe, usable
with APIs such as GetSpellInfo().

quest

Example: |c££££££00|Hquest:982:17 |h[Deep Ocean, Vast Seal |h|r

Represents a quest from a character’s quest log. Clicking a quest link in the default Ul
shows a tooltip with a brief description of the quest and its objectives. When the client
displays a quest link sent by another character, it automatically alters the enclosing
colorsString to reflect the difficulty of the quest relative to the player’s level. The
linkdata for a quest link follows the format questID:level:

= questID—A unique numeric identifier for the quest. This number corresponds
with the numbers found on data sites such as http: / /wowhead . com.

m]evel (optional)—Recommended character level for attempting the quest. (A
level of -1 means the quest is appropriate for any level; used for holiday quests.)

talent

Example: |c££4e96£7 |Htalent:1396:4 |h[Unleashed Furyl] |h|r
Represents a talent. Clicking a talent link in the default UI shows a tooltip with its
description. The linkdata for a talent link follows the format talentID:points:
= talentID—A unique identifier for the talent; not used elsewhere in the APL
= rank (optional) —Number of points spent in the talent, minus one: if this value
is omitted or -1, the tooltip shows the talent as it appears in the Talents UI when
zero points have been spent; if this value is 0, the tooltip shows the talent as it
appears when one point has been spent on it. Values greater than the number of
available ranks for a talent are interpreted as -1.

Chapter 27 = API Reference

achievement

Example: |cf£££££00|Hachievement:2336:060000000279E425:1:10:14:8:429
4967295:4294967295:4294967295:4294967295 |h[Insane in the Membrane]
|h|r

Represents an achievement earned or in progress by a player. Clicking an
achievement link in the default UI shows a tooltip with a summary of the achievement
and (if applicable) its criteria. The linkdata for an achievement link follows the for-
mat achievementID:playerGUID:completed:month:day:year:bitsl:bits2:
bits3:bits4. If only the first element achievementID is specified, the client
resolving the link will show the player’s progress or completion of the achievement;
otherwise, all elements are required:

m schievementID—A unique identifier for the achievements; usable with various
Achievement API functions.

= 1]layerGUID (optional) —GUID of a player character whose progress or comple-
tion of the achievement is linked (return value of UnitGUID () without the “0x”’
prefix).

= completed (optional)—1 if the character has completed the achievement; other-
wise 0.

= month (optional)—Index of the month (1 = January) in which the character
completed the achievement, or 0 if the achievement is incomplete.

= day (optional)—Day of the month on which the character completed the achieve-
ment, or 0 if the achievement is incomplete.

m year (optional)—Year (two-digit year) in which the character completed the
achievement, or -1 if the achievement is incomplete.

= bitsl, bits2,bits3,bits4 (optional)—Encoded data fields interpreted by the
client to show completion of achievement criteria.

trade

Example: |cf£££d000|Htrade:45361:339:375:60000000279E425:Q/nPf6npru3
/n/£A8/Bw/PA+/B+/Aw/HA+/Bw/HA+5nfg////////P////HARAQAA+DAAAAAAA |
h[Inscription] |h|r

Represents the entire list of recipes for a character’s trade skill or profession. The
linkdata for an achievement link follows the format spellID:skill:maxSkill:
playerGUID:data. All elements are required:

®m spellID—The spellIDnumber uniquely identifying the trade skill and its rank
(e.g. Apprentice Tailoring vs. Journeyman Tailoring), usable with APIs such as
GetSpellInfol().

m skill—The character’s current skill in the profession

® maxSkill—The maximum skill for the character’s current rank in the profession
(e.g. 375 for Master rank).

= p]layerGUID—GUID of the character whose profession is linked (return value of
UnitGUID () without the “Ox” prefix).

552

Part IV = Reference

= data —Encoded data field interpreted by the client to show the character’s list
of known trade skill recipes.

item
Examples: |cffa335ee|Hitem:45457:3828:3395:3395:0:0:0:0:80 |h[Staff
of Endless Winter] |h|r, |cff1leff00|Hitem:36360:0:0:0:0:0:-37:16338
78093:80 |h[Frostpaw Legguards] |h|r

Represents an item. Clicking an item link in the default UI shows a tooltip
with information about the item. Control-clicking an equippable item opens the
DressUpFrame to preview how the item would look on the player character if
equipped. The linkdata for an item link follows the format itemID:enchant:
geml :gem2:gem3:gemd : suffixID:uniquelD:level:

®m jtemID—The item’s i temID.

®m cnchant (optional) —Unique identifier of the enchantment applied to the item;
not used elsewhere in the APL

= geml, gem2, gem3, gem4 (optional)—Unique identifiers of the enchantments
provided by gems socketed in the item (not the itemIDs of the gems themselves);
not used elsewhere in the APL

m suffixID (optional)—Identifies the specific variation represented for
random-property items (e.g. /.. of the Monkey”, “!.. of Frost Protection”, etc.).
A positive number indicates a variation with specific stat values (e.g. 1200 = “of
the Bear”, 8 stamina 8 strength; 1220 = “of the Bear”, 14 stamina 15 strength);
a negative number indicates a type of variation, with actual stat values to be
determined by decoding the uniqueID.

= ynigueID (optional) —A number used internally by the WoW client/server
architecture to track a specific occurrence of an item: used for crafted items which
display ““<Made by Name>"" in their tooltips and for random-property items. For
items with a negative suf£fixID, using bit.band (uniqueID, OxFFFF) reveals
the factor used to calculate the item’s stats.

m] evel —Level of the character linking the item; used for “Heirloom” items whose
stats change based on the level of the character equipping them.

inventorylD

An inventoryIDidentifies an inventory slot used (mostly) for the equipping of items.
Inventory ID numbers exist not only for the armor and weapon slots seen in the default
UI's character window, but also for bag slots, bank bag slots, the contents of the bank’s
main storage area, and the contents of the keyring. Inventory slots are not defined
as constants in the default UI; to obtain the inventoryID for a slot, use one of the
following functions:

B GetInventorySlotInfo

B BankButtonIDToInvSlotID
B ContainerIDToInventoryID
-

KeyRingButtonIDToInvSlotID

Chapter 27 = API Reference

553

itemID

The itemID uniquely identifies an item; usable with APIs such as GetItemInfo().
These identifiers match those utilized on database sites such ashttp: //wowhead. com.

itemLocation

The itemLocation is a bitfield describing the location of an item owned by the
player. The following example code illustrates masks that can be compared with an
itemLocation to determine the exact location described:

local ITEM_INVENTORY_PLAYER = 0x00100000
local ITEM_INVENTORY_BACKPACK = 0x00200000
local ITEM_INVENTORY_BAGS = 0x00400000
local ITEM_INVENTORY_BANK = 0x00800000
local MASK_BAG = 0xf00

local MASK_SLOT = 0x3f

local bagMap = {

[0x100] = 1,
[0x200] = 2,
[0x400] = 3,
[0x800] = 4,

}
local function ItemInBag (itemLocation)
if bit.band(itemLocation, ITEM_INVENTORY_BAGS) > 0 then
local bag = bagMap|[bit.band(itemLocation, MASK_BAG)]
local slot = bit.band(itemLocation, MASK_SLOT)
return bag, slot
elseif bit.band(itemLocation, ITEM_INVENTORY_BACKPACK) > 0 then
local slot = bit.band(itemLocation, MASK_SLOT)
return 0, slot
end
end

local function ItemEquipped (itemLocation)
if bit.band(itemLocation, ITEM_INVENTORY_PLAYER) > 0 then
local slot = bit.band(itemLocation, MASK_SLOT)
return slot
end
end

itemQuality
itemQuality, unsurprisingly, indicates the quality (or rarity) of an item. Possible
values and examples:

1. Poor (gray): Broken LW.LN. Button

2. Common (white): Archmage Vargoth's Staff

3. Uncommon (green): X-52 Rocket Helmet

4. Rare / Superior (blue): Onyxia Scale Cloak

554 Part IV = Reference

5. Epic (purple): Talisman of Ephemeral Power
6. Legendary (orange): Fragment of Val’anyr
7. Artifact / Heirloom (light yellow): Bloodied Arcanite Reaper

itemString

An itemString refers to the linktype:linkdata portion of an item link (the part
containing the itemID, e.g. item:19019); see the hyperlink meta-type for more details.

justifyH

justifyH is a string describing the horizontal justification of text within a widget.
Possible values: LEFT, CENTER, RIGHT.

justifyV

justifyV is a string describing the vertical justification of text within a widget.
Possible values: TOP, MIDDLE, BOTTOM.

layer
layer is a string identifying the layer in which a region’s graphics are drawn relative
to those of other regions in the same frame; graphics in higher layers (as listed below)
are drawn “on top of”’ those in lower layers.
= BACKGROUND—First (lowest) layer
BORDER—Second layer

|
m ARTWORK— Third layer; default for regions for which layer is not specified
= OVERLAY—Fourth layer

|

HIGHLIGHT —Fifth (highest) layer; regions in this layer are automatically shown
when the mouse is over the containing Frame (if the Frame’s enableMouse
property is true).

macrolD

The macroID is an index of one of the player’s saved macros. Macros shared by all
characters on player’s account are indexed from 1 to MAX_ACCOUNT_MACROS; macros
specific to the current character are indexed from MAX ACCOUNT_MACROS + 1 to
MAX_ACCOUNT_MACROS + MAX_CHARACTER_MACROS.

powerType

The powerType meta-type is used to indicate one of the different power types that
characters can have. Possible values are:

0. Mana 3. Energy 6. Runic Power
1. Rage 4. Happiness
2. Focus 5. Runes

Chapter 27 = API Reference

rolliD

The default user interface assigns a unique numeric identifier for all items that are
able to be rolled on by the party. This identifier can be obtained by checking the
rollID member of the specific group loot frame. For example: /run print (Group
LootFramel.rollID).

spellbookiD

spellbookID is an index of a spell in the player’s (or pet’s) spellbook; usable with
APIs such as GetSpellInfo().

spelllD

spelllID is a globally unique number that identifies a spell (and its rank). It is usable
with APIs such as GetSpellInfo (), and is also useful with database sites.

standingID

The standingID identifies a level of reputation:
1. Hated 4. Neutral 7. Revered
2. Hostile 5. Friendly 8. Exalted
3. Unfriendly 6. Honored

The default UI provides constants which can be helpful in displaying standing
information.

The localized name for the standing N can be found in the global variable
FACTION_STANDING_LABELN Or FACTION_STANDING_LABELN_FEMALE;e.g. FACTION
_STANDING_LABEL4 == "Neutral".

.m Although the male (unlabeled) and female forms are the same in the enUS
client, the same is not true for other languages. Be sure to use the appropriate
form for the character’s gender.

Color values for each standing (as seen in reputation status bars in the default UI)
can be found in the table FACTION_BAR_COLORS.

unitiD

You see unitID used throughout the API to identify units of interest. Possible values:

®m layer—The player him/herself
m pet—The player’s pet

m vehicle—The vehicle currently controlled by the player
m target—The player’s current target

|

focus—The player’s focused unit (as can be set by typing /focus name)

556 PartIlV = Reference

mouseover—The unit currently under the mouse cursor (applies to both unit
frames and units in the 3D world)

npc—The unit the player is currently interacting with (via the Merchant, Trainer,
Bank, or similar UI); not necessarily an NPC (e.g. also used in the Trade UI)
partyl to party4—Another member of the player’s party. Indices match the
order party member frames are displayed in the default Ul (party1 is at the top,
party4 at the bottom), but are not consistent among party members (i.e. if Thrall
and Cairne are in the same party, the player Thrall sees as party2 may not be the
same player Cairne sees as party?2).

partypetl to partypet4—A pet belonging to another member of the player’s
party

raidl to raid40—A member of the player’s raid group. Unlike with the party
tokens, one of the raid unit IDs will belong to the player. Indices have no relation
to the arrangement of units in the default UL

raidpetl to raidpet40—A pet belonging to a member of the player’s raid

group
arenal to arena5—A member of the opposing team in an Arena match

AunitIDcanalsobe formed by appending ““target’” to an existing unitID, referring
to that unit’s target. This can be done repeatedly. For example, consider a raid situation
where the token raid13 refers to a priest: raidl3target might be a rogue the priest
is healing, raidl3targettarget might be the boss monster the rogue is attacking,
and raidl3targettargettarget might be the warrior tanking the boss.

Many (but not all) API functions that accept a unitID also accept the name of a
unit (assuming that unit is in the player’s party or raid). For example, UnitHealth
("Cladhaire") will return the same value as UnitHealth ("partyl") if the unit
partyl is the player named Cladhaire. In such situations, a unit’s target can still be
accessed by appending -target; for example, UnitHealth ("Cladhaire-target").

API Reference

AbandonQuest

Confirms abandoning a quest.
Use SetAbandonQuest () first to select the quest to abandon.

AbandonSkill

Unlearns a skill (used only for professions).
AbandonSkill (index)
Arguments:

index—Index of an entry in the skills list (between 1 and GetNumSkill
Lines()) (number)

AcceptAreaSpiritHeal

Accepts the next upcoming periodic resurrection from a battleground spirit
healer.

Chapter 27 = API Reference 557

Automatically called in the default UI in response to the AREA_SPIRIT
_HEALER_IN_RANGE event which fires when the player’s ghost is near a
battleground spirit healer.

AcceptArenaTeam
Accepts an invitation to join an arena team.

AcceptBattlefieldPort

Accepts the offered teleport to a battleground/arena or leaves the
battleground/arena or queue.

AcceptBattlefieldPort (index, accept)

This function requires a hardware event when used to accept a teleport; it can
be called without a hardware event for leaving a battleground/arena or its
queue.

Arguments:

index—Index of a battleground or arena type for which the player is queued
(number)

accept—1 to accept the offered teleport; nil to exit the queue

or leave the battleground/arena match in progress (1nil)
AcceptDuel

Accepts a proposed duel.

AcceptGroup
Accepts an invitation to join a party or raid.
Usable in response to the PARTY_INVITE_REQUEST event which fires when the
player is invited to join a group. This function does not automatically hide
the default UI’s group invite dialog; doing such requires calling StaticPopup
_Hide ("PARTY_INVITE"), but only after the PARTY_MEMBERS_CHANGED event
fires indicating the player has successfully joined the group.

AcceptGuild
Accepts an invitation to join a guild.
Usable in response to the GUILD_INVITE_REQUEST event, which fires when
the player is invited to join a guild.

AcceptLFGMatch
Accepts a proposed LFG match.
Usable after a group match has been proposed to the player via the
LFG_MATCH_REQUEST event.

AcceptLevelGrant
Accepts a level offered by the player’s Recruit-a-Friend partner.

AcceptQuest
Accepts the quest offered by a questgiver.

Usable following the QUEST_DETAIL event in which the questgiver presents
the player with the details of a quest and the option to accept or decline.

558 PartlV = Reference

AcceptResurrect

Accepts an offered resurrection spell.
Not used for self-resurrection; see UseSoulstone () for such cases.

AcceptSockets

Accepts changes made in the Item Socketing UL

Any gems added are permanently socketed into the item, and any existing
gems replaced by new gems are destroyed. This function only has effect while
the Item Socketing Ul is open (i.e. between the SOCKET_INFO_UPDATE and
SOCKET_INFO_CLOSE events).

AcceptTrade

Accepts a proposed trade.

Once both players have accepted, the trade process completes and the actual
exchange of items/money/enchants takes place.

AcceptXPLoss

Resurrects the player at a spirit healer, accepting possible consequences.

Resurrecting at a spirit healer generally results in a loss of durability (both
equipped items and those in the player’s bags) and may also result in the
Resurrection Sickness debuff.

Early in the development of World of Warcraft, resurrecting at a spirit healer
caused a loss of experience points. The change to a loss of item durability was
made before the initial public release of World of Warcraft, but the name of this
function was never changed.

ActionHasRange

Returns whether an action has a range restriction.

hasRange = ActionHasRange (slot)

Arguments:

slot—An action bar slot (number, actionID)

Returns:

hasRange—1 if the action has a range restriction; otherwise nil (1nil)

AddChatWindowChannel

Adds a chat channel to the saved list of those displayed in a chat window.
zoneChannel = AddChatWindowChannel (index, channel)

Used by the default Ul's function ChatFrame_AddChannel () which manages
the set of channel messages shown in a displayed ChatFrame.

Arguments:

index—Index of a chat frame (between 1 and NUM_CHAT_WINDOWS) (number)
channel—Name of a chat channel (number)

Returns:

zoneChannel—0 for non-zone channels, otherwise a numeric index specific to
that channel (number)

Chapter 27 = API Reference 559

AddChatWindowMessages
Adds a message type to the saved list of those displayed in a chat window.

AddChatWindowMessages (index, "messageGroup")

Used by the default UI's function ChatFrame_AddMessageGroup (), which
manages the set of message types shown in a displayed ChatFrame.

Arguments:
index—Index of a chat frame (between 1 and NUM_CHAT_WINDOWS) (number)
messageGroup—Token identifying a message type (string, chatMsgType)
AddFriend
Adds a character to the friends list.
AddFriend("name")
Arguments:
name—Name of a character to add to the friends list (string)
AddIgnore
Adds a character to the ignore list.
AddIgnore ("name")
Arguments:
name—Name of a character to add to the ignore list (string)
AddMute
Adds a character to the muted list for voice chat.
AddMute ("name")
The Muted list acts for voice chat as the Ignore list does for text chat: muted
characters will never be heard regardless of which voice channels they join the
player in.
Arguments:

name—Name of a character to add to the mute list (string)

AddOrDellgnore
Adds the named character to the ignore list, or removes the character if already
in the ignore list.

AddOrDelIgnore ("fullname")
Arguments:

fullname—Name of a character to add to or remove from the ignore list
(string)

AddOrDelMute
Adds or removes a character from the voice mute list.
AddOrDelMute ("unit") or AddOrDelMute ("name")

Adds the character to the list if he/she is not already on it; removes the
character if already on the list.

560 PartlV = Reference

The Muted list acts for voice chat as the Ignore list does for text chat: muted
characters will never be heard regardless of which voice channels they join the
player in.

Arguments:

unit—A unit to mute (string, unitID)

name—Name of a character to mute (string)

AddOrRemoveFriend
Adds the named character to the friends list, or removes the character if
already in the friends list.
AddOrRemoveFriend("name", "note")
Arguments:
name—Name of a character to add to or remove from the friends list (string)
note—Note text to be associated with the friends list entry created (string)

AddPreviewTalentPoints
Spends (or unspends) talent points in the Talent UI’s preview mode.

AddPreviewTalentPoints (tabIndex, talentIndex, points, isPet, 3
talentGroup)

Arguments:

tabIndex—Index of a talent tab (between 1 and GetNumTalentTabs ())
(number)

talentIndex—Index of a talent option (between 1 and GetNumTalents ())
(number)

points—Number of points to spend on the talent, or a negative num-

ber to unspend points. Values larger than allowed for the talent will be

clipped to the maximum value (e.g. attempting to spend ten points on a
talent that has five ranks will only spend up to five points). (number)

isPet—True to edit talents for the player’s pet, false to edit talents for the
player (boolean)

talentGroup—Which set of talents to edit, if the player has Dual Talent Special-
ization enabled (number)

=] —Primary Talents

m 2 —Secondary Talents

m il —Currently active talents
AddQuestWatch

Adds a quest to the objectives tracker.

AddQuestWatch (questIndex)

Arguments:

questIndex—Index of a quest in the quest log (between 1 and
GetNumQuestLogEntries ()) (number)

AddTrackedAchievement
Adds an achievement to the objectives tracker UI.

AddTrackedAchievement (id)

Chapter 27 = API Reference 561

Arguments:
id—The numeric ID of an achievement (number)

AddTradeMoney
Adds the money currently on the cursor to the trade window.

ApplyBarberShopStyle
Purchases the selected barber shop style changes.
Does not exit the barber shop session, so further changes are still allowed.
The BARBER_SHOP_SUCCESS and BARBER_SHOP_APPEARANCE_APPLIED
events fire once the style change takes effect.

ArenaTeamDisband
Disbands an arena team.

ArenaTeamDisband (team)

Only has effect if the player is captain of the given team.

Arguments:
team—Index of one of the player’s arena teams (number, arenaTeamID)

ArenaTeamInviteByName
Invites a character to one of the player’s arena teams.
ArenaTeamInviteByName (team, "name")
Arguments:
team—Index of one of the player’s arena teams (number, arenaTeamID)
name—Name of a character to invite (string)

ArenaTeamLeave
Leaves an arena team.

ArenaTeamLeave (team)

Arguments:
team—Index of one of the player’s arena teams (number, arenaTeamID)

ArenaTeamRoster
Requests arena team roster information from the server.

ArenaTeamRoster (team)

Does not return information directly: the ARENA_TEAM_ROSTER_UPDATE event
fires when information from the server becomes available, which can then be
retrieved using GetNumArenaTeamMembers () and
GetArenaTeamRosterInfo ().

Roster update requests are limited to once every 10 seconds per team. For
example, calling ArenaTeamRoster (1) twice within ten seconds will not
result in a second ARENA_TEAM_ROSTER_UPDATE event, but calling
ArenaTeamRoster (1) and ArenaTeamRoster (2) within ten seconds will
result in two ARENA_TEAM_ROSTER_UPDATE events (one for each team).

Arguments:
team—Index of one of the player’s arena teams (number, arenaTeamlID)

562 PartlV = Reference

Protected

Protected

Protected

ArenaTeamSetLeaderByName

Promotes an arena team member to team captain.

ArenaTeamSetLeaderByName (team, "name")

Only has effect if the player is captain of the given team.

Arguments:

team—Index of one of the player’s arena teams (number, arenaTeamID)
name—Name of a team member to promote (string)

ArenaTeamUninviteByName

Removes a member from an arena team.

ArenaTeamUninviteByName (team, "name")

Arguments:

team—Index of one of the player’s arena teams (number, arenaTeamID)
name—Name of a team member to remove (string)

ArenaTeam_GetTeamSizelD

Converts an arena team size to the appropriate numeric arena team identifier.
teamID = ArenaTeam_GetTeamSizeID (teamSize)

Arguments:

teamSize—The size of the arena team (i.e. 2 for 2v2, 3 for 3v3, etc.) (number)
Returns:

teamID—The numeric identifier for the arena team of the given size (number,
arenaTeamlID)

AscendStop

Stops movement initiated by JumpOrAscendStart.

Used by the guMP binding, which also controls ascent when swimming or
flying. Has no meaningful effect if called while jumping (in which case
movement is generally stopped by hitting the ground).

AssistUnit

Targets the unit targeted by another unit.
AssistUnit ("unit") or AssistUnit("name")
Arguments:

unit—A unit to assist (string, unitID)
name—The name of a unit to assist (string)

AttackTarget

Begins auto-attack against the player’s current target.

(If the ““Auto Attack/Auto Shot” option is turned on, also begins Auto Shot for
hunters.)

AutoEquipCursorltem

Equips the item on the cursor.

The item is automatically equipped in the first available slot in which it fits. To
equip an item in a specific slot, see EquipCursorItem().

Chapter 27 = API Reference 563

Causes an error message (UI_ERROR_MESSAGE) if the item on the cursor cannot

be equipped. Does nothing if the cursor does not contain an item.
AutoLootMailltem

Automatically takes any attached items and money from a mail message.

AutoLootMailItem(mailID)

If the message does not have body text (which can be saved as a permanent
copy), also deletes the message.
Arguments:
mailID—Index of a message in the player’s inbox (between 1 and
GetInboxNumItems ()) (number)

AutoStoreGuildBankItem
Withdraws the item(s) from a slot in the guild bank, automatically adding to
the player’s bags.
AutoStoreGuildBankItem(tab, slot)
Arguments:

tab—Index of a guild bank tab (between 1 and GetNumGuildBankTabs ())
(number)

slot—Index of an item slot in the guild bank tab (between 1 and
MAX_GUILDBANK_SLOTS_PER_TAB) (number)

BankButtonIDToInvSlotID
Returns the inventoryID corresponding to a bank item or bag slot.
inventoryID = BankButtonIDToInvSlotID (buttonID [, isBag])
Arguments:
but tonID—Numeric ID of an item or bag slot in the bank UI (number)
isBag (optional)—1 if the given ID corresponds to a bank bag slot; nil if the ID
corresponds to an item slot (1nil)
Returns:
inventoryID—An inventory slot ID usable with various Inventory API func-
tions (number, inventorylD)
Example:

--While mousing over a button in the bank

local button = GetMouseFocus ()

print ("Inventory Slot:", BankButtonIDToInvSlotID (button:GetID(), «3
button.isBag))

BarberShopReset
Resets barber shop options to the currently worn styles.

Changes the underlying data (and thus the character’s appearance) only; the
default barbershop UI does not update.

BindEnchant

Confirms enchanting an item (when the item will become soulbound as a
result).

564 PartlV = Reference

Usable following the BIND_ENCHANT event which fires upon attempting to
perform an enchantment that would cause the target item to become
soulbound.

BuyGuildBankTab

Purchases the next available guild bank tab.
BuyGuildCharter

Purchases a guild charter.

BuyGuildCharter ("guildName")

Usable if the player is interacting with a guild registrar (i.e. between the

GUILD_REGISTRAR_SHOW and GUILD_REGISTRAR_CLOSED events).

Arguments:

guildName—Name of the guild to be created (string)
BuyMerchantItem

Purchases an item available from a vendor.

BuyMerchantItem(index, quantity)

Arguments:

index—Index of an item in the vendor’s listing (between 1 and
GetMerchantNumItems ()) (number)

quantity—Number of items to purchase (between 1 and
GetMerchantItemMaxStack (index)) (number)
BuyPetition
Purchases an arena team charter.
BuyPetition (team, "name")
Arguments:
team—Index of the size of team to create (number, arenaTeamID)
name—Name of the team to create (string)
BuyStableSlot
Purchases the next available stable slot, without confirmation.

Only available while interacting with a Stable Master NPC (between the
PET_STABLE_SHOW and PET_STABLE_CLOSED events and only if IsAtStable
Master () returns true).

BuyTrainerService
Purchases an ability or recipe available from a trainer.
BuyTrainerService (index)
Arguments:

index—Index of an entry in the trainer service listing (between 1 and GetNum
TrainerServices ()) (number)

BuybackItem
Repurchases an item recently sold to a vendor.

BuybackItem (index)

Chapter 27 = API Reference 565

Arguments:
index—Index of an item in the buyback listing (between 1 and
GetNumBuybackItems ()) (number)
CalculateAuctionDeposit
Returns the deposit amount for the item currently being set up for auction.

deposit = CalculateAuctionDeposit (runTime)

Only returns useful information once an item has been placed in the Create
Auction UI’s “auction item”” slot (see ClickAuctionSellTItemButton ()).

Deposit amount for an auction varies based on the item being auction, the
auction’s proposed run time, and the auction house being used (i.e. faction or
neutral).

Arguments:

runTime—Run time of the proposed auction (number)

m 720—12 hours

= 1440—24 hours

= 23880—48 hours

Returns:
deposit—Amount of the deposit (in copper) (number)

CalendarAddEvent
Saves the event recently created (and selected for editing) to the calendar.

Until this function is called, an event created with CalendarNewEvent (),
CalendarNewGuildEvent (), or CalendarNewGuildAnnouncement () will
not exist on the calendar—that is, guild members or invitees will not see it,
and it will not persist if the player closes the calendar, reloads the UI, or goes to
view or edit another event.

CalendarCanAddEvent
Returns whether the player can add an event to the calendar.

canAdd = CalendarCanAddEvent ()

Returns:
canAdd—True if the player can add an event to the calendar; otherwise false
(boolean)

CalendarCanSendInvite
Returns whether the player can invite others to a calendar event.
canInvite = CalendarCanSendInvite ()
Returns:
canInvite—True if the player can invite others to a calendar event; otherwise
false (boolean)
CalendarCloseEvent
Deselects (ends viewing/editing on) an event.

566 PartlV = Reference

After calling this function, results of attempting to query or change event
information are not guaranteed until a new event is created or another existing
event is opened.

CalendarContextDeselectEvent
Clears the event selection used only for CalendarContext functions.
The selection state cleared is used only by other CalendarContext functions;
other calendar event functions use a selection state (if needed) set by
CalendarOpenEvent, CalendarNewEvent, CalendarNewGuildEvent, or
CalendarNewGuildAnnouncement.

CalendarContextEventCanComplain
Returns whether the player can report an event invitation as spam.

canReport = CalendarContextEventCanComplain ([monthOffset,] day, index)

If all arguments are omitted, uses the event selected by
CalendarContextSelectEvent.
Arguments:

monthOf fset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

= -1 —Month preceding the calendar’s current month

m 0 —Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month
|

nil—Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)
index—Index of an event on the given day (from 1 to CalendarGetNumbDay
Events ()) (number)
Returns:
canReport—true if the player can report the event as spam; otherwise false
(boolean)
CalendarContextEventCanEdit
Returns whether the player can edit an event.

canEdit = CalendarContextEventCanEdit ([monthOffset,] day, index)

Arguments:

monthOffset (optional)—Month containing an event relative to the calendar’s
currently displayed month (number)

m -1 —Month preceding the calendar’s current month
m 0—The calendar’s current month (i.e. same month as CalendarGetMonth())
®m] —Month after the calendar’s current month

m i1 —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

Chapter 27 = API Reference

567

index—Index of an event on the given day (from 1 to CalendarGetNumDay
Events ()) (number)

Returns:
canEdit—True if the player can edit the event (boolean)

CalendarContextEventClipboard
Returns whether the player can paste an event.

canPaste = CalendarContextEventClipboard ()

Returns:
canPaste—true if an event has been copied via CalendarContextEventCopy;
otherwise false (boolean)
CalendarContextEventComplain
Reports an event invitation as spam.

CalendarContextEventComplain ([monthOffset,] day, index)

Arguments:
monthOffset (optional)—Month containing an event relative to the calendar’s
currently displayed month (number)

m -1 —Month preceding the calendar’s current month

m 0—Current month (i.e. same month as CalendarGetMonth ())

=] —Month after the calendar’s current month

m nil—Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNumDay

Events ()) (number)

CalendarContextEventCopy
Copies an event for later pasting.

CalendarContextEventCopy ([monthOffset,] day, index)

Arguments:

monthOffset (optional) —Month containing an event relative to the calendar’s

currently displayed month (number)

= -1 —Month preceding the calendar’s current month

m 0—Current month (i.e. same month as CalendarGetMonth ())

= 1 —Month after the calendar’s current month

m i1 —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNumDay

Events ()) (number)

568 PartlV = Reference

CalendarContextEventGetCalendarType
Returns the type of a calendar event.
calendarType = CalendarContextEventGetCalendarType ([monthOffset,] 3

day, index)

If all arguments are omitted, uses the event selected by
CalendarContextSelectEvent.

Arguments:

monthOffset (optional)—Month containing an event relative to the calendar’s
currently displayed month (number)

m -1 —Month preceding the calendar’s current month
®m 0—Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month

m il —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNumbDay
Events ()) (number)

Returns:

calendarType—Token identifying the type of event (string)

= GUILD_ANNOUNCEMENT—Guild announcement (does not allow players to
sign up)

= GUILD_EVENT—Guild event (allows players to sign up)

HOLIDAY—World event (e.g. Lunar Festival, Darkmoon Faire,
Stranglethorn Fishing Tournament, Call to Arms: Arathi Basin)

m pLAYER—Player-created event or invitation

= RATD_LOCKOUT—Indicates when one of the player’s saved instances resets
m RATD_RESET—Indicates scheduled reset times for major raid instances

m 5YSTEM—Other server-provided event

CalendarContextEventPaste
Pastes a copied event into a given date.

CalendarContextEventPaste (monthOffset, day)
Does nothing if no event has been copied via CalendarContextEventCopy.

Arguments:

monthOf fset—Month containing an event relative to the calendar’s currently
displayed month (number)

m -1 —Month preceding the calendar’s current month
m 0—Current month (i.e. same month as CalendarGetMonth ())
m] —Month after the calendar’s current month

day—Day of the month (number)

Chapter 27 = API Reference 569

CalendarContextEventRemove
Deletes an event from the calendar.

CalendarContextEventRemove ([monthOffset,] day, index)

Arguments:

monthOffset (optional) —Month containing an event relative to the calendar’s

currently displayed month (number)

m -1 —Month preceding the calendar’s current month

m 0—Current month (i.e. same month as CalendarGetMonth ())

m 1 —Month after the calendar’s current month

m il —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNumbDay

Events ()) (number)

CalendarContextEventSignUp
Signs the player up for a guild event.

CalendarContextEventSignUp ([monthOffset,] day, index)

Arguments:
monthOffset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)
m -1 —Month preceding the calendar’s current month
®m 0—Current month (i.e. same month as CalendarGetMonth ())
=] —Month after the calendar’s current month
m i1 —Use the event selected by CalendarContextSelectEvent and ignore
further arguments
day—Day of the month containing an event (number)
index—Index of an event on the given day (from 1 to CalendarGetNum-
DayEvents()) (number)
CalendarContextGetEventIndex
Returns the month, day, and index of the event selection used only for

CalendarContext functions.

monthOffset, day, index = CalendarContextGetEventIndex ()

The selection state referenced by this function is used only by other
CalendarContext functions; other calendar event functions use the selection
state set by CalendarOpenEvent, CalendarNewEvent, CalendarNew
GuildEvent, or CalendarNewGuildAnnouncement (if they use a selection
state at all).

Used in the default UI to implement the calendar’s context menu (on
right-click).

570 PartlV = Reference

Returns:

monthOf fset—Month relative to the calendar’s currently displayed month
(number)

m -1 —Month preceding the calendar’s current month

m 0—Current month (i.e. same month as CalendarGetMonth ())

m 1 —Month after the calendar’s current month

day—Day of the month (number)

index—Index of the event on the given day (from 1 to

CalendarGetNumDayEvents()) (number)

CalendarContextInviteAvailable

Accepts an event invitation.

CalendarContextInviteAvailable ([monthOffset,] day, index)

Arguments:

monthOffset (optional)—Month containing an event relative to the calendar’s
currently displayed month (number)

= -1 —Month preceding the calendar’s current month
m 0—Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month

m il —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)
index—Index of an event on the given day (from 1 to
CalendarGetNumDayEvents()) (number)
CalendarContextInviteDecline
Declines an event invitation.

CalendarContextInviteDecline ([monthOffset,] day, index)

Arguments:

monthOf fset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

= -1 —Month preceding the calendar’s current month
m) —Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month

m i1 —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to
CalendarGetNumDayEvents()) (number)

Chapter 27 = API Reference

571

CalendarContextInviteIsPending
Returns whether the player has been invited to an event and not yet
responded.

pendingInvite = CalendarContextInviteIsPending ([monthOffset,] 3
day, index)

Arguments:

monthOffset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

= -1 —Month preceding the calendar’s current month
m) —Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month

m i1 —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNum
DayEvents()) (number)

Returns:

pendingInvite—True if the player is invited to the event and has yet to

respond; otherwise false (boolean)
CalendarContextInviteModeratorStatus

Returns the player’s moderator status for an event.

modStatus = CalendarContextInviteModeratorStatus ([monthOffset,] 2
day, index)

Arguments:

monthOffset (optional)—Month containing an event relative to the calendar’s

currently displayed month (number)

m -1 —Month preceding the calendar’s current month

®m 0 —Current month (i.e. same month as CalendarGetMonth ())

m 1 —Month after the calendar’s current month

m il —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGet

NumDayEvents()) (number)

Returns:

iy

modStatus—The player’s level of authority for the event, or
(number)

if not applicable

m CREATOR—The player is the original creator of the event
= MODERATOR—The player has been granted moderator status for the event

572 PartlV = Reference

CalendarContextInviteRemove
Removes an invitation from the player’s calendar or removes the player from a
guild event’s signup list.

CalendarContextInviteRemove ([monthOffset,] day, index)

Arguments:

monthOf fset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

= -1 —Month preceding the calendar’s current month
®m 0—Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month

m il —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)
index—Index of an event on the given day (from 1 to CalendarGetNum
DayEvents()) (number)
CalendarContextInviteStatus
Returns the player’s invite status for an event.

inviteStatus = CalendarContextInviteStatus ([monthOffset,] day, index)

Arguments:

monthOf fset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

m -1 —Month preceding the calendar’s current month
m) —Current month (i.e. same month as CalendarGetMonth ())
m 1 —Month after the calendar’s current month

m il —Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNum
DayEvents()) (number)

Returns:
inviteStatus—The player’s status regarding the event (number)

1—Invited 5—Out
2—Accepted 6—Standby
3—Declined 7—Signed up
4—Confirmed 8—Not signed up

1 is also used for non-invitation/non-signup events.

Chapter 27 = API Reference

573

CalendarContextInviteType
Returns the invite type for an event.

inviteType = CalendarContextInviteType ([monthOffset,] day, index)

Arguments:

monthOffset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

= -1 —Month preceding the calendar’s current month

m 0 —Current month (i.e. same month as CalendarGetMonth ())
m | —Month after the calendar’s current month
|

nil—Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNum
DayEvents()) (number)

Returns:

inviteType—Invitation/announcement type for the event (number)

m] —Characters can only be explicitly invited to the event (or event is a
non-invite/non-signup event)

m 2 —Event is visible to the player’s entire guild; guild members
can sign up and other characters can be explicitly invited

CalendarContextSelectEvent
Selects an event for use only with other CalendarContext functions.

CalendarContextSelectEvent ([monthOffset,] day, index)

The selection state set by this function is used only by other CalendarContext
functions; other calendar event functions use the selection state set by
CalendarOpenEvent, CalendarNewEvent, CalendarNewGuildEvent, or
CalendarNewGuildAnnouncement (if they use a selection state at all).

Used in the default UI to implement the calendar’s context menu (on
right-click).
Arguments:

monthOffset (optional) —Month containing an event relative to the calendar’s
currently displayed month (number)

m -1 —Month preceding the calendar’s current month

m 0—Current month (i.e. same month as CalendarGetMonth ())
m] —Month after the calendar’s current month
|

nil—Use the event selected by CalendarContextSelectEvent and ignore
further arguments

day—Day of the month containing an event (number)

index—Index of an event on the given day (from 1 to CalendarGetNum
DayEvents()) (number)

574 PartlV = Reference

CalendarDefaultGuildFilter
Returns default options for the guild member Mass Invite filter.
minLevel, maxLevel, rank = CalendarDefaultGuildFilter ()
Returns:
minLevel —Lowest level of characters to invite (number)
maxLevel—Highest level of characters to invite (number)
rank—Lowest guild rank of characters to invite (number)
CalendarEventAvailable
Accepts invitation to the selected calendar event.
Only applies to player-created events and invitations sent by other players; has
no effect if the current calendar event is of another type.
CalendarEventCanEdit
Returns whether the player can edit the selected calendar event.
canEdit = CalendarEventCanEdit ()
Returns:
canEdit—True if the player can edit the current event; otherwise false
(boolean)
CalendarEventCanModerate
Returns whether an event invitee can be granted moderator authority.
canModerate = CalendarEventCanModerate (index)
Arguments:
index—Index of a character on the event’s invite list (between 1 and
CalendarEventGetNumInvites()) (number)
Returns:
canModerate—True if the given character can be given mod-
erator authority for the event; otherwise false (boolean)
CalendarEventClearAutoApprove
Disables the auto-approve feature (currently unused) for the selected calendar
event.
CalendarEventClearLocked
Unlocks the selected calendar event.
Locked events do not allow invitees to respond or guild members to sign up,
but can still be edited.
CalendarEventClearModerator
Removes moderator status from a character on the selected event’s invite/
signup list.
CalendarEventClearModerator (index)

Moderators can change the status of characters on the invite/signup list and
invite more characters, but cannot otherwise edit the event.

Chapter 27 = API Reference 575

Arguments:

index—Index of a character on the event’s invite list (between 1 and Calen-

darEventGetNumlInvites()) (number)
CalendarEventDecline

Declines invitation to the selected calendar event.

Only applies to player-created events and invitations sent by other players; has

no effect if the current calendar event is of another type.
CalendarEventGetCalendarType

Returns the type of the selected calendar event.

calendarType = CalendarEventGetCalendarType ()

Returns:

calendarType—Token identifying the type of event (string)

= GUILD_ANNOUNCEMENT—Guild announcement (does not allow players to

sign up)
= GUILD_EVENT—Guild event (allows players to sign up)
m praAYER—Player-created event or invitation

CalendarEventGetInvite
Returns information about an entry in the selected event’s invite /signup list.

name, level, className, classFileName, inviteStatus, modStatus, <2
inviteIsMine, inviteType = CalendarEventGetInvite (index)

Arguments:

index—Index of a character on the event’s invite list (between 1 and
CalendarEventGetNumInvites ()) (number)

Returns:

name—Name of the character (string)

level—The character’s current level (number)
className—Localized name of the character’s class (string)

classFileName—Non-localized token representing the character’s class
(string)
invitestatus—The character’s status regarding the event (number)

1—Invited 5—Out
2—Accepted 6—Standby
3—Declined 7—Signed up

4—Confirmed

“rr

modStatus—The character’s level of authority for the event, or
ble (number)

m cREATOR—The character is the original creator of the event

if not applica-

= MODERATOR—The character has been granted moderator status for the event

inviteIsMine—True if this list entry represents the player; otherwise false
(boolean)

576 PartlV = Reference

inviteType—Invitation/announcement type for the event (number)
m 1 —Characters can only be explicitly invited to the event
m > —Event is visible to the player’s entire guild; guild members
can sign up and other characters can be explicitly invited
CalendarEventGetInviteResponseTime
Returns the time at which a character on the selected event’s invite /signup list
responded.
weekday, month, day, year, hour, minute = <2
CalendarEventGetInviteResponseTime ()

Returns all zeros if the character has not yet responded or is the event’s creator.

Returns:

weekday—Index of the day of the week (starting at 1 = Sunday) (number)

month—Index of the month (starting at 1 = January) (number)

day—Day of the month (number)

year—Year (full four-digit year) (number)

hour—Hour part of the time (on a 24-hour clock) (number)

minute—Minute part of the time (number)
CalendarEventGetInviteSortCriterion

Returns the current sort mode for the event invite/signup list.

criterion, reverse = CalendarEventGetInviteSortCriterion ()

Returns:
criterion—Token identifying the attribute used for sorting the list (string)

®m class—Sorted by character class (according to the global table
CLASS_SORT_ORDER)

= name—>Sorted by character name
m status—Sorted by invite status

reverse—True if the list is sorted in reverse order; otherwise false (boolean)

CalendarEventGetNumlInvites

Returns the number of characters on the selected calendar event’s

invite/signup list.

numInvites = CalendarEventGetNumInvites ()

Returns:

numInvites—Number of characters on the event’s invite/signup list (number)
CalendarEventGetRepeatOptions

Returns a list of localized event repetition option labels (currently unused).

... =CalendarEventGetRepeatOptions ()

Returns:
.. .—List of localized event repetition option labels (1ist)

Chapter 27 = API Reference 577

CalendarEventGetSelectedInvite
Returns the index of the selected entry on the selected event’s invite /signup
list.

index = CalendarEventGetSelectedInvite ()

In the current default Ul, selection behavior in the invite list is implemented
but disabled; selecting an invite list entry has no effect on the behavior of
other APIs.

Returns:

index—Index of a character on the event’s invite list (between 1 and Calendar

EventGetNumlInvites()), or 0 if no selection has been made (number)
CalendarEventGetStatusOptions

Returns a list of localized invite status labels.

... =CalendarEventGetStatusOptions ()

Returns:

.. .—List of localized invite status labels (1ist)

CalendarEventGetTextures
Returns a list of instance names and icons for dungeon or raid events.
name, icon, expansion = CalendarEventGetTextures (eventType)
Arguments:
eventType—Type (display style) of event to query (number)
m 1 —Raid dungeon
m 2 —Five-player dungeon
Returns:
name—Name of an instance (may include heroic designation) (string)

icon—Unique part of the path to the instance’s icon texture; for the full
path, prepend with "Interface\LFGFrame\LFGIcon-" (string)

expansion—Expansion to which the instance belongs; localized names can be

found in the constants EXPANSION_NAMEQ, EXPANSION_NAME], etc. (number)
CalendarEventGetTypes

Returns a list of event display style labels.

... =CalendarEventGetTypes ()

Returns:

.. .—Alist of localized event display style labels (1ist)
CalendarEventHasPendingInvite

Returns whether the player has been invited to the selected event and not yet

responded.

pendingInvite = CalendarEventHasPendingInvite ()

Returns:

pendingInvite—True if the player has been invited to the event and not yet
responded; otherwise false (boolean)

578 PartlV = Reference

CalendarEventHaveSettingsChanged
Returns whether the selected event has unsaved changes.
settingsChanged = CalendarEventHaveSettingsChanged ()
Returns:

settingsChanged—True if any of the event’s attributes have been
changed since the event was last saved; otherwise false (boolean)

CalendarEventInvite
Attempts to invite a character to the selected event.
CalendarEventInvite ("name")
If successful, the CALENDAR_UPDATE_INVITE_LIST event fires indicating the

character has been added to the invite list; otherwise the CALENDAR_UPDATE
_ERROR event fires containing a localized error message.

Arguments:
name—Name of a character to invite (string)
CalendarEventIsModerator

Returns whether the player has moderator status for the selected calendar
event.

isModerator = CalendarEventIsModerator ()

Also returns true if the player is the event’s creator.
Returns:
isModerator—True if the player has moderator status for the event; otherwise
false (boolean)

CalendarEventRemovelnvite
Removes a character from the selected event’s invite /signup list.
CalendarEventRemovelInvite (index)
Cannot be used to remove the event’s creator (fires a
CALENDAR_UPDATE_ERROR event with nil error message if such is attempted).
Arguments:
index—Index of a character on the event’s invite list (between 1 and Calendar
EventGetNumlInvites()) (number)

CalendarEventSelectInvite
Selects an entry in the selected event’s invite/signup list.
CalendarEventSelectInvite (index)
In the current default Ul, selection behavior in the invite list is implemented

but disabled; selecting an invite list entry has no effect on the behavior of
other APIs.

Arguments:

index—Index of a character on the event’s invite list (between 1 and Calen-
darEventGetNumlInvites()) (number)

Chapter 27 = API Reference 579

CalendarEventSetAutoApprove
Enables the auto-approve feature (currently unused) for the selected calendar
event.
CalendarEventSetDate
Changes the scheduled date of the selected calendar event.
CalendarEventSetDate (month, day, year)
Arguments:
month—Index of the month (starting at 1 = January) (number)
day—Day of the month (number)
year—Year (full four-digit year) (number)

CalendarEventSetDescription
Changes the descriptive text for the selected event.
CalendarEventSetDescription ("description")
Arguments:
description—Descriptive text to be displayed for the event (string)

CalendarEventSetLocked
Locks the selected calendar event.
Locked events do not allow invitees to respond or guild members to sign up,
but can still be edited.

CalendarEventSetLockoutDate
Changes the lockout date associated with the selected event (currently
unused).

CalendarEventSetLockoutDate (month, day, year)

This feature is not enabled in the current version of World of Warcraft; saving
an event in which the lockout date has been changed will revert it to its default
of 1,1, 1, 2000 (January 1, 2000).

Arguments:

month—Index of the month (starting at 1 = January) (number)

day—Day of the month (number)

year—Year (full four-digit year) (number)

CalendarEventSetLockoutTime

Changes the lockout time associated with the selected event (currently
unused).

CalendarEventSetLockoutTime (hour, minute)

This feature is not enabled in the current version of World of Warcraft; saving
an event in which the lockout time has been changed will revert it to its default
of 0, 0 (midnight).

Arguments:

hour—Hour part of the time (on a 24-hour clock) (number)
minute—Minute part of the time (number)

580 PartlV = Reference

CalendarEventSetModerator

Grants moderator status to a character on the selected event’s invite /signup
list.

CalendarEventSetModerator (index)

Moderators can change the status of characters on the invite/signup list and
invite more characters, but cannot otherwise edit the event.

Arguments:

index—Index of a character on the event’s invite list (between 1 and Calendar
EventGetNumlnvites()) (number)

CalendarEventSetRepeatOption
Changes the repetition option for the selected event (currently unused).
CalendarEventSetRepeatOption(title)
This feature is not enabled in the current version of World of Warcraft; saving

an event in which the repeat option has been changed will revert it to its
default of 1 (Never).

Arguments:

title—Index of a repeati